
57960_ifc_ptg01.indd   3 10/26/15   2:42 PM



Notations
(The number after the item indicates the page where the notation is defined.)

SET THEORY >i[ISi intersection of sets Si, i [ I
 <i[ISi union of sets Si, i [ I
 [a]  {x [ S | x , a}, equivalence class of S containing a, 18
 |s| number of elements in the set of S

SPECIAL SETS Z  integers, additive groups of integers, ring of integers
 Q  rational numbers, field of rational numbers
 Q1  multiplicative group of positive rational numbers
 F* set of nonzero elements of F
 R real numbers, field of real numbers
 R1 multiplicative group of positive real numbers
 C complex numbers

FUNCTIONS f21  inverse of the function f
AND ARITHMETIC t | s  t divides s, 3
 t B s t does not divide s, 3
 gcd(a, b)  greatest common divisor of the integers a and b, 4
 lcm(a, b)  least common multiple of the integers a and b, 6
 |a 1 b| 2a2 � b2, 13
 f(a) image of a under f, 20
 f: A → B mapping of A to B, 21
 gf, ab composite function, 21

ALGEBRAIC SYSTEMS D4  group of symmetries of a square, dihedral group of 
order 8, 33

 Dn  dihedral group of order 2n, 34
 e identity element, 43
 Zn  group {0, 1, . . . , n 2 1} under addition modulo n, 44
 det A the determinant of A, 45
 U(n)  group of units modulo n (that is, the set of integers 

less than n and relatively prime to n under multiplica-
tion modulo n), 46

 Rn  {(a1, a2, . . . , an) U a1, a2, . . . , an [ R}, 47
 SL(2, F)  group of 2 3 2 matrices over F with  

determinant 1, 47
 GL(2, F)  2 3 2 matrices of nonzero determinants with coeffi-

cients from the field F (the general linear group), 48
 g21 multiplicative inverse of g, 51
 2g additive inverse of g, 51
 UGU order of the group G, 60
 UgU order of the element g, 60
 H # G subgroup inclusion, 61
 H , G subgroup H 2 G, 61
 kal {an U n [ Z}, cyclic group generated by a, 65
 Z(G)  {a [ G U ax 5 xa for all x in G}, the center of G, 66
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 C(a)  {g [ G U ga 5 ag}, the centralizer of a in G, 68
 kS l subgroup generated by the set S, 71
 C(H)  {x [ G U xh 5 hx for all h [ H}, the centralizer  

of H, 71
 f(n) Euler phi function of n, 83
 Sn  group of one-to-one functions from  

{1, 2, ? ? ? , n} to itself, 95
 An alternating group of degree n, 95
 G < G G and G are isomorphic, 121
 fa  mapping given by fa(x) 5 axa21 for all x, 128
 Aut(G) group of automorphisms of the group G, 129
 Inn(G) group of inner automorphisms of G, 129
 aH {ah U h [ H}, 138
 aHa21 {aha21 | h [ H}, 138
 UG:HU the index of H in G, 142
 HK {hk U h [ H, k [ K}, 144
 stabG(i)  {f [ G U f(i) 5 i}, the stabilizer of i under the per-

mutation group G, 146
 orbG(i)  {f(i ) U f [ G}, the orbit of i under the  

permutation group G, 146
 G1 % G2 % ? ? ? % Gn  external direct product of groups G1, G2, . . . , Gn, 156
 Uk(n) {x [ U(n) U x mod k 5 1}, 160
 H v G H is a normal subgroup of G, 174
 G/H factor group, 176
 H 3 K internal direct product of H and K, 183
 H1 3 H2 3 ? ? ? 3 Hn internal direct product of H1, . . . , Hn, 184
 Ker f kernel of the homomorphism f, 194
 f21(g9) inverse image of g9 under f, 196

 f21(K) inverse image of K under f, 197
 Z[x]  ring of polynomials with integer coefficients, 228
 M2(Z)  ring of all 2 3 2 matrices with integer entries, 228
 R1 % R2 % ? ? ? % Rn direct sum of rings, 229
 nZ ring of multiples of n, 231
 Z[i] ring of Gaussian integers, 231
 U(R) group of units of the ring R, 233
 char R characteristic of R, 240
 kal principal ideal generated by a, 250
 ka1, a2, . . . , anl ideal generated by a1, a2, . . . , an, 250
 R/A factor ring, 250
 A 1 B sum of ideals A and B, 256
 AB product of ideals A and B, 257
 Ann(A) annihilator of A, 258
 N(A) nil radical of A, 258
 F(x) field of quotients of F[x], 269
 R[x] ring of polynomials over R, 276
 deg f (x) degree of the polynomial, 278
 Fp(x) pth cyclotomic polynomial, 294
 M2(Q) ring of 2 3 2 matrices over Q, 330
 kv1, v2, . . . , vnl subspace spanned by v1, v2, . . . , vn, 331
 F(a1, a2, . . . , an) extension of F by a1, a2, . . . , an, 341
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 f 9(x) the derivative of f (x), 346
 [E:F] degree of E over F, 356
 GF( pn) Galois field of order pn, 368
 GF( pn)* nonzero elements of GF( pn), 369
 cl(a) {xax21 U x [ G}, the conjugacy class of a, 387
 np  the number of Sylow p-subgroups of a group, 393
 W(S) set of all words from S, 424
 ka1, a2, . . . , an U w1 5 w2 5

 . . . 5 wtl  group with generators a1, a2, . . . , an and relations w1 
5 w2 5 . . . 5 wt , 426

 Q4 quarternions, 430
 Q6 dicyclic group of order 12, 430
 D` infinite dihedral group, 431
 fix(f) {i [ S U f(i) 5 i}, elements fixed by f, 474
 Cay(S:G)  Cayley digraph of the group G with generating set S, 

482
 k * (a, b, . . . , c) concatenation of k copies of (a, b, . . . , c), 490
 (n, k)  linear code, k-dimensional subspace of Fn, 508
 Fn  F % F % ? ? ? % F, direct product of n copies of the 

field F, 508
 d(u, v)  Hamming distance between vectors u and v, 509
 wt(u)  the number of nonzero components of the vector u 

(the Hamming weight of u), 509
 Gal(E/F) the automorphism group of E fixing F, 531
 EH fixed field of H, 531
 Fn(x) nth cyclotomic polynomial, 548
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xv

Preface

Set your pace to a stroll. Stop whenever you want. Interrupt, jump 
back and forth, I won’t mind. This book should be as easy as  laughter. 
It is stuffed with small things to take away. Please help yourself. 

Willis Goth ReGieR, In Praise of Flattery, 2007

Although I wrote the first edition of this book more than thirty years 
ago, my goals for it remain the same. I want students to receive a solid 
introduction to the traditional topics. I want readers to come away with 
the view that abstract algebra is a contemporary subject–that its con-
cepts and methodologies are being used by working mathematicians, 
computer scientists, physicists, and chemists. I want students to see the 
connections between abstract algebra and number theory and geometry. 
I want students to be able to do computations and to write proofs. I want 
students to enjoy reading the book. And I want convey to the reader my 
enthusiasm for this beautiful subject.

Educational research has shown that an effective way of learning 
mathematics is to interweave worked-out examples and practice prob-
lems. Thus, I have made examples and exercises the heart of the book. 
The examples elucidate the definitions, theorems, and proof techniques. 
The exercises facilitate understanding, provide insight, and develop the 
ability of the students to do proofs. There is a large number of exercises 
ranging from straight forward to difficult and enough at each level so 
that instructors have plenty to choose from that are most appropriate for 
their students. The exercises often foreshadow definitions, concepts, 
and theorems to come. Many exercises focus on special cases and ask 
the reader to generalize. Generalizing is a skill that students should de-
velop but rarely do. Even if an instructor chooses not to spend class time 
on the applications in the book, I feel that having them there demon-
strates to students the utility of the theory.

Changes for the ninth edition include new exercises, new examples, new 
biographies, new quotes, new appliactions, and a freshening of the histori-
cal notes and biographies from the 8th edition. These changes  accentuate 
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xvi Preface

and enhance the hallmark features that have made previous editions of the 
book a comprehensive, lively, and engaging introduction to the subject:

• Extensive coverage of groups, rings, and fields, plus a variety of non-
traditional special topics

• A good mixture of more nearly 1700 computational and theoretical 
exercises appearing in each chapter that synthesize concepts from 
multiple chapters

• Back-of-the-book skeleton solutions and hints to the odd-numbered 
exercises

• Worked-out examples– totaling more than 300–ranging from routine 
computations to quite challenging

• Computer exercises that utilize interactive software available on my 
website that stress guessing and making conjectures

• A large number of applications from scientific and computing fields, 
as well as from everyday life

•  Numerous historical notes and biographies that spotlight the people 
and events behind the mathematics

• Motivational and humorous quotations. 
• More than 275 figures, photographs, tables, and reproductions of 

 currency that honor mathematicians
• Annotated suggested readings for interesting further exploration of 

topics.

Cengage’s book companion site www.cengage.com/math/gallian  includes 
an instructor’s solution manual with detailed solutions for all exercises and 
other resources. The website www.d.umn.edu/~jgallian also  offers a wealth 
of additional online resources supporting the book,  including:

• True/false questions with comments
• Flash cards
• Essays on learning abstract algebra, doing proofs, and reasons why 

abstract algebra is a valuable subject to learn
• Links to abstract algebra-related websites and software packages and 

much, much more.

Additionally, Cengage offers a Student Solutions Manual, available for 
purchase separately, with detailed solutions to the odd-numbered  exercises 
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Properties of Integers
Much of abstract algebra involves properties of integers and sets. In this 
chapter we collect the properties we need for future reference.

An important property of the integers, which we will often use, is the 
so-called Well Ordering Principle. Since this property cannot be proved 
from the usual properties of arithmetic, we will take it as an axiom.

Well Ordering Principle

Every nonempty set of positive integers contains a smallest member.

The concept of divisibility plays a fundamental role in the theory of 
numbers. We say a nonzero integer t is a divisor of an integer s if there 
is an integer u such that s 5 tu. In this case, we write t | s (read “t 
 divides s”). When t is not a divisor of s, we write t B s. A prime is a 
positive integer greater than 1 whose only positive divisors are 1 and 
itself. We say an integer s is a multiple of an integer t if there is an inte-
ger u such that s 5 tu or, equivalently, if t is a divisor of s.

As our first application of the Well Ordering Principle, we establish a 
fundamental property of integers that we will use often.

 Theorem 0.1 Division Algorithm

Let a and b be integers with b . 0. Then there exist unique integers q 
and r with the property that a 5 bq 1 r , where 0 # r , b.

3

Preliminaries

When we see it [modular arithmetic] for the first time, it looks so 
abstract that it seems impossible something like this could have 
any real-world applications.

Edward Frenkel, Love and Math: The Heart of Hidden Reality

The whole of science is nothing more than a refinement of every-
day thinking.

Albert Einstein, Physics and Reality

0
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PROOF We begin with the existence portion of the theorem. Consider the set 
S 5 {a 2 bk | k is an integer and a 2 bk $ 0}. If 0 [ S, then b divides a and 
we may obtain the desired result with q 5 a/b and r 5 0. Now assume  
0 n S. Since S is nonempty [if a . 0, a 2 b ? 0 [ S; if a , 0, a 2 b(2a) 5 
a(1 2 2b) [ S; a ? 0 since 0 n S], we may apply the Well Ordering 
Principle to conclude that S has a smallest member, say r 5 a 2 bq. Then 
a 5 bq 1 r and r $ 0, so all that remains to be proved is that r , b.

If r $ b, then a 2 b(q 1 1) 5 a 2 bq 2 b 5 r 2 b $ 0, so that  
a 2 b(q 1 1) [ S. But a 2 b(q 1 1) , a 2 bq, and a 2 bq is the small-
est member of S. So, r , b.

To establish the uniqueness of q and r, let us suppose that there are 
integers q, q9, r, and r9 such that

a 5 bq 1 r,  0 # r , b,  and  a 5 bq9 1 r9,  0 # r9 , b.

For convenience, we may also suppose that r9 $ r. Then bq 1 r 5  
bq9 1 r9 and b(q 2 q9) 5 r9 2 r. So, b divides r9 2 r and 0 # r9 2 r #  
r9 , b. It follows that r9 2 r 5 0, and therefore r9 5 r and q 5 q9. 

The integer q in the division algorithm is called the quotient upon 
 dividing a by b; the integer r is called the remainder upon dividing a by b.

 EXAMPLE 1 For a 5 17 and b 5 5, the division algorithm gives  
17 5 5 ? 3 1 2; for a 5 223 and b 5 6, the division algorithm gives 
223 5 6(24) 1 1. 

Definitions Greatest Common Divisor, Relatively Prime Integers
The greatest common divisor of two nonzero integers a and b is the larg-
est of all common divisors of a and b. We denote this integer by gcd(a, b).  
When gcd(a, b) 5 1, we say a and b are relatively prime.

The following property of the greatest common divisor of two inte-
gers plays a critical role in abstract algebra. The proof provides an ap-
plication of the division algorithm and our second application of the 
Well Ordering Principle. 

 Theorem 0.2 GCD Is a Linear Combination

For any nonzero integers a and b, there exist integers s and t such that 
gcd(a, b) 5 as 1 bt. Moreover, gcd(a, b) is the smallest positive integer 
of the form as 1 bt.

PROOF Consider the set S 5 {am 1 bn | m, n are integers and  
am 1 bn . 0}. Since S is obviously nonempty (if some choice of m and 
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n makes am 1 bn , 0, then replace m and n by 2m and 2n), the Well 
Ordering Principle asserts that S has a smallest member, say,  
d 5 as 1 bt. We claim that d 5 gcd(a, b). To verify this claim, use the 
division algorithm to write a 5 dq 1 r, where 0 # r , d. If r . 0,  
then r 5 a 2 dq 5 a 2 (as 1 bt)q 5 a 2 asq 2 btq 5 a(1 2 sq) 1 
b(2tq) [ S, contradicting the fact that d is the smallest member of S. 
So, r 5 0 and d divides a. Analogously (or, better yet, by symmetry), 
d divides b as well. This proves that d is a common divisor of a and b. 
Now suppose d9 is another common divisor of a and b and write a 5 
d9h and b 5 d9k. Then d 5 as 1 bt 5 (d9h)s 1 (d9k)t 5 d9(hs 1 kt), so 
that d9 is a divisor of d. Thus, among all common divisors of a and b, 
d is the greatest. 

The special case of Theorem 0.2 when a and b are relatively prime is 
so important in abstract algebra that we single it out as a corollary.

 Corollary 

If a and b are relatively prime, then there exist integers s and t such 
that as 1 bt 5 1.

 EXAMPLE 2 gcd(4, 15) 5 1; gcd(4, 10) 5 2; gcd(22 ? 32 ? 5, 2 ? 33 ? 72) 5  
2 ? 32. Note that 4 and 15 are relatively prime, whereas 4 and 10 are not. 
Also, 4 ? 4 1 15(21) 5 1 and 4(22) 1 10 ? 1 5 2. 

The next lemma is frequently used. It appeared in Euclid’s Elements.

 Euclid’s Lemma p | ab Implies p | a or p | b

If p is a prime that divides ab, then p divides a or p divides b.

PROOF Suppose p is a prime that divides ab but does not divide a. We 
must show that p divides b. Since p does not divide a, there are  
integers s and t such that 1 5 as 1 pt. Then b 5 abs 1 ptb, and since  
p divides the right-hand side of this equation, p also  divides b. 

Note that Euclid’s Lemma may fail when p is not a prime, since  
6 | (4 ? 3) but 6 B 4 and 6 B 3.

Our next property shows that the primes are the building blocks for all 
integers. We will often use this property without explicitly saying so.

50 | Preliminaries

57960_ch00_ptg01_001-028.indd   5 10/26/15   11:58 AM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 Theorem 0.3 Fundamental Theorem of Arithmetic

Every integer greater than 1 is a prime or a product of primes. This 
product is unique, except for the order in which the factors appear. 
That is, if n 5 p1p2 . . . pr and n 5 q1q2 . . . qs, where the p’s and q’s 
are primes, then r 5 s and, after renumbering the q’s, we have pi 5 qi 
for all i.

We will prove the existence portion of Theorem 0.3 later in this chap-
ter (Example 11). The uniqueness portion is a consequence of Euclid’s 
Lemma (Exercise 31).

Another concept that frequently arises is that of the least common 
multiple of two integers.

Definition Least Common Multiple
The least common multiple of two nonzero integers a and b is the small-
est positive integer that is a multiple of both a and b. We will  
denote this integer by lcm(a, b).

We leave it as an exercise (Exercise 10) to prove that every common 
multiple of a and b is a multiple of lcm(a, b).

 EXAMPLE 3 lcm(4, 6) 5 12; lcm(4, 8) 5 8; lcm(10, 12) 5 60;  
lcm(6, 5) 5 30; lcm(22 ? 32 ? 5, 2 ? 33 ? 72) 5 22 ? 33 ? 5 ? 72. 

Modular Arithmetic
Another application of the division algorithm that will be important to 
us is modular arithmetic. Modular arithmetic is an abstraction of a 
method of counting that you often use. For example, if it is now 
September, what month will it be 25 months from now? Of course, the 
answer is October, but the interesting fact is that you didn’t arrive at the 
answer by starting with September and counting off 25 months.  
Instead, without even thinking about it, you simply observed that  
25 5 2 ? 12 1 1, and you added 1 month to September. Similarly, if it is 
now Wednesday, you know that in 23 days it will be Friday. This time, 
you arrived at your answer by noting that 23 5 7 ? 3 1 2, so you added 
2 days to Wednesday instead of counting off 23 days. If your electric-
ity is off for 26 hours, you must advance your clock 2 hours, since  
26 5 2 ? 12 1 2. Surprisingly, this simple idea has numerous important 
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applications in mathematics and computer science. You will see a few of 
them in this section. The following notation is convenient.

When a 5 qn 1 r, where q is the quotient and r is the remainder upon 
dividing a by n, we write a mod n 5 r. Thus,

 3 mod 2 5 1 since 3 5 1 ? 2 1 1,
 6 mod 2 5 0 since 6 5 3 ? 2 1 0,
 11 mod 3 5 2 since 11 5 3 ? 3 1 2,
 62 mod 85 5 62 since 62 5 0 ? 85 1 62,
 22 mod 15 5 13 since 22 5 (21)15 1 13.

In general, if a and b are integers and n is a positive integer, then  
a mod n 5 b mod n if and only if n divides a 2 b (Exercise 7).

In our applications, we will use addition and multiplication mod n. 
When you wish to compute ab mod n or (a 1 b) mod n, and a or b  
is greater than n, it is easier to “mod first.” For example, to compute  
(27 ? 36) mod 11, we note that 27 mod 11 5 5 and 36 mod 11 5 3, so 
(27 ? 36) mod 11 5 (5 ? 3) mod 11 5 4. (See Exercise 9.)

Modular arithmetic is often used in assigning an extra digit to identi-
fication numbers for the purpose of detecting forgery or errors. We pres-
ent two such applications.

 EXAMPLE 4 The United States Postal Service money order shown in 
Figure 0.1 has an identification number consisting of 10 digits together 
with an extra digit called a check. The check digit is the 10-digit number 
modulo 9. Thus, the number 3953988164 has the check digit 2, since  

Figure 0.1
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3953988164 mod 9 5 2.† If the number 39539881642 were incorrectly 
entered into a computer (programmed to calculate the check digit) as, 
say, 39559881642 (an error in the fourth position), the machine would 
calculate the check digit as 4, whereas the entered check digit would be 
2. Thus, the error would be detected. 

 EXAMPLE 5 Airline companies, the United Parcel Service, and  
the rental-car companies Avis and National use the mod 7 values of iden-
tification numbers to assign check digits. Thus, the identification num-
ber 00121373147367 (see Figure 0.2) has the check digit 3 appended 

Figure 0.2

Figure 0.3

†The value of N mod 9 is easy to compute with a calculator. If N 5 9q 1 r, where r is the 
remainder upon dividing N by 9, then on a calculator screen N 4 9 appears as  
q.rrrrr . . . , so the first decimal digit is the check digit. For example, 3953988164 4 9 5 
439332018.222, so 2 is the check digit. If N has too many digits for your calculator, 
 replace N by the sum of its digits and divide that number by 9. Thus, 3953988164  
mod 9 5 56 mod 9 5 2. The value of 3953988164 mod 9 can also be computed by 
searching Google for “3953988164 mod 9.”
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to it because 121373147367 mod 7 5 3. Similarly, the UPS pickup re-
cord number 768113999, shown in Figure 0.3, has the check digit 2  
appended to it. 

The methods used by the Postal Service and the airline companies do 
not detect all single-digit errors (see Exercises 41 and 45). However, 
detection of all single-digit errors, as well as nearly all  errors involving 
the transposition of two adjacent digits, is easily achieved. One method 
that does this is the one used to assign the so-called Universal Product 
Code (UPC) to most retail items (see Figure 0.4). A UPC identification 
number has 12 digits. The first six digits identify the manufacturer, the 
next five identify the  product, and the last is a check. (For many items, 
the 12th digit is not printed, but it is always bar-coded.) In Figure 0.4, 
the check digit is 8.

Figure 0.4

To explain how the check digit is calculated, it is convenient to intro-
duce the dot product notation for two k-tuples:

(a1, a2, . . . , ak) ? (w1, w2, . . . , wk) 5 a1w1 1 a2w2 1 ? ? ? 1 akwk.

An item with the UPC identification number a1a2 ??? a12 satisfies the 
condition

(a1, a2, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10 5 0.

To verify that the number in Figure 0.4 satisfies this condition, we  
calculate

(0 ? 3 1 2 ? 1 1 1 ? 3 1 0 ? 1 1 0 ? 3 1 0 ? 1 1 6 ? 3 1 5 ? 1 
     1 8 ? 3 1 9 ? 1 1 7 ? 3 1 8 ? 1) mod 10 5 90 mod 10 5 0.

The fixed k-tuple used in the calculation of check digits is called the 
weighting vector.

Now suppose a single error is made in entering the number in  
Figure 0.4 into a computer. Say, for instance, that 021000958978 is 
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 entered (notice that the seventh digit is incorrect). Then the computer 
calculates

0 ? 3 1 2 ? 1 1 1 ? 3 1 0 ? 1 1 0 ? 3 1 0 ? 1 1 9 ? 3 
  1 5 ? 1 1 8 ? 3 1 9 ? 1 1 7 ? 3 1 8 ? 1 5 99.

Since 99 mod 10 ≠ 0, the entered number cannot be correct.
In general, any single error will result in a sum that is not 0 modulo 10.
The advantage of the UPC scheme is that it will detect nearly all 

errors involving the transposition of two adjacent digits as well as all 
errors involving one digit. For doubters, let us say that the identifica-
tion number given in Figure 0.4 is entered as 021000658798. Notice 
that the last two digits preceding the check digit have been transposed. 
But by calculating the dot product, we obtain 94 mod 10 ≠ 0, so we 
have detected an error. In fact, the only undetected transposition  
errors of adjacent digits a and b are those where |a 2 b| 5 5. To  
verify this, we observe that a transposition error of the form

a1a2 ? ? ? aiai11 ? ? ? a12 → a1a2 ? ? ? ai11ai ? ? ? a12

is undetected if and only if

(a1, a2, . . . , ai11, ai, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10 5 0.

That is, the error is undetected if and only if

(a1, a2, . . . , ai11, ai, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10
   5 (a1, a2, . . . , ai, ai11, . . . , a12) ? (3, 1, 3, 1, . . . , 3, 1) mod 10.

This equality simplifies to either

(3ai11 1 ai) mod 10 5 (3ai 1 ai11) mod 10

or

(ai11 1 3ai) mod 10 5 (ai 1 3ai11) mod 10,

depending on whether i is even or odd. Both cases reduce to 2(ai11 2 ai) 
mod 10 5 0. It follows that |ai11 2 ai| 5 5, if ai11 ≠ ai.

In 2005, United States companies began to phase in the use of a 13th 
digit to be in conformance with the 13-digit product identification num-
bers used in Europe. The weighting vector for 13-digit numbers is (1, 3, 
1, 3, . . . , 3, 1).

Identification numbers printed on bank checks (on the bottom left 
between the two colons) consist of an eight-digit number a1a2 ? ? ? a8 
and a check digit a9, so that

(a1, a2, . . . , a9) ? (7, 3, 9, 7, 3, 9, 7, 3, 9) mod 10 5 0.

10 Integers and Equivalence Relations
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As is the case for the UPC scheme, this method detects all single-
digit errors and all errors involving the transposition of adjacent digits a 
and b except when |a 2 b| 5 5. But it also detects most errors of the 
form ? ? ? abc ? ? ? → ? ? ? cba ? ? ?, whereas the UPC method detects no 
errors of this form.

In Chapter 5, we will examine more sophisticated means of assigning 
check digits to numbers.

What about error correction? Suppose you have a number such as 
73245018 and you would like to be sure that if even a single mistake 
were made in entering this number into a computer, the computer 
would nevertheless be able to determine the correct number. (Think of 
it. You could make a mistake in dialing a telephone number but still get 
the correct phone to ring!) This is possible using two check digits. One of 
the check digits determines the magnitude of any single-digit error, while 
the other check digit locates the position of the error. With these two 
pieces of information, you can fix the error. To illustrate the idea, let us 
say that we have the eight-digit identification number a1a2 ? ? ? a8. We 
assign two check digits a9 and a10 so that

(a1 1 a2 1 ? ? ? 1 a9 1 a10) mod 11 5 0

and

(a1, a2, . . . , a9, a10) ? (1, 2, 3, . . . , 10) mod 11 5 0

are satisfied.
Let’s do an example. Say our number before appending the two check 

digits is 73245018. Then a9 and a10 are chosen to satisfy

 (7 1 3 1 2 1 4 1 5 1 0 1 1 1 8  1 a9 1 a10) mod 11 5 0 (1)

and

 (7 ? 1 1 3 ? 2 1 2 ? 3 1 4 ? 4 1 5 ? 5 1 0 ? 6  (2)
      1 1 ? 7 1 8 ? 8 1 a9 ? 9 1 a10 ? 10) mod 11 5 0.

Since 7 1 3 1 2 1 4 1 5 1 0 1 1 1 8  5 30  and 30 mod 11 5 8,  
Equation (1) reduces to

 (8 1 a9 1 a10) mod 11 5 0. (19)

Likewise, since (7 ? 1 1 3 ? 2 1 2 ? 3 1 4 ? 4 1 5 ? 5 1  
0 ? 6 1 1 ? 7 1 8 ? 8) mod 11 5 10, Equation (2) reduces to

 (10 1 9a9 1 10a10) mod 11 5 0. (29)
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Since we are using mod 11, we may rewrite Equation (29) as

(21 2 2a9 2 a10) mod 11 5 0

and add this to Equation (19) to obtain 7 2 a9 5 0. Thus a9 5 7. Now 
substituting a9 5 7 into Equation (19) or Equation (29), we obtain  
a10 5 7 as well. So, the number is encoded as 7324501877.

Now let us suppose that this number is erroneously entered into  
a computer programmed with our encoding scheme as 7824501877  
(an error in position 2). Since the sum of the digits of the received  
number  mod 11 is 5, we know that some digit is 5 too large (assum-
ing only one error has been made). But which one? Say the  
error is in position i. Then the second dot product has the form a1 ? 1 1 a2 
? 2 1 ? ? ? 1 (ai 1 5)i 1 ai11 ? (i 1 1) 1 ? ? ? 1 a10 ? 10 5  
(a1, a2, ? ? ?, a10) ? (1, 2,  ? ? ? , 10) 1 5i. So, (7, 8, 2, 4, 5, 0, 1, 8, 7, 7) ?  
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) mod 11 5 5i mod 11. Since the left-hand side 
mod 11 is 10, we see that i 5 2. Our conclusion: The digit in position 2 
is 5 too large. We have successfully corrected the error.

Modular arithmetic is often used to verify the validity of statements 
about divisibility regarding all positive integers by checking only  
finitely many cases.

 EXAMPLE 6 Consider the statement, “The sum of the cubes of any 
three consecutive integers is divisible by 9.” This statement is equivalent 
to checking that the equation (n3 1 (n 1 1)3 1 (n 1 2)3) mod 9 5 0 is 
true for all integers n. Because of properties of modular arithmetic, to 
prove this, all we need to do is check the validity of the equation for n 5 0, 
1, …, 8. 

Modular arithmetic is occasionally used to show that certain equa-
tions have no rational number solutions.

 EXAMPLE 7 We use mod 4 arithmetic to show that there are no integers 
x and y such that x2 � y2 � 1002. To see this, suppose that there are such 
integers. Then, taking both sides modulo 4, there is an integer solution 
to x2 � y2 mod 4 5 2. Note that for any integer n, if n mod 4 5 0 or 2, 
then n2 mod 4 5 0 and if n mod 4 5 1 or 3 mod 4, then n2 mod 4 5 1.  
But then the only differences of squares of integers modulo 4 are 0, 1, 
and �1 � 3, which gives a contradiction. A refinement of this argu-
ment shows that there are no rational numbers that satisfy the equation 
x2 � y2 � 1002 (see Exercise 64). 

At the dawn of the 20th century no one would have thought that 
strings of 0s and 1s added modulo 2 would provide the underpinning for 
a revolution in business, industry, technology, and science. The next 
 example is an application of mod 2 arithmetic to circuit design. More 
applications of mod 2 arithmetic are given in later chapters.
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 EXAMPLE 8 Logic Gates In electronics a logic gate is a device that ac-
cepts as inputs two possible states (on or off) and produces one output 
(on or off). This can be conveniently modeled using 0 and 1 and modulo 2  
arithmetic. The AND gate outputs 1 if and only if both inputs are 1; 
the OR (inclusive or) gate outputs 1 if at least one input is 1; the XOR  
(exclusive or) outputs 1 if and only if exactly one input is 1; MAJ  
(majority) takes three inputs and outputs 1 if and only if at least two 
inputs are 1. These and others can be conveniently modeled as functions 
using 0 and 1 and modulo 2 arithmetic as follows:

x AND y xy

x OR y x � y � xy

x XOR y x � y

MAJ1x, y, z2 xz � xy � yz. 

Complex Numbers
Recall that complex numbers are expressions of the form a 1 b 2 �1, 
where a and b are real numbers. The number 2 �1 is defined to have the 
property 2 �12 5 21. It is customary to use i to denote 2 �1. Then, 
i2 5 21. Complex numbers written in the form a 1 bi are said to be in 
standard form. In some instances it is convenient to write a complex num-
ber a 1 bi in another form. To do this we represent a 1 bi as the point 
(a, b) in a plane coordinatized by a horizontal axis called the real axis and 
a vertical i axis called the imaginary axis. The distance from the point 
a 1 bi to the origin is r 5 2a2 � b2 and is often denoted by |a 1 bi| and 
called the norm of a 1 bi. If we draw the line segment from the origin to 
a 1 bi and denote the angle formed by the line segment and the positive 
real axis by u, we can write a 1 bi as r(cos u 1 i sin u) (see Figure 0.5). 

Im
a + bi

br

a0
Re

θ

Figure 0.5
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This form of a 1 bi is called the polar form. An advantage of the polar 
form is demonstrated in parts 5 and 6 of Theorem 0.4.

 Theorem 0.4 Properties of Complex Numbers

 1. Closure under addition: (a 1 bi) 1 (c 1 di) 5 (a 1 c) 1 (b 1 d)i
 2. Closure under multiplication: (a 1 bi) (c 1 di) 5 (ac) 1 (ad)i 1 

(bc)i 1 (bd)i2 5 (ac 2 bd) 1 (ad 1 bc)i

 3. Closure under division (c 1 di ≠ 0) : 
(a � bi)

(c � di)
 5 

(a � bi)

(c � di)
 
(c � di)

(c � di)
 5 

(ac � bd) � (bc � ad)i

c2 � d2  5 
(ac � bd)

c2 � d2  1 
(bc � ad)

c2 � d2 i

 4. Complex conjugation: (a 1 bi) (a 2 bi) 5 a2 1 b2

 5. Inverses: For every nonzero complex number a 1 bi there is a  
complex number c 1 di such that (a 1 bi) (c 1 di) 5 1 (That is,  
(a 1 bi)21 exists in C).

 6. Powers: For every complex number a 1 bi 5 r(cos u 1 i sin u) and 
every positive integer n, we have (a 1 bi)n 5 1r1cos u � i sin u2 2n 5 
rn (cos n u 1 i sin n u).

 7. nth-roots of a � bi: For any positive integer n the n distinct nth roots of

  a� bi � r1cos u � i sin u2 are 2rn  a  cos  

u � 2pk
n

� i  sin  

u � 2pk
n

b 
for k � 0, 1, p  , n � 1.

PROOF Parts 1 and 2 are definitions. Part 4 follows from part 2. Part 6 is 
proved in Example 12 in the next section of this chapter. Part 7 follows 
from part 6. 

The next two examples illustrates properties of complex numbers.

 EXAMPLE 9 (3 1 5i) 1 (25 1 2i) 5 22 1 7i; 
(3 1 5i)(25 1 2i) 5 225 1 (219)i 5 225 2 19i; 

3 � 5i

�2 � 7i
�

3 � 5i

�2 � 7i
  

�2 � 7i

�2 � 7i
 5 

29 � 31i

53
�

29

53
�

�31

53
i; 

(3 1 5i) (3 2 5i) 5 9 1 25 5 34; 

(3 1 5i)21 �
3

34
�

5

34
i. 

 EXAMPLE 10 1�1 � i24 � a22acos 
3p

4
� i sin 

3p

4
bb

4

�

224acos 
4 ? 3p

4
� i sin 

4 ? 3p

4
b � 41cos 3p � i sin 3p2 �  �4.
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The three cube roots of i �  cos 

p

2
� i sin  

p

2
 are

 cos  
p

6
� i  sin  

p

6
�
23

2
�

1

2
i

cos ap
6

�
2p

3
b � i sin ap

6
�

2p

3
b � �

23

2
�

1

2
 i

cosap
6

�
4p

3
b � i sin ap

6
�

4p

3
b � �i. 

Mathematical Induction
There are two forms of proof by mathematical induction that we will 
use. Both are equivalent to the Well Ordering Principle. The explicit 
formulation of the method of mathematical induction came in the 
16th century. Francisco Maurolico (1494–1575), a teacher of Galileo, 
used it in 1575 to prove that 1 1 3 1 5 1 ? ? ? 1 (2n 2 1) 5 n2, and 
Blaise Pascal (1623–1662) used it when he presented what we now 
call Pascal’s triangle for the coefficients of the binomial expansion. 
The term mathematical induction was coined by Augustus De Morgan.

 Theorem 0.5 First Principle of Mathematical Induction

Let S be a set of integers containing a. Suppose S has the property that 
whenever some integer n $ a belongs to S, then the integer n 1 1 also 
belongs to S. Then, S contains every integer greater than or equal to a.

PROOF The proof is left as an exercise (Exercise 33). 

So, to use induction to prove that a statement involving positive inte-
gers is true for every positive integer, we must first verify that the state-
ment is true for the integer 1. We then assume the statement is true for the 
integer n and use this assumption to prove that the statement is true for 
the integer n 1 1.

Our next example uses some facts about plane geometry. Recall that 
given a straightedge and compass, we can construct a right angle.

 EXAMPLE 11 We use induction to prove that given a straightedge, a com-
pass, and a unit length, we can construct a line segment of length 2n for 
every positive integer n. The case when n 5 1 is given. Now we assume that 
we can construct a line segment of length 2n. Then use the straightedge and 
compass to construct a right triangle with height 1 and base 2n. The hypot-
enuse of the triangle has length 2n � 1. So, by induction, we can construct 
a line segment of length 2n for every positive integer n. 
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 EXAMPLE 12 DeMOIVRE’S THEOREM We use induction to prove that for 
every positive integer n and every real number u, (cos u 1 i sin u)n 5 
cos nu 1 i sin nu, where i is the complex number 2 �1. Obviously, the 
statement is true for n 5 1. Now assume it is true for n. We must prove 
that (cos u 1 i sin u)n11 5 cos(n 1 1)u 1 i sin(n 1 1)u. Observe that

 (cos u 1 i sin u)n11  5 (cos u 1 i sin u)n(cos u 1 i sin u) 
5 (cos nu 1 i sin nu)(cos u 1 i sin u) 
5 cos nu cos u 1 i(sin nu cos u  
  1 sin u cos nu) 2 sin nu sin u.

Now, using trigonometric identities for cos(a 1 b) and sin(a 1 b), we 
see that this last term is cos(n 1 1)u 1 i sin(n 1 1)u. So, by induction, 
the statement is true for all positive integers. 

In many instances, the assumption that a statement is true for an inte-
ger n does not readily lend itself to a proof that the statement is true for 
the integer n 1 1. In such cases, the following equivalent form of 
 induction may be more convenient. Some authors call this formulation 
the strong form of induction.

 Theorem 0.6 Second Principle of Mathematical Induction

Let S be a set of integers containing a. Suppose S has the property that 
n belongs to S whenever every integer less than n and greater than or 
equal to a belongs to S. Then, S contains every integer greater than or 
equal to a.

PROOF The proof is left to the reader. 

To use this form of induction, we first show that the statement is true 
for the integer a. We then assume that the statement is true for all inte-
gers that are greater than or equal to a and less than n, and use this as-
sumption to prove that the statement is true for n.

 EXAMPLE 13 We will use the Second Principle of Mathematical In-
duction with a 5 2 to prove the existence portion of the Fundamental 
Theorem of Arithmetic. Let S be the set of integers greater than 1 that are 
primes or products of primes. Clearly, 2 [ S. Now we assume that for 
some integer n, S contains all integers k with 2 # k , n. We must show 
that n [ S. If n is a prime, then n [ S by definition. If n is not a prime, 
then n can be written in the form ab, where 1 , a , n and 1 , b , n. 
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Since we are assuming that both a and b belong to S, we know that each 
of them is a prime or a product of primes. Thus, n is also a product of 
primes. This completes the proof. 

Notice that it is more natural to prove the Fundamental Theorem of 
Arithmetic with the Second Principle of Mathematical Induction than 
with the First Principle. Knowing that a particular integer factors as a 
product of primes does not tell you anything about factoring the next 
larger integer. (Does knowing that 5280 is a product of primes help you 
to factor 5281 as a product of primes?)

The following problem appeared in the “Brain Boggler” section of 
the January 1988 issue of the science magazine Discover.*

 EXAMPLE 14 The Quakertown Poker Club plays with blue chips worth 
$5.00 and red chips worth $8.00. What is the largest bet that  cannot be 
made?

To gain insight into this problem, we try various combinations of blue 
and red chips and obtain 5, 8, 10, 13, 15, 16, 18, 20, 21, 23, 24, 25, 26, 
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40. It appears that the an-
swer is 27. But how can we be sure? Well, we need only prove that every 
integer greater than 27 can be written in the form a ? 5 1  
b ? 8, where a and b are nonnegative integers. This will solve the prob-
lem, since a represents the number of blue chips and b the number of red 
chips needed to make a bet of a ? 5 1 b ? 8. For the purpose of contrast, 
we will give two proofs—one using the First Principle of Mathematical 
Induction and one using the Second Principle.

Let S be the set of all integers greater than or equal to 28 of the form 
a ? 5 1 b ? 8, where a and b are nonnegative. Obviously, 28 [ S. Now 
assume that some integer n [ S, say, n 5 a ? 5 1 b ? 8. We must show 
that n 1 1 [ S. First, note that since n $ 28, we cannot have both a and 
b less than 3. If a $ 3, then

 n 1 1 5 (a ? 5 1 b ? 8) 1 (23 ? 5 1 2 ? 8)
 5 (a 2 3) ? 5 1 (b 1 2) ? 8.

(Regarding chips, this last equation says that we may increase a bet 
from n to n 1 1 by removing three blue chips from the pot and adding 
two red chips.) If b $ 3, then

 n 1 1 5 (a ? 5 1 b ? 8) 1 (5 ? 5 2 3 ? 8)
 5 (a 1 5) ? 5 1 (b 2 3) ? 8.

*“Brain Boggler” by Maxwell Carver. Copyright © 1988 by Discover Magazine. Used 
by permission.
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(The bet can be increased by 1 by removing three red chips and adding 
five blue chips.) This completes the proof.

To prove the same statement by the Second Principle, we note that 
each of the integers 28, 29, 30, 31, and 32 is in S. Now assume that  
for some integer n . 32, S contains all integers k with 28 # k , n.  
We must show that n [ S. Since n 2 5 [ S, there are nonnegative 
 integers a and b such  that n 2 5 5 a ? 5 1 b ? 8. But then  
n 5 (a 1 1) ? 5 1 b ? 8. Thus n is in S. 

Equivalence Relations
In mathematics, things that are considered different in one context may 
be viewed as equivalent in another context. We have already seen one 
such example. Indeed, the sums 2 1 1 and 4 1 4 are certainly different 
in ordinary arithmetic, but are the same under modulo 5 arithmetic. 
Congruent triangles that are situated differently in the plane are not the 
same, but they are often considered to be the same in plane geometry. In 
physics, vectors of the same magnitude and direction can produce dif-
ferent effects—a 10-pound weight placed 2 feet from a fulcrum pro-
duces a different effect than a 10-pound weight placed 1 foot from a 
fulcrum. But in linear algebra, vectors of the same magnitude and direc-
tion are considered to be the same. What is needed to make these 
distinctions precise is an appropriate generalization of the notion of 
equality; that is, we need a formal mechanism for specifying whether or 
not two quantities are the same in a given setting. This mechanism is an 
equivalence relation.

Definition Equivalence Relation
An equivalence relation on a set S is a set R of ordered pairs of  elements 
of S such that

 1. (a, a) [ R for all a [ S  (reflexive property).
 2. (a, b) [ R implies (b, a) [ R  (symmetric property).
 3. (a, b) [ R and (b, c) [ R imply (a, c) [ R  (transitive property).

When R is an equivalence relation on a set S, it is customary to write 
aRb instead of (a, b) [ R. Also, since an equivalence relation is just a 
generalization of equality, a suggestive symbol such as <, ;, or , is 
usually used to denote the relation. Using this notation, the three condi-
tions for an equivalence relation become a , a; a , b implies  
b  , a; and a , b and b , c imply a , c. If , is an equivalence relation 
on a set S and a [ S, then the set [a] 5 {x [ S | x , a} is called the 
equivalence class of S containing a.
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 EXAMPLE 15 Let S be the set of all triangles in a plane. If a, b [ S, 
define a , b if a and b are similar—that is, if a and b have corresponding 
angles that are the same. Then , is an equivalence relation on S. 

 EXAMPLE 16 Let S be the set of all polynomials with real coeffi-
cients. If f, g [ S, define f , g if f 9 5 g9, where f 9 is the derivative of 
f. Then , is an equivalence relation on S. Since two polynomials with 
equal derivatives differ by a constant, we see that for any f in S, [ f ] 5 
{ f 1 c | c is real}. 

 EXAMPLE 17 Let S be the set of integers and let n be a positive integer. 
If a, b [ S, define a ; b if a mod n 5 b mod n (that is, if a 2 b is divis-
ible by n). Then ; is an equivalence relation on S and [a] 5 {a 1 kn | k 
[ S}. Since this particular relation is important in abstract algebra, we 
will take the trouble to verify that it is indeed an equivalence  relation. 
Certainly, a 2 a is divisible by n, so that a ; a for all a in S. Next, as-
sume that a ; b, say, a 2 b 5 rn. Then, b 2 a 5 (2r)n, and therefore 
b ; a. Finally, assume that a ; b and b ; c, say, a 2 b 5 rn and b 2 c 5 
sn. Then, we have a 2 c 5 (a 2 b) 1 (b 2 c) 5 rn 1 sn 5 (r 1 s)n, so 
that a ; c. 

 EXAMPLE 18 Let ; be as in Example 17 and let n 5 7. Then we have 
16 ; 2; 9 ; 25; and 24 ; 3. Also, [1] 5 {. . . , 220, 213, 26, 1, 8, 15, 
. . .} and [4] 5 {. . . , 217, 210, 23, 4, 11, 18, . . .}. 

 EXAMPLE 19 Let S 5 {(a, b) | a, b are integers, b 2 0}. If  
(a, b), (c, d ) [ S, define (a, b) < (c, d ) if ad 5 bc. Then < is an equiva-
lence relation on S. [The motivation for this example comes from frac-
tions. In fact, the pairs (a, b) and (c, d) are equivalent if the fractions a/b 
and c/d are equal.] 

To verify that < is an equivalence relation on S, note that (a, b) < (a, b) 
requires that ab 5 ba, which is true. Next, we assume that (a, b) < (c, d), 
so that ad 5 bc. We have (c, d) < (a, b) provided that cb 5 da, which is 
true from commutativity of multiplication. Finally, we  assume that (a, b) < 
(c, d ) and (c, d) < (e, f ) and prove that (a, b) < (e, f ). This amounts to 
using ad 5 bc and cf 5 de to show that af 5 be. Multiplying both sides 
of ad 5 bc by f and replacing cf by de, we obtain adf 5 bcf 5 bde. Since 
d 2 0, we can cancel d from the first and last terms. 

Definition Partition
A partition of a set S is a collection of nonempty disjoint subsets of S 
whose union is S. Figure 0.6 illustrates a partition of a set into four 
subsets.
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S

Figure 0.6 Partition of S into four subsets.

 EXAMPLE 20 The sets {0}, {1, 2, 3, . . .}, and {. . . , 23, 22, 21} 
constitute a partition of the set of integers. 

 EXAMPLE 21 The set of nonnegative integers and the set of nonposi-
tive integers do not partition the integers, since both contain 0. 

The next theorem reveals that equivalence relations and partitions are 
intimately intertwined.

 Theorem 0.7 Equivalence Classes Partition

The equivalence classes of an equivalence relation on a set S 
constitute a partition of S. Conversely, for any partition P of S, there 
is an equivalence relation on S whose equivalence classes are the 
elements of P.

PROOF Let , be an equivalence relation on a set S. For any a [ S, the re-
flexive property shows that a [ [a]. So, [a] is nonempty and the union of all 
equivalence classes is S. Now, suppose that [a] and [b] are distinct equiva-
lence classes. We must show that [a] > [b] 5 0/. On the contrary, assume  
c [ [a] > [b]. We will show that [a] # [b]. To this end, let x [ [a]. We then 
have c , a, c , b, and x , a. By the symmetric property, we also have 
a , c. Thus, by transitivity, x , c, and by transitivity again, x , b. This 
proves [a] # [b]. Analogously, [b] # [a]. Thus, [a] 5 [b], in contradiction 
to our assumption that [a] and [b] are distinct equivalence classes.

To prove the converse, let P be a collection of nonempty disjoint sub-
sets of S whose union is S. Define a , b if a and b belong to the same 
subset in the collection. We leave it to the reader to show that , is an 
equivalence relation on S (Exercise 61). 

Functions (Mappings)
Although the concept of a function plays a central role in nearly every 
branch of mathematics, the terminology and notation associated with 
functions vary quite a bit. In this section, we establish ours.
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Definition Function (Mapping)
A function (or mapping) f from a set A to a set B is a rule that assigns 
to each element a of A exactly one element b of B. The set A is called 
the domain of f, and B is called the range of f. If f assigns b to a, then 
b is called the image of a under f. The subset of B comprising all the 
images of elements of A is called the image of A under f.

We use the shorthand f: A → B to mean that f is a mapping from 
A to B. We will write f(a) 5 b or f: a → b to indicate that f carries a to b.

There are often different ways to denote the same element of a set. In 
defining a function in such cases one must verify that the function  values 
assigned to the elements depend not on the way the elements are ex-
pressed but on only the elements themselves. For example, the corre-
spondence f from the rational numbers to the integers given by f(a/b) 5 
a 1 b does not define a function since 1/2 5 2/4 but f(1/2) ? f(2/4). To 
verify that a correspondence is a function, you assume that x1 5 x2 and 
prove that f(x1) 5 f (x2).

Definition Composition of Functions
Let f: A → B and c: B → C. The composition cf is the map ping from 
A to C defined by (cf)(a) 5 c(f(a)) for all a in A. The composition 
function cf can be visualized as in Figure 0.7.

a

Figure 0.7 Composition of functions f and c.

In calculus courses, the composition of f with g is written ( f 8 g)(x) and 
is defined by ( f 8 g)(x) 5 f (g(x)). When we compose functions, we omit 
the “circle.”

 EXAMPLE 22 Let f (x) 5 2x 1 3 and g(x) 5 x2 1 1. Then (  fg)(5) 5 
 f (g(5)) 5 f (26) 5 55; (g f )(5) 5 g (  f (5)) 5 g (13) 5 170. More generally, 
( fg)(x) 5 f (g(x)) 5 f (x2 1 1) 5 2(x2 1 1) 1 3 5 2x2 1 5 and (g f )(x) 5 
g ( f (x)) 5 g (2x 1 3) 5 (2x 1 3)2 1 1 5 4x2 1 12x 1 9 1 1 5 4x2 1  
12x 1 10. Note that the function fg is not the same as the function g f. 

There are several kinds of functions that occur often enough to be 
given names.
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Definition One-to-One Function
A function f from a set A is called one-to-one if for every a1, a2 [ A, 
f(a1) 5 f(a2) implies a1 5 a2.

The term one-to-one is suggestive, since the definition ensures that one 
element of B can be the image of only one element of A. Alternatively, f is 
one-to-one if a1 Z a2 implies f(a1) Z f(a2). That is, different elements of A 
map to different elements of B. See Figure 0.8.

a1 a1

a2 a2

(a1)ϕ

ϕ

ϕ

  (a1) =    (a2) 
 (a2)

is one-to-one is not one-to-oneψ

ψ

ψ ψ

ϕ

Figure 0.8

Definition Function from A onto B
A function f from a set A to a set B is said to be onto B if each element 
of B is the image of at least one element of A. In symbols, f: A → B is 
onto if for each b in B there is at least one a in A such that f(a) 5 b. 
See Figure 0.9.

ϕ is onto is not ontoψ

ψϕ

Figure 0.9

The next theorem summarizes the facts about functions we will need.

 Theorem 0.8 Properties of Functions

Given functions a: A → B, b: B → C, and g: C → D, then

 1. g(ba) 5 (gb)a (associativity).
 2. If a and b are one-to-one, then ba is one-to-one.
 3. If a and b are onto, then ba is onto.
 4.  If a is one-to-one and onto, then there is a function a21 from B 

onto A such that (a21a)(a) 5 a for all a in A and (aa21)(b) 5 b 
for all b in B.
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PROOF We prove only part 1. The remaining parts are left as exercises 
(Exercise 57). Let a [ A. Then (g(ba))(a) 5 g((ba)(a)) 5 g(b(a(a))). 
On the other hand, ((gb)a)(a) 5 (gb)(a(a)) 5 g(b(a(a))). So, g(ba) 5 
(gb)a. 

It is useful to note that if a is one-to-one and onto, the function a21 
described in part 4 of Theorem 0.8 has the property that if a (s) 5 t, then 
a21(t) 5 s. That is, the image of t under a21 is the unique element s that 
maps to t under a. In effect, a21 “undoes” what a does.

 EXAMPLE 23 Let Z denote the set of integers, R the set of real num-
bers, and N the set of nonnegative integers. The following table illus-
trates the properties of one-to-one and onto.

Domain Range Rule One-to-One Onto
 Z Z x → x3 Yes No
 R R x → x3 Yes Yes
 Z N x → |x| No Yes
 Z Z x → x2 No No

To verify that x → x3 is one-to-one in the first two cases, notice that if  
x3 5 y3, we may take the cube roots of both sides of the equation to ob-
tain x 5 y. Clearly, the mapping from Z to Z given by x → x3 is not onto, 
since 2 is the cube of no integer. However, x → x3 defines an onto func-
tion from R to R, since every real number is the cube of its cube root 
(that is, 32b → b). The remaining verifications are left to the reader. 

Exercises

I was interviewed in the Israeli Radio for five minutes and I said that more than 
2000 years ago, Euclid proved that there are infinitely many primes. Immediately 
the host interrupted me and asked: “Are there still infinitely many primes?”

noga alon

  1. For n 5 5, 8, 12, 20, and 25, find all positive integers less than n and 
rel atively prime to n.

  2. Determine
  a. gcd(2,10) lcm(2,10)
  b. gcd(20,8) lcm(20,8)
  c. gcd(12,40) lcm(12,40)
  d. gcd(21,50) lcm(21,50)
  e. gcd( p2q2, pq3 ) lcm( p2q2, pq3 ) where p and q are distinct primes
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  3. Determine 51 mod 13, 342 mod 85, 62 mod 15, 10 mod 15, (82 ? 73) 
mod 7, (51 1 68) mod 7, (35 ? 24) mod 11, and (47 1 68) mod 11.

  4. Find integers s and t such that 1 5 7 ? s 1 11 ? t. Show that s and t 
are not unique.

  5. Show that if a and b are positive integers, then ab 5 lcm(a, b) ? gcd(a, b).
  6. Suppose a and b are integers that divide the integer c. If a and b are 

relatively prime, show that ab divides c. Show, by example, that if a 
and b are not relatively prime, then ab need not divide c.

  7. If a and b are integers and n is a positive integer, prove that a mod n 5 
b mod n if and only if n divides a 2 b.

  8. Let d 5 gcd(a, b). If a 5 da9 and b 5 db9, show that gcd(a9, b9) 5 1.
  9. Let n be a fixed positive integer greater than 1. If a mod n 5 a9 and  

b mod  n 5 b9, prove that (a 1 b) mod n 5 (a9 1 b9) mod n and (ab) 
mod n 5 (a9b9) mod n. (This exercise is referred to in Chapters 6,  
8, 10, and 15.)

 10. Let a and b be positive integers and let d 5 gcd(a, b) and m 5 
lcm(a, b). If t divides both a and b, prove that t divides d. If s is a 
multiple of both a and b, prove that s is a multiple of m.

 11. Let n and a be positive integers and let d 5 gcd(a, n). Show that the 
equation ax mod n 5 1 has a solution if and only if d 5 1. (This 
 exercise is referred to in Chapter 2.)

 12. Show that 5n 1 3 and 7n 1 4 are relatively prime for all n.
 13. Suppose that m and n are relatively prime and r is any integer. Show 

that there are integers x and y such that mx 1 ny 5 r.
 14. Let p, q, and r be primes other than 3. Show that 3 divides p2 1  

q2 1 r2.
 15. Prove that every prime greater than 3 can be written in the form 

6n 1 1 or 6n 1 5.
 16. Determine 71000 mod 6 and 61001 mod 7.
 17. Let a, b, s, and t be integers. If a mod st 5 b mod st, show that a 

mod s 5 b mod s and a mod t 5 b mod t. What condition on s and t 
is needed to make the converse true? (This exercise is referred to in 
Chapter 8.)

 18. Determine 8402 mod 5.
 19. Show that gcd(a, bc) 5 1 if and only if gcd(a, b) 5 1 and 

gcd(a, c) 5 1. (This exercise is referred to in Chapter 8.)
 20. Let p1, p2, . . . , pn be primes. Show that p1 p2 ? ? ? pn 1 1 is divisible 

by none of these primes.
 21. Prove that there are infinitely many primes. (Hint: Use Exercise 20.)
 22. Express (27 2 3i)21 in standard form.
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 23. Express 
�5 � 2i

4 � 5i
 in standard form.

 24. For any complex numbers z1 and z2 prove that |z1z2| � |z1||z2|.
 25. Give an “if and only if” statement that describes when the logic gate 

x NAND y modeled by 1 � xy is 1. Give an “if and only if” state-
ment that describes when the logic gate x XNOR y modeled by 
1 � x � y is 1.

 26. For inputs of 0 and 1 and mod 2 arithmetic describe the output of 
the formula z � xy � xz in the form “If x p , else p ”.

 27. For every positive integer n, prove that a set with exactly n elements 
has exactly 2n subsets (counting the empty set and the entire set).

 28. Prove that 2n32n 2 1 is always divisible by 17.
 29. Prove that there is some positive integer n such that  n, n 1 1,  

n 1 2, ? ? ?  , n 1 200 are all composite.
 30. (Generalized Euclid’s Lemma) If p is a prime and p divides  

a1a2 ? ? ? an, prove that p divides ai for some i.
 31. Use the Generalized Euclid’s Lemma (see Exercise 30) to establish 

the uniqueness portion of the Fundamental Theorem of Arithmetic.
 32. What is the largest bet that cannot be made with chips worth $7.00 

and $9.00? Verify that your answer is correct with both forms of 
 induction.

 33. Prove that the First Principle of Mathematical Induction is a conse-
quence of the Well Ordering Principle.

 34. The Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . . In general, 
the Fibonacci numbers are defined by f1 5 1, f2 5 1, and for   
n $ 3,  fn 5 fn21 1 fn22. Prove that the nth Fibonacci number fn sat-
isfies fn , 2n.

 35. Prove by induction on n that for all positive integers n, n3 1  
(n 1 1)3 1 (n 1 2)3 is a multiple of 9.

 36. Suppose that there is a statement involving a positive integer  
parameter n and you have an argument that shows that whenever the 
statement is true for a particular n it is also true for n 1 2. What re-
mains to be done to prove the statement is true for every positive 
integer? Describe a situation in which this strategy would be  
applicable.

 37. In the cut “As” from Songs in the Key of Life, Stevie Wonder men-
tions the equation 8 3 8 3 8 5 4. Find all integers n for which this 
statement is true, modulo n.

 38. Prove that for every integer n, n3 mod 6 5 n mod 6.
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 39. If it is 2:00 a.m. now, what time will it be 3736 hours from now?
 40. Determine the check digit for a money order with identification 

number 7234541780.
 41. Suppose that in one of the noncheck positions of a money order 

number, the digit 0 is substituted for the digit 9 or vice versa. Prove 
that this error will not be detected by the check digit. Prove that all 
other errors involving a single position are detected.

 42. Suppose that a money order identification number and check digit 
of 21720421168 is erroneously copied as 27750421168. Will the 
check digit detect the error?

 43. A transposition error involving distinct adjacent digits is one of the 
form . . . ab . . . → . . . ba . . . with a ≠ b. Prove that the money order 
check-digit scheme will not detect such errors unless the check digit 
itself is transposed.

 44. Determine the check digit for the Avis rental car with identification 
number 540047. (See Example 5.)

 45. Show that a substitution of a digit ai9 for the digit ai  (ai9 ≠ ai) in  
a noncheck position of a UPS number is detected if and only if 
|ai 2 ai9| ≠ 7.

 46. Determine which transposition errors involving adjacent digits are 
detected by the UPS check digit.

 47. Use the UPC scheme to determine the check digit for the number 
07312400508.

 48. Explain why the check digit for a money order for the number N is 
the repeated decimal digit in the real number N 4 9.

 49. The 10-digit International Standard Book Number (ISBN-10) 
a1a2a3a4a5a6a7a8 a9a10 has the property (a1, a2, . . . , a10) ? (10, 9, 8, 7, 
6, 5, 4, 3, 2, 1) mod 11 5 0. The digit a10 is the check digit. When a10 
is required to be 10 to make the dot product 0, the character X is used 
as the check digit. Verify the check digit for the ISBN-10 assigned to 
this book.

 50. Suppose that an ISBN-10 has a smudged entry where the question 
mark appears in the number 0-716?-2841-9. Determine the missing 
digit.

 51. Suppose three consecutive digits abc of an ISBN-10 are scrambled as 
bca. Which such errors will go undetected?

 52. The ISBN-10 0-669-03925-4 is the result of a transposition of two 
 adjacent digits not involving the first or last digit. Determine the 
correct ISBN-10.
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 53. Suppose the weighting vector for ISBN-10s were changed to (1, 2, 
3, 4, 5, 6, 7, 8, 9, 10). Explain how this would affect the check digit.

 54. Use the two-check-digit error-correction method described in this 
chapter to append two check digits to the number 73445860.

 55. Suppose that an eight-digit number has two check digits appended 
using the error-correction method described in this chapter and it is 
incorrectly transcribed as 4302511568. If exactly one digit is incor-
rect, determine the correct number.

 56. The state of Utah appends a ninth digit a9 to an eight-digit driver’s 
license number a1a2 . . . a8 so that (9a1 1 8a2 1 7a3 1 6a4 1 5a5 1 
4a6 1 3a7 1 2a8 1 a9) mod 10 5 0. If you know that the license 
number 149105267 has exactly one digit incorrect, explain why the 
error cannot be in position 2, 4, 6, or 8.

 57. Complete the proof of Theorem 0.8.
 58. Let S be the set of real numbers. If a, b [ S, define a , b if a 2 b is 

an integer. Show that , is an equivalence relation on S. Describe 
the equivalence classes of S.

 59. Let S be the set of integers. If a, b [ S, define aRb if ab $ 0. Is R an 
equivalence relation on S?

 60. Let S be the set of integers. If a, b [ S, define aRb if a 1 b is even. 
Prove that R is an equivalence relation and determine the equiva-
lence classes of S.

 61. Complete the proof of Theorem 0.7 by showing that , is an equiva-
lence relation on S.

 62. Prove that 3, 5, and 7 are the only three consecutive odd integers 
that are prime.

 63. What is the last digit of 3100? What is the last digit of 2100?
 64. Prove that there are no rational numbers x and y such that 

x2 � y2 � 1002.
 65. (Cancellation Property) Suppose a, b, and g are functions. If ag 5 

bg and g is one-to-one and onto, prove that a 5 b.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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Suggested Readings

Linda Deneen, “Secret Encryption with Public Keys,” The UMAP Journal 
8 (1987): 9–29.

This well-written article describes several ways in which modular arith-
metic can be used to code secret messages. They range from a simple 
scheme used by Julius Caesar to a highly sophisticated scheme invented 
in 1978 and based on modular n arithmetic, where n has more than 200 
digits.

J. A. Gallian, “Assigning Driver’s License Numbers,” Mathematics  
Magazine 64 (1991): 13–22.

This article describes various methods used by the states to assign driv-
er’s license numbers. Several include check digits for error detection. 
This article can be downloaded at http://www.d.umn.edu/~jgallian/ 
license.pdf

J. A. Gallian, “The Mathematics of Identification Numbers,” The College 
Mathe matics Journal 22 (1991): 194–202.

This article is a comprehensive survey of check-digit schemes that are 
associated with identification numbers. This article can be downloaded 
at http://www.d.umn.edu/~jgallian/ident.pdf 

J. A. Gallian and S. Winters, “Modular Arithmetic in the Marketplace,” 
The American Mathematical Monthly 95 (1988): 548–551.

This article provides a more detailed analysis of the check-digit 
schemes presented in this chapter. In particular, the error detection rates 
for the various schemes are given. This article can be downloaded at 
http://www.d.umn.edu/~jgallian/marketplace.pdf 
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PART

2 Groups

For online student resources, visit this textbook’s website at 
www.CengageBrain.com
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31

Introduction  
to Groups

And symmetry is a powerful guiding principle that has been used 
in creating these models [for quantum physics]. The more sym-
metrical a model is, the easier it is to analyze.

Edward Frenkel, Love and Math

Symmetry is a vast subject, significant in art and nature. 
Mathematics lies at its root, and it would be hard to find a better 
one on which to demonstrate the working of the mathematical 
intellect.

Hermann Weyl, Symmetry

Symmetries of a Square
Suppose we remove a square region from a plane, move it in some way, 
then put the square back into the space it originally occupied. Our goal in 
this chapter is to describe all possible ways in which this can be done. 
More specifically, we want to describe the possible relationships between 
the starting position of the square and its final position in terms of mo
tions. However, we are interested in the net effect of a motion, rather than 
in the motion itself. Thus, for example, we consider a 908 rotation and a 
4508 rotation as equal, since they have the same net effect on every point. 
With this simplifying convention, it is an easy matter to achieve our goal.

To begin, we can think of the square region as being transparent 
(glass, say), with the corners marked on one side with the colors blue, 
white, pink, and green. This makes it easy to distinguish between mo
tions that have different effects. With this marking scheme, we are now 
in a position to describe, in simple fashion, all possible ways in which a 
square object can be repositioned. See Figure 1.1. We now claim that 
any motion—no matter how complicated—is equivalent to one of these 
eight. To verify this claim, observe that the final position of the square is 
completely determined by the location and orientation (that is, face up 
or face down) of any particular corner. But, clearly, there are only four 
locations and two orientations for a given corner, so there are  exactly 
eight distinct final positions for the corner.

1
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R0R0   = Rotation of 0° (no change in position)
P W

BG

P W

BG

R90
R90  = Rotation of 90° (counterclockwise)

P W

BG

W B

GP

R180 = Rotation of 180°
P W

BG

B G

PW

R180

R270 = Rotation of 270°
P W

BG

G P

WB
R270

H     = Flip about a horizontal axis
P W

BG

G B

WP
H

V     = Flip about a vertical axis
P W

BG

W P

GB
V

D    = Flip about the main diagonal
P G

BW
D

P W

BG

D9   = Flip about the other diagonal
P W

BG

B W

PG
D9

Figure 1.1

Let’s investigate some consequences of the fact that every motion is 
equal to one of the eight listed in Figure 1.1. Suppose a square is reposi
tioned by a rotation of 908 followed by a flip about the horizontal axis 
of symmetry.

P
HR90

G

BW

P W

BG

W B

GP

Thus, we see that this pair of motions—taken together—is equal to 
the single motion D. This observation suggests that we can compose 
two motions to obtain a single motion. And indeed we can, since the 
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331 | Introduction to Groups

eight motions may be viewed as functions from the square region to 
itself, and as such we can combine them using function composition.

With this in mind, we write H R90 5 D because in lower level math 
courses function composition f 8 g means “g followed by f.” The eight 
motions R0, R90, R180, R270, H, V, D, and D9, together with the operation 
composition, form a mathematical system called the dihedral group of 
order 8 (the  order of a group is the number of elements it contains). It is 
denoted by D4. Rather than introduce the formal definition of a group 
here, let’s look at some properties of groups by way of the example D4.

To facilitate future computations, we construct an operation table or 
Cayley table (so named in honor of the prolific English mathematician 
Arthur Cayley, who first introduced them in 1854) for D4 below. The 
circled entry represents the fact that D 5 HR90. (In general, ab denotes 
the entry at the intersection of the row with a at the left and the column 
with b at the top.)

 R0 R90 R180 R270 H V D D9

R0 R0 R90 R180 R270 H V D D9
R90 R90 R180 R270 R0 D9 D H V
R180 R180 R270 R0 R90 V H D9 D
R270 R270 R0 R90 R180 D D9 V H
H H D  V D9 R0 R180 R90 R270
V V D9 H D R180 R0 R270 R90
D D V D9 H R270 R90 R0 R180
D9 D9 H D V R90 R270 R180 R0

Notice how orderly this table looks! This is no accident. Perhaps the 
most important feature of this table is that it has been completely filled 
in without introducing any new motions. Of course, this is because, as 
we have already pointed out, any sequence of motions turns out to be 
the same as one of these eight. Algebraically, this says that if A and B 
are in D4, then so is AB. This property is called closure, and it is one of 
the requirements for a mathematical system to be a group. Next, notice 
that if A is any element of D4, then AR0 5 R0A 5 A. Thus, combining 
any element A on either side with R0 yields A back again. An element 
R0 with this property is called an identity, and every group must have 
one. Moreover, we see that for each element A in D4, there is exactly 
one element B in D4 such that AB 5 BA 5 R0. In this case, B is said to be 
the inverse of A and vice versa. For example, R90 and R270 are  
 inverses of each other, and H is its own inverse. The term inverse is a 
descriptive one, for if A and B are inverses of each other, then B “un
does” whatever A “does,” in the sense that A and B taken together in ei
ther  order produce R0, representing no change. Another striking feature 
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34 Groups

of the table is that every element of D4 appears exactly once in each row 
and column. This feature is something that all groups must have, and, 
indeed, it is quite useful to keep this fact in mind when constructing the 
table in the first place.

Another property of D4 deserves special comment. Observe that 
HD Z DH but R90R180 5 R180R90. Thus, in a group, ab may or may not 
be the same as ba. If it happens that ab 5 ba for all choices of group 
elements a and b, we say the group is commutative or—better yet—
Abelian (in honor of the great Norwegian mathematician Niels Abel). 
Otherwise, we say the group is non-Abelian.

Thus far, we have illustrated, by way of D4, three of the four con
ditions that define a group—namely, closure, existence of an identity, 
and existence of inverses. The remaining condition required for a group 
is associativity; that is, (ab)c 5 a(bc) for all a, b, c in the set. To be sure 
that D4 is indeed a group, we should check this equation for each of the 
83 5 512 possible choices of a, b, and c in D4. In practice, however, this 
is rarely done! Here, for example, we simply observe that the eight 
 motions are functions and the operation is function composition. Then, 
since function composition is associative, we do not have to check the 
equations.

The Dihedral Groups
The analysis carried out above for a square can similarly be done for  
an equilateral triangle or regular pentagon or, indeed, any regular ngon 
(n $ 3). The corresponding group is denoted by Dn and is called the 
 dihedral group of order 2n.

The dihedral groups arise frequently in art and nature. Many of the 
decorative designs used on floor coverings, pottery, and buildings have 
one of the dihedral groups as a group of symmetry. Corporation logos 
are rich sources of dihedral symmetry [1]. Chrysler’s logo has D5 as a 
symmetry group, and that of MercedesBenz has D3. The ubiquitous 
fivepointed star has symmetry group D5. The phylum Echinodermata 
contains many sea animals (such as starfish, sea cucumbers, feather 
stars, and sand dollars) that exhibit patterns with D5 symmetry.

Chemists classify molecules according to their symmetry. Moreover, 
symmetry considerations are applied in orbital calculations, in determin
ing energy levels of atoms and molecules, and in the study of molecular 
vibrations. The symmetry group of a pyramidal molecule such as ammo
nia (NH3), depicted in Figure 1.2, is D3.
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N

H

H
H

Figure 1.2 A pyramidal molecule with symmetry group D3.

Mineralogists determine the internal structures of crystals (that is, 
rigid bodies in which the particles are arranged in threedimensional 
repeating  patterns—table salt and table sugar are two examples) by 
studying two dimensional xray projections of the atomic makeup  
of the crystals. The symmetry present in the projections reveals the 
 internal symmetry of the crystals themselves. Commonly occurring 
symmetry patterns are D4 and D6 (see Figure 1.3). Interestingly, it is 
mathematically impossible for a crystal to possess a Dn symmetry pat
tern with n 5 5 or n . 6.

 
Figure 1.3 X-ray diffraction photos revealing D4 symmetry patterns in crystals.

The dihedral group of order 2n is often called the group of sym-
metries of a regular n-gon. A plane symmetry of a figure F in a plane 
is a function from the plane to itself that carries F onto F and pre
serves distances; that is, for any points p and q in the plane, the  
distance from the image of p to the image of q is the same as the 
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 distance from p to q. (The term symmetry is from the Greek word 
symmetros, meaning “of like measure.”) The symmetry group of a plane 
figure is the set of all symmetries of the figure. Symmetries in three di
mensions are defined analogously. Obviously, a rotation of a plane 
about a point in the plane is a symmetry of the plane, and a rotation 
about a line in three dimensions is a symmetry in threedimensional 
space. Similarly, any translation of a plane or of threedimensional space 
is a symmetry. A reflection across a line L is that function that leaves 
every point of L fixed and takes any point q, not on L, to the point q9 so 
that L is the perpendicular bisector of the line segment joining q and q9 
(see Figure 1.4). A reflection across a plane in three dimensions is de
fined analogously. Notice that the restriction of a 1808 rotation about a 
line L in three dimensions to a plane containing L is a  reflection across 
L in the plane. Thus, in the dihedral groups, the motions that we de
scribed as flips about axes of symmetry in three dimensions (for exam
ple, H, V, D, D9) are reflections across lines in two  dimensions. Just as 
a reflection across a line is a plane symmetry that cannot be achieved 
by a physical motion of the plane in two dimensions, a  reflection across 
a plane is a threedimensional symmetry that cannot be achieved by a 
physical motion of threedimensional space. A cup, for instance, has 
reflective symmetry across the plane bisecting the cup, but this symme
try cannot be duplicated with a physical motion in three dimensions.

 

q

q9

L   

Figure 1.4

Many objects and figures have rotational symmetry but not reflective 
symmetry. A symmetry group consisting of the rotational symmetries of 
08, 3608/n, 2(3608)/n, . . . , (n 2 1)3608/n, and no other symmetries, is 
called a cyclic rotation group of order n and is denoted by 7R360/n8. Cyclic 
rotation groups, along with dihedral groups, are favorites of artists, de
signers, and nature. Figure 1.5 illustrates with corporate logos the cyclic 
rotation groups of orders 2, 3, 4, 5, 6, 8, 16, and 20.

A study of symmetry in greater depth is given in Chapters 27 and 28.
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371 | Introduction to Groups

Exercises

The only way to learn mathematics is to do mathematics.
Paul R. Halmos, A Hilbert Space Problem Book

  1. With pictures and words, describe each symmetry in D3 (the set of 
symmetries of an equilateral triangle).

  2. Write out a complete Cayley table for D3. Is D3 Abelian?
  3. In D4, find all elements X such that
 a. X3 5 V;
 b. X3 5 R90;
 c. X3 5 R0;
 d. X2 5 R0;
 e. X2 5 H.
  4. Describe in pictures or words the elements of D5 (symmetries of a 

regular pentagon).
  5. For n $ 3, describe the elements of Dn. (Hint: You will need to 

consider two cases—n even and n odd.) How many elements does 
Dn have?

  6. In Dn,  explain geometrically why a reflection followed by a reflec
tion must be a rotation.

  7. In Dn,  explain geometrically why a rotation followed by a rotation 
must be a rotation.

  8. In Dn,  explain geometrically why a rotation and a reflection taken 
together in either order must be a reflection.

  9. Associate the number 1 with a rotation and the number 21 with a 
reflection. Describe an analogy between multiplying these two 
numbers and multiplying elements of Dn.

Figure 1.5 Logos with cyclic rotation symmetry groups.
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38 Groups

 10. If r1, r2, and r3 represent rotations from Dn and f1,  f2, and f3 represent 
reflections from Dn,  determine whether r1r2 f1r3 f2 f3r3 is a rotation or 
a reflection.

 11. Suppose that a, b, and c are elements of a dihedral group. Is 
a2b4ac5a3c a rotation or a reflection? Explain your reasoning.

 12. Which letters of the alphabet written in upper case block style have a 
symmetry group with four elements? Describe the four symmetries.

 13. Find elements A, B, and C in D4 such that AB 5 BC but A Z C. 
(Thus, “cross cancellation” is not valid.)

 14. Explain what the following diagram proves about the group Dn.

1 1

2

1

n

2

31

2

13

n2

n

n – 11

2n

F

FR360/ n

R360 /n

 15. Describe the symmetries of a nonsquare rectangle. Construct the 
corresponding Cayley table.

 16. Describe the symmetries of a parallelogram that is neither a rectan
gle nor a rhombus. Describe the symmetries of a rhombus that is 
not a rectangle.

 17. Describe the symmetries of a noncircular ellipse. Do the same for a 
hyperbola.

 18. Consider an infinitely long strip of equally spaced H’s:

? ? ? H H H H ? ? ?

  Describe the symmetries of this strip. Is the group of symmetries of 
the strip Abelian?

 19. For each of the snowflakes in the figure, find the symmetry group 
and locate the axes of reflective symmetry (disregard imperfections).

  Photographs of snowflakes from the Bentley and Humphreys atlas.
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391 | Introduction to Groups

 20. Determine the symmetry group of the outer shell of the cross sec
tion of the human immunodeficiency virus (HIV) shown below.

 21. Let X,Y, R90  be elements of D4  with Y ? R90 and X2Y � R90. De
termine Y . Show your reasoning.

 22. If F is a reflection in the dihedral group Dn find all elements X in 
Dn such that X2 � F and all elements X in Dn such that X3 � F.

 23. What symmetry property do the words “mow,” “sis,” and “swims” 
have when written in uppercase letters?

 24. For each design below, determine the symmetry group (ignore 
 imperfections).

 25. What group theoretic property do uppercase letters F, G, J, L, P, Q, R 
have that is not shared by the remaining uppercase letters in the  
alphabet?
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Suggested Reading

Michael Field and Martin Golubitsky, Symmetry in Chaos, Oxford  
University Press, 1992.

This book has many beautiful symmetric designs that arise in  
chaotic dynamic systems.

Suggested Website

http://britton.disted.camosun.bc.ca/jbsymteslk.htm

This spectacular website on symmetry and tessellations has numerous  
activities and links to many other sites on related topics. It is a wonderful 
website for K–12 teachers and students.
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Niels Abel

He [Abel] has left mathematicians 
 something to keep them busy for five 
 hundred years.

charles hermite

Niels Henrik Abel, one of the foremost 
mathematicians of the 19th century, was 
born in Norway on August 5, 1802. At the 
age of 16, he began reading the classic math
ematical works of Newton, Euler, Lagrange, 
and Gauss. When Abel was 18 years old, his 
father died, and the burden of supporting the 
family fell upon him. He took in private pu
pils and did odd jobs, while continuing to do 
mathematical research. At the age of 19, 
Abel solved a problem that had vexed lead
ing mathematicians for hundreds of years. 
He proved that, unlike the situation for equa
tions of degree 4 or less, there is no finite 
(closed) formula for the solution of the gen
eral fifthdegree equation.

Although Abel died long before the advent 
of the subjects that now make up abstract  

algebra, his solution to the quintic problem 
laid the groundwork for many of these sub
jects. Just when his work was beginning to 
receive the attention it deserved, Abel con
tracted tuberculosis. He died on April 6, 1829, 
at the age of 26. 

In recognition of the fact that there is no 
Nobel Prize for mathematics, in 2002 Norway 
established the Abel Prize as the “Nobel Prize 
in mathematics” in honor of its native son. At 
approximately the $1,000,000 level, the Abel 
Prize is now seen as an award equivalent to a 
Nobel Prize.

To find more information about Abel, visit:
http://www-groups.dcs.st-and  

.ac.uk/~history/

A 500-kroner bank note first issued by 
Norway in 1948.
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Groups

Whenever groups disclose themselves, or could be introduced, 
simplicity crystallized out of comparative chaos. 

E. T. Bell, Mathematics: Queen and Servant of Science

A good stock of examples, as large as possible, is indispensable 
for a thorough understanding of any concept, and when I want  
to learn something new, I make it my first job to build one.

Paul R. Halmos

Definition and Examples of Groups
The term group was used by Galois around 1830 to describe sets of 
one-to-one functions on finite sets that could be grouped together to 
form a set closed under composition. As is the case with most funda-
mental concepts in mathematics, the modern definition of a group that 
follows is the result of a long evolutionary process. Although this defi-
nition was given by both Heinrich Weber and Walther von Dyck in 
1882, it did not gain universal acceptance until the 20th century.

Definition Binary Operation
Let G be a set. A binary operation on G is a function that assigns each 
ordered pair of elements of G an element of G.

A binary operation on a set G, then, is simply a method (or formula) by 
which the members of an ordered pair from G combine to yield a new 
member of G. This condition is called closure. The most familiar binary 
operations are ordinary addition, subtraction, and multiplication of integers. 
Division of integers is not a binary operation on the integers because an in-
teger divided by an integer need not be an integer.

The binary operations addition modulo n and multiplication modulo 
n on the set {0, 1, 2, . . . , n 2 1}, which we denote by Zn, play an ex-
tremely important role in abstract algebra. In certain situations we will 
want to combine the elements of Zn by addition modulo n only; in other 
situations we will want to use both addition modulo n and multiplication  

2

57960_ch02_ptg01_042-059.indd   42 10/26/15   12:50 PM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



432 | Groups

modulo n to combine the elements. It will be clear from the context 
whether we are using addition only or addition and multiplication. For 
example, when multiplying matrices with entries from Zn, we will need 
both addition modulo n and multiplication modulo n.

Definition Group
Let G be a set together with a binary operation (usually called multipli-
cation) that assigns to each ordered pair (a, b) of elements of G an ele-
ment in G denoted by ab. We say G is a group under this operation if 
the following three properties are satisfied.

 1. Associativity. The operation is associative; that is, (ab)c 5 a(bc) for 
all a, b, c in G.

 2. Identity. There is an element e (called the identity) in G such that   
ae 5 ea 5 a for all a in G.

 3. Inverses. For each element a in G, there is an element b in G (called 
an inverse of a) such that ab 5 ba 5 e.

In words, then, a group is a set together with an associative operation 
such that there is an identity, every element has an inverse, and any pair 
of elements can be combined without going outside the set. Be sure to 
verify closure when testing for a group (see Example 5). Notice that if a 
is the inverse of b, then b is the inverse of a.

If a group has the property that ab 5 ba for every pair of elements a 
and b, we say the group is Abelian. A group is non-Abelian if there is 
some pair of elements a and b for which ab 2 ba. When encountering a 
particular group for the first time, one should determine whether or not 
it is Abelian.

Now that we have the formal definition of a group, our first job is to 
build a good stock of examples. These examples will be used through-
out the text to illustrate the theorems. (The best way to grasp the meat 
of a theorem is to see what it says in specific cases.) As we progress, 
the reader is bound to have hunches and conjectures that can be tested 
against the stock of examples. To develop a better understanding of 
the following examples, the reader should supply the missing details.

 EXAMPLE 1 The set of integers Z (so denoted because the German word 
for numbers is Zahlen), the set of rational numbers Q (for quotient), and 
the set of real numbers R are all groups under ordinary addition. In each 
case, the identity is 0 and the inverse of a is 2a. 
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44 Groups

 EXAMPLE 2 The set of integers under ordinary multiplication is not a 
group. Since the number 1 is the identity, property 3 fails. For example, 
there is no integer b such that 5b 5 1. 

 EXAMPLE 3 The subset {1, 21, i, 2i} of the complex numbers  
is a group under complex multiplication. Note that 21 is its own inverse, 
whereas the inverse of i is 2i, and vice versa. 

 EXAMPLE 4 The set Q1 of positive rationals is a group under ordinary 
multiplication. The inverse of any a is 1/a 5 a21. 

 EXAMPLE 5 The set S of positive irrational numbers together with 1 
under multiplication satisfies the three properties given in the defi nition 
of a group but is not a group. Indeed, 22 ? 22 5 2, so S is not closed 
under multiplication. 

 EXAMPLE 6 A rectangular array of the form ca b

c d
d  is called a 

2 3 2 matrix. The set of all 2 3 2 matrices with real entries is a group 
under componentwise addition. That is,

ca1 b1

c1 d1
d � ca2 b2

c2 d2
d � ca1 � a2

c1 � c2

b1 � b2

d1 � d2
d

The identity is c0 0

0 0
d , and the inverse of ca b

c d
d  is c�a �b

�c �d
d . 

 EXAMPLE 7 The set Zn 5 {0, 1, . . . , n 2 1} for n $ 1 is a group under 
addition modulo n. For any j . 0 in Zn, the inverse of j is n 2 j.  
This group is usually referred to as the group of integers modulo n. 

As we have seen, the real numbers, the 2 3 2 matrices with real en-
tries, and the integers modulo n are all groups under the appropriate ad-
dition. But what about multiplication? In each case, the existence of 
some elements that do not have inverses prevents the set from being a 
group under the usual multiplication. However, we can form a group in 
each case by simply throwing out the rascals. Examples 8, 9, and 11 
 illustrate this.

 EXAMPLE 8 The set R* of nonzero real numbers is a group under ordi-
nary multiplication. The identity is 1. The inverse of a is 1/a. 
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 EXAMPLE 9† The determinant of the 2 3 2 matrix ca b

c d
d  is the

number ad 2 bc. If A is a 2 3 2 matrix, det A denotes the determinant
of A. The set

GL(2, R) 5 e ca b

c d
d ` a, b, c, d [ R, ad � bc ? 0 f

of 2 3 2 matrices with real entries and nonzero determinants is a non-
Abelian group under the operation

ca1 b1

c1 d1
d ca2 b2

c2 d2
d � ca1a2 � b1c2

c1a2 � d1c2

a1b2 � b1d2

c1b2 � d1d2
d .

The first step in verifying that this set is a group is to show that the 
product of two matrices with nonzero determinants also has a nonzero 
determinant. This follows from the fact that for any pair of 2 3 2 
matrices A and B, det (AB) 5 (det A)(det B).

Associativity can be verified by direct (but cumbersome) calcula-

tions. The identity is c1 0

0 1
d ; the inverse of ca b

c d
d  is

≥

d

ad bc

b

ad bc

c

ad bc

a

ad bc

¥

(explaining the requirement that ad 2 bc 2 0). Another useful fact about 
determinants is det A�1 � 1det A2�1. 

This very important non-Abelian group is called the general linear 
group of 2 3 2 matrices over R. 

 EXAMPLE 10 The set of all 2 3 2 matrices with real entries is not a 
group under the operation defined in Example 9. Inverses do not exist 
when the determinant is 0. 

Now that we have shown how to make subsets of the real numbers 
and subsets of the set of 2 3 2 matrices into multiplicative groups, we 
next consider the integers under multiplication modulo n.

†For simplicity, we have restricted our matrix examples to the 2 3 2 case. However, the 
examples in this chapter generalize to n 3 n matrices.
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 EXAMPLE 11 (L. EULER, 1761) By Exercise 11 in Chapter 0, an  integer a 
has a multiplicative inverse modulo n if and only if a and n are relatively 
prime. So, for each n . 1, we define U(n) to be the set of all positive 
integers less than n and relatively prime to n. Then U(n) is a group under 
multiplication modulo n. (We leave it to the reader to check that this set 
is closed under this operation.)

For n 5 10, we have U(10) 5 {1, 3, 7, 9}. The Cayley table for 
U(10) is

mod 10 1 3 7 9

 1 1 3 7 9
 3 3 9 1 7
 7 7 1 9 3
 9 9 7 3 1

(Recall that ab mod n is the unique integer r with the property a ? b 5 
nq 1 r, where 0 # r , n and a ? b is ordinary multiplication.) In the 
case that n is a prime, U(n) 5 {1, 2, . . . , n 2 1}. 

In his classic book Lehrbuch der Algebra, published in 1895,  Heinrich 
Weber gave an extensive treatment of the groups U(n) and described them 
as the most important examples of finite Abelian groups.

 EXAMPLE 12 The set {0, 1, 2, 3} is not a group under multiplication 
modulo 4. Although 1 and 3 have inverses, the elements 0 and 2  
do not. 

 EXAMPLE 13 The set of integers under subtraction is not a group, since 
the operation is not associative. 

With the examples given thus far as a guide, it is wise for the reader 
to pause here and think of his or her own examples. Study actively! 
Don’t just read along and be spoon-fed by the book.

 EXAMPLE 14 The complex numbers C 5 {a 1 bi | a, b [ R,  
i2 5 21} are a group under the operation (a 1 bi) 1 (c 1 di) 5  
(a 1 c) 1 (b 1 d)i. The inverse of a 1 bi is 2a 2bi. The nonzero 
complex numbers C* are a group under the operation (a 1 bi)  

(c 1 di) 5 (ac 2 bd) 1 (ad 1 bc)i. The inverse of a 1 bi is 
1

a � bi
 5 

1

a � bi
  

a � bi

a � bi
 5 

1

a2 � b2 a 2 
1

a2 � b2 bi. 
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 EXAMPLE 15 For all integers n $ 1, the set of complex nth roots of 
unity

e cos 
k # 360�

n
 � i sin 

k # 360�

n
`  k � 0, 1, 2, . . . , n � 1 f

(i.e., complex zeros of xn 2 1) is a group under multiplication. (See 
DeMoivre’s Theorem—Example 12 in Chapter 0.) Compare this group 
with the one in Example 3. 

Recall from Chapter 0 that the complex number cos u 1 i sin u can 
be represented geometrically as the point (cos u, sin u) in a plane coor-
dinatized by a real horizontal axis and a vertical imaginary axis, where 
u is the angle formed by the line segment joining the origin and the 
point (cos u, sin u) and the positive real axis. Thus, the six complex  
zeros of x6 5 1 are located at points around the circle of radius 1, 60° 
apart, as shown in Fig ure 2.1.

2
1

2
1

2
3

60

–
2
1

2
3–– i i

2
1

2
3+

2
3

i2
1

2
3+– i

Imaginary

Real–1 1

√
√

√√

√

Figure 2.1

 EXAMPLE 16 The set Rn 5 {(a1, a2, . . . , an) U a1, a2, . . . , an [ R} is a 
group under componentwise addition [i.e., (a1, a2, . . . , an) 1 
(b1, b2, . . . , bn) 5 (a1 1 b1, a2 1 b2, . . . , an 1 bn)]. 

 EXAMPLE 17 The set of all 2 3 2 matrices with determinant 1 with entries 
from Q (rationals), R (reals), C (complex numbers), or Zp (p a prime) is a 
non-Abelian group under matrix multiplication. This group is called  
the special linear group of 2 3 2 matrices over Q, R, C, or Zp, respectively.  
If the entries are from F, where F is any of the above, we denote this group 
by SL(2, F). For the group SL(2, F), the formula given in Example 9 for
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the inverse of ca b

c d
d  simplifies to c d �b

�c a
d .

 
When the matrix 

entries are from Zp, we use modulo p arithmetic to compute determi-
nants, matrix products, and inverses. To illustrate the case SL(2, Z5), 

consider the element A 5 c3 4

4 4
d . Then det A 5 (3 ? 4 2 4  ? 4) mod 5 5 

24 mod 5 5 1, and the inverse of A is
 
c 4 �4

�4 3
d � c4 1

1 3
d . Note

that c3 4

4 4
d c4 1

1 3
d � c1 0

0 1
d  when the arithmetic is done modulo 5. 

Example 9 is a special case of the following general construction.

 EXAMPLE 18 Let F be any of Q, R, C, or Zp ( p a prime). The set  
GL(2, F) of all 2 3 2 matrices with nonzero determinants and entries 
from F is a non-Abelian group under matrix multiplication. As in 
 Example 17, when F is Zp, modulo p arithmetic is used to calculate 
 determinants, matrix products, and inverses. The formula given in 

Example 9 for the inverse of ca b

c d
d  remains valid for elements from

GL(2, Zp), provided we interpret division by ad 2 bc as multiplication 
by the inverse of (ad 2 bc) modulo p. For example, in GL(2, Z7),

consider c4 5

6 3
d.  Then the determinant (ad 2 bc) mod 7 is (12 2 30)

mod 7 5 218 mod 7 5 3 and the inverse of 3 is 5 [since (3 ? 5) 

mod 7 5 1]. So, the inverse of c4 5

6 3
d  is c3 ? 5 2 ? 5

1 ? 5 4 ? 5
d � c1 3

5 6
d . 

[The reader should check that c4 5

6 3
d  c1 3

5 6
d � c1 0

0 1
d  in GL(2, Z7)]. 

The group GL(n, F) is called the general linear group of n 3 n 
 matrices over F.

 EXAMPLE 19 The set {1, 2, . . . , n 2 1} is a group under multiplication 
modulo n if and only if n is prime. 

Table 2.1 summarizes many of the specific groups that we have 
 presented thus far.

As the previous examples demonstrate, the notion of a group is a very 
broad one indeed. The goal of the axiomatic approach is to find proper-
ties general enough to permit many diverse examples having these prop-
erties and specific enough to allow one to deduce many interesting  
consequences.
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The goal of abstract algebra is to discover truths about algebraic  systems 
(that is, sets with one or more binary operations) that are independent of the 
specific nature of the operations. All one knows or needs to know is that 
these operations, whatever they may be, have certain properties. We then 
seek to deduce consequences of these properties. This is why this branch of 
mathematics is called abstract algebra. It must be remembered, however, 
that when a specific group is being discussed, a specific operation must be 
given (at least  im plicitly).

Elementary Properties of Groups
Now that we have seen many diverse examples of groups, we wish to 
deduce some properties that they share. The definition itself raises some 
fundamental questions. Every group has an identity. Could a group have 
more than one? Every group element has an inverse. Could an element 
have more than one? The examples suggest not. But examples can only 

Table 2.1  Summary of Group Examples (F can be any of Q, R, C, or Zp ; L is a reflection)

   Form of 
Group Operation Identity Element Inverse Abelian

Z Addition 0 k 2k Yes
Q1 Multiplication 1 m/n, n/m Yes
   m, n . 0
Zn Addition mod n 0 k n 2 k Yes
R* Multiplication 1 x 1/x Yes

C* Multiplication 1 a 1 bi 
1

a2 � b2 a �
1

a2 � b2 bi Yes

GL(2, F) Matrix   

≥

d

ad 2 bc

2b

ad 2 bc

2c

ad 2 bc

a

ad 2 bc

¥

 

No 
  multiplication

 

c 1 0

0 1
d
 

c a b

c d
d
,

   ad 2 bc 2 0
U(n) Multiplication 1 k, Solution to Yes
   mod n  gcd(k, n) 5 1 kx mod n 5 1
Rn Componentwise (0, 0, …, 0) (a1, a2, …, an) (2a1, 2a2, …, 2an) Yes
   addition
SL(2, F) Matrix 

c 1 0

0 1
d
 

c a b

c d
d
,

 
c d

�c

�b

a
d
 No

   multiplication

   ad 2 bc 5 1
Dn Composition R0 Ra, L R360 2 a, L No
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suggest. One cannot prove that every group has a unique identity by 
looking at examples, because each example inherently has properties 
that may not be shared by all groups. We are forced to  restrict ourselves 
to the properties that all groups have; that is, we must view groups as 
abstract entities rather than argue by example. The next three theorems 
illustrate the abstract approach.

 Theorem 2.1 Uniqueness of the Identity

In a group G, there is only one identity element.

PROOF Suppose both e and e9 are identities of G. Then,

 1. ae 5 a for all a in G, and
 2. e9a 5 a for all a in G.

The choices of a 5 e9 in (part 1) and a 5 e in (part 2) yield e9e 5 e9 
and e9e 5 e. Thus, e and e9 are both equal to e9e and so are equal to each 
other. 

Because of this theorem, we may unambiguously speak of “the iden-
tity” of a group and denote it by ‘e’ (because the German word for iden-
tity is Einheit).

 Theorem 2.2 Cancellation

In a group G, the right and left cancellation laws hold; that is,  
ba 5 ca implies b 5 c, and ab 5 ac implies b 5 c.

PROOF Suppose ba 5 ca. Let a9 be an inverse of a. Then multi- 
plying on the right by a9 yields (ba)a9 5 (ca)a9. Associativity yields  
b(aa9) 5 c(aa9). Then be 5 ce and, therefore, b 5 c as desired. Similarly, 
one can prove that ab 5 ac implies b 5 c by multiplying by a9 on the left.
 

A consequence of the cancellation property is the fact that in a  Cayley 
table for a group, each group element occurs exactly once in each row 
and column (see Exercise 31). Another consequence of the cancellation 
property is the uniqueness of inverses.
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512 | Groups

 Theorem 2.3 Uniqueness of Inverses

For each element a in a group G, there is a unique element b in G 
such that ab 5 ba 5 e.

PROOF Suppose b and c are both inverses of a. Then ab 5 e and  
ac 5 e, so that ab 5 ac. Canceling the a on both sides gives b 5 c, as 
desired. 

As was the case with the identity element, it is reasonable, in view of 
Theorem 2.3, to speak of “the inverse” of an element g of a group;  in 
fact, we may unambiguously denote it by g21. This notation is sug-
gested by that used for ordinary real numbers under multiplication. 
Similarly, when n is a positive integer, the associative law allows us to 
use gn to denote the unambiguous product

gg ? ? ? g.

n factors

We define g0 5 e. When n is negative, we define gn 5 (g21)|n| [for ex-
ample, g23 5 (g21)3]. Unlike for real numbers, in an abstract group we 
do not permit noninteger exponents such as g1/2. With this notation, the 
familiar laws of exponents hold for groups; that is, for all integers m and 
n and any group element g, we have gmgn 5 gm1n and (gm)n 5 gmn. 
 Although the way one manipulates the group expressions gmgn and  
(gm)n coincides with the laws of exponents for real numbers, the laws of 
 exponents fail to hold for expressions involving two group elements. 
Thus, for groups in general, (ab)n Z anbn (see Exercise 23).

The important thing about the existence of a unique inverse for each 
group element a is that for every element b in the group there is a unique 
solution in the group of the equations ax 5 b and xa 5 b. Namely,  
x 5 a21b in the first case and x 5 ba21 in the second case. In contrast, in 
the set {0, 1, 2, 3, 4, 5}, the equation 2x 5 4 has the solutions x 5 2 and 
x 5 5 under the operation multiplication mod 6. However, this set is not 
a group under multiplication mod 6.

Also, one must be careful with this notation when dealing with a spe-
cific group whose binary operation is addition and is denoted by “1.” In 
this case, the definitions and group properties expressed in multiplica-
tive notation must be translated to additive notation. For  example,  
the inverse of g is written as 2g. Likewise, for example, g3 means
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Table 2.2

 Multiplicative Group Additive Group

a ? b or ab Multiplication a 1 b Addition
e or 1 Identity or one 0 Zero
a21 Multiplicative inverse of a 2a Additive inverse of a
an Power of a na Multiple of a
ab21 Quotient a 2 b Difference

g 1 g 1 g and is usually written as 3g, whereas g23 means (2g) 1 
(2g) 1 (2g) and is written as 23g. When additive notation is used, do 
not interpret “ng” as combining n and g under the group operation; n 
may not even be an element of the group! Table 2.2 shows the common 
notation and corresponding terminology for groups under multiplica-
tion and groups under addition. As is the case for real numbers, we use 
a 2 b as an abbreviation for a 1 (2b).

Because of the associative property, we may unambiguously write 
the expression abc, for this can be reasonably interpreted as only (ab)c 
or a(bc), which are equal. In fact, by using induction and repeated ap-
plication of the associative property, one can prove a general associative 
property that essentially means that parentheses can be inserted or de-
leted at will without affecting the value of a product involving any num-
ber of group elements. Thus,

a2(bcdb2) 5 a2b(cd )b2 5 (a2b)(cd )b2 5 a(abcdb)b,

and so on.
Although groups do not have the property that (ab)n 5 anbn, there is 

a simple relationship between (ab)21 and a21 and b21.

 Theorem 2.4 Socks–Shoes Property

For group elements a and b, (ab)21 5 b21a21.

PROOF Since (ab)(ab)21 5 e and (ab)(b21a21) 5 a(bb21)a21 5 aea21 5 
aa21 5 e, we have by Theorem 2.3 that (ab)21 5 b21a21. 

Historical Note
We conclude this chapter with a bit of history concerning the non- 
commutativity of matrix multiplication. In 1925, quantum theory was 
replete with annoying and puzzling ambiguities. It was Werner Heisenberg  
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who recognized the cause. He observed that the product of the quan-
tum-theoretical analogs of the classical Fourier series did not necessar-
ily commute. For all his boldness, this shook Heisenberg. As he later 
recalled [2, p. 94]:

In my paper the fact that XY was not equal to YX was very disagreeable to me. I felt 
this was the only point of difficulty in the whole scheme, otherwise I would be per-
fectly happy. But this difficulty had worried me and I was not able to solve it.

Heisenberg asked his teacher, Max Born, if his ideas were worth pub-
lishing. Born was fascinated and deeply impressed by Heisenberg’s new 
approach. Born wrote [1, p. 217]:

After having sent off Heisenberg’s paper to the Zeitschrift für Physik for publication, 
I began to ponder over his symbolic multiplication, and was soon so involved in it 
that I thought about it for the whole day and could hardly sleep at night. For I felt 
there was something fundamental behind it, the consummation of our endeavors of 
many years. And one morning, about the 10 July 1925, I suddenly saw light: Heisen-
berg’s symbolic multiplication was nothing but the matrix calculus, well-known to 
me since my student days from Rosanes’ lectures in Breslau.

Born and his student, Pascual Jordan, reformulated Heisenberg’s ideas 
in terms of matrices, but it was Heisenberg who was credited with the 
formulation. In his autobiography, Born lamented [1, p. 219]:

Nowadays the textbooks speak without exception of Heisenberg’s matrices, Heisen-
berg’s commutation law, and Dirac’s field quantization.

In fact, Heisenberg knew at that time very little of matrices and had to study 
them.

Upon learning in 1933 that he was to receive the Nobel Prize  
with Dirac and Schrödinger for this work, Heisenberg wrote to Born 
[1, p. 220]:

If I have not written to you for such a long time, and have not thanked you for your 
congratulations, it was partly because of my rather bad conscience with respect to 
you. The fact that I am to receive the Nobel Prize alone, for work done in Göttingen 
in collaboration—you, Jordan, and I—this fact depresses me and I hardly know what 
to write to you. I am, of course, glad that our common efforts are now appreciated, 
and I enjoy the recollection of the beautiful time of collaboration. I also believe that 
all good physicists know how great was your and Jordan’s contribution to the struc-
ture of quantum mechanics—and this remains unchanged by a wrong decision from 
outside. Yet I myself can do nothing but thank you again for all the fine collabora-
tion, and feel a little ashamed.

The story has a happy ending, however, because Born received the 
Nobel Prize in 1954 for his fundamental work in quantum mechanics.
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Exercises

“For example” is not proof.
JEWISH PROVERB

  1. Which of the following binary operations are closed?
 a. subtraction of positive integers
 b. division of nonzero integers
 c. function composition of polynomials with real coefficients
 d. multiplication of 2 3 2 matrices with integer entries
 e. exponentiation of integers
  2. Which of the following binary operations are associative?
 a. subtraction of integers
 b. division of nonzero rationals
 c. function composition of polynomials with real coefficients
 d. multiplication of 2 3 2 matrices with integer entries
 e. exponentiation of integers
  3. Which of the following binary operations are commutative?
 a. substraction of integers
 b. division of nonzero real numbers
 c. function composition of polynomials with real coefficients
 d. multiplication of 2 3 2 matrices with real entries
 e. exponentiation of integers
  4. Which of the following sets are closed under the given operation?
 a. {0, 4, 8, 12} addition mod 16
 b. {0, 4, 8, 12} addition mod 15
 c. {1, 4, 7, 13} multiplication mod 15
 d. {1, 4, 5, 7} multiplication mod 9
  5. In each case, find the inverse of the element under the given  

operation.
 a. 13 in Z20
 b. 13 in U(14)
 c. n21 in U(n) (n . 2)
 d. 322i in C*, the group of nonzero complex numbers under mul-

tiplication
  6. In each case, perform the indicated operation.
 a. In C*, (7 1 5i)( 23 1 2i)

 b. In GL(2, Z13), det c7 4

1 5
d
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552 | Groups

 c. In GL (2, R), c6 3

8 2
d

�1

 d. In GL(2, Z7), c
2 1

1 3
d

�1

  7. Give two reasons why the set of odd integers under addition is not a 
group.

  8. List the elements of U1202.
  9. Show that {1, 2, 3} under multiplication modulo 4 is not a group 

but that {1, 2, 3, 4} under multiplication modulo 5 is a group.
 10. Show that the group GL(2, R) of Example 9 is non-Abelian by ex-

hibiting a pair of matrices A and B in GL(2, R) such that AB 2 BA.
 11. Let a  belong to a group and a12 � e. Express the inverse of each of 

the elements a, a6, a8, and a11 in the form ak for some positive integer k.
 12. In U192 find the inverse of 2, 7, and 8.
 13. Translate each of the following multiplicative expressions into its 

additive counterpart. Assume that the operation is commutative.
 a. a2b3

 b. a22(b21c)2

 c. (ab2)23c2 5 e
 14. For group elements a, b, and c, express (ab)3 and (ab22 c)22 without 

parentheses.
 15. Suppose that a and b belong to a group and a5 � e and b7 � e. 

Write a�2b�4 and 1a2b42�2 without using negative exponents.
 16. Show that the set {5, 15, 25, 35} is a group under multiplication 

modulo 40. What is the identity element of this group? Can you see 
any relationship between this group and U(8)?

 17. Let G be a group and let H 5 {x21 | x [ G}. Show that G 5 H  
as sets.

 18. List the members of K 5 {x 2 | x [ D4} and L 5 {x  [ D4 | x
2 5 e}.

 19. Prove that the set of all 2 3 2 matrices with entries from R and de-
terminant 11 is a group under matrix multiplication.

 20. For any integer n . 2, show that there are at least two elements in 
U(n) that satisfy x2 5 1.

 21. An abstract algebra teacher intended to give a typist a list of nine in-
tegers that form a group under multiplication modulo 91. Instead, 
one of the nine integers was inadvertently left out, so that the list ap-
peared as 1, 9, 16, 22, 53, 74, 79, 81. Which integer was left out? 
(This really happened!)
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 22. Let G be a group with the property that for any x, y, z in the group, 
xy 5 zx implies y 5 z. Prove that G is Abelian. (“Left-right cancel-
lation” implies commutativity.)

 23. (Law of Exponents for Abelian Groups) Let a and b be elements of 
an Abelian group and let n be any integer. Show that (ab)n 5 anbn. 
Is this also true for non-Abelian groups?

 24. (Socks–Shoes Property) Draw an analogy between the statement 
(ab)21 5 b21 a21 and the act of putting on and taking off your socks 
and shoes. Find distinct nonidentity elements a and b from a  
non-Abelian group such that (ab)21 5 a21 b21. Find an example 
that shows that in a group, it is possible to have (ab)22 Z b22 a22. 
What would be an appropriate name for the group property  
(abc)21 5 c21 b21 a21?

 25. Prove that a group G is Abelian if and only if (ab)21 5 a21b21 for 
all a and b in G.

 26. Prove that in a group, (a21)21 5 a for all a.

 27. For any elements a and b from a group and any integer n, prove that 
(a21ba)n 5 a21bna.

 28. If a1, a2, . . . , an belong to a group, what is the inverse of a1a2 . . . an?

 29. The integers 5 and 15 are among a collection of 12 integers that 
form a group under multiplication modulo 56. List all 12.

 30. Give an example of a group with 105 elements. Give two examples 
of groups with 44 elements.

 31. Prove that every group table is a Latin square†; that is, each ele-
ment of the group appears exactly once in each row and each  
column.

 32. Construct a Cayley table for U(12).

 33. Suppose the table below is a group table. Fill in the blank entries.

†Latin squares are useful in designing statistical experiments. There is also a close con-
nection between Latin squares and finite geometries.

  e a b c d

 e e — — — —
 a — b — — e
 b — c d e —
 c — d — a b

 d — — — — —
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 34. Prove that in a group, (ab)2 5 a2b2 if and only if ab 5 ba.
 Prove that in a group, 1ab2�2 � b�2a�2 if and only if ab � ba.

 35. Let a, b, and c be elements of a group. Solve the equation axb 5 c 
for x. Solve a21xa 5 c for x.

 36. Let a and b belong to a group G. Find an x in G such that xabx21 5 ba.
 37. Let G be a finite group. Show that the number of elements x of G 

such that x3 5 e is odd. Show that the number of elements x of G 
such that x2 2 e is even.

 38. Give an example of a group with elements a, b, c, d, and x such 
that axb 5 cxd but ab 2 cd. (Hence “middle cancellation” is not 
valid in groups.)

 39. Suppose that G is a group with the property that for every choice of 
elements in G, axb 5 cxd implies ab 5 cd. Prove that G is  
Abelian. (“Middle cancellation” implies commutativity.)

 40. Find an element X in D4 such that R90VXH 5 D9.
 41. Suppose F1 and F2 are distinct reflections in a dihedral group Dn. 

Prove that F1F2 2 R0.
 42. Suppose F1 and F2 are distinct reflections in a dihedral group Dn 

such that F1F2 5 F2F1. Prove that F1F2 5 R180.
 43. Let R be any fixed rotation and F any fixed reflection in a dihedral 

group. Prove that RkFRk 5 F.
 44. Let R be any fixed rotation and F any fixed reflection in a dihedral 

group. Prove that FRkF 5 R2k. Why does this imply that Dn is  
non-Abelian?

 45. In the dihedral group Dn, let R 5 R360/n and let F be any reflection. 
Write each of the following products in the form Ri or RiF, where  
0 # i , n.

  a. In D4, FR22FR5

  b. In D5, R
23FR4FR22

  c. In D6, FR5FR22F
 46. Prove that the set of all 3 3 3 matrices with real entries of the form

£
1 a b

0 1 c

0 0 1

§

  is a group. (Multiplication is defined by

£
1 a b

0 1 c

0 0 1

§  £
1 a� b�

0 1 c�

0 0 1

§ � £
1 a � a� b� � ac� � b

0 1 c� � c

0 0 1

§ .
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 This group, sometimes called the Heisenberg group after the  Nobel 
Prize–winning physicist Werner Heisenberg, is intimately related to 
the Heisenberg Uncertainty Principle of quantum physics.)

 47. Prove that if G is a group with the property that the square of every 
element is the identity, then G is Abelian. (This exercise is referred 
to in Chapter 26.)

 48. In a finite group, show that the number of nonidentity elements that 
satisfy the equation x5 5 e is a multiple of 5. If the stipulation that 
the group be finite is omitted, what can you say about the number 
of nonidentity elements that satisfy the equation x5 5 e?

 49. List the six elements of GL(2, Z2). Show that this group is non-
Abelian by finding two elements that do not commute. (This exer-
cise is referred to in Chapter 7.)

 50. Prove the assertion made in Example 19 that the set {1, 2, . . . ,  
n 2 1} is a group under multiplication modulo n if and only if n is 
prime.

 51. Suppose that in the definition of a group G, the condition that there 
exists an element e with the property ae 5 ea 5 a for all a in G is 
replaced by ae 5 a for all a in G. Show that ea 5 a for all a in G. 
(Thus, a one-sided identity is a two-sided identity.)

 52. Suppose that in the definition of a group G, the condition that for 
each element a in G there exists an element b in G with the property 
ab 5 ba 5 e is replaced by the condition ab 5 e. Show that  
ba 5 e. (Thus, a one-sided inverse is a two-sided inverse.)

Computer Exercises

Software for the computer exercises in this chapter is available at the website:

http://www.d.umn.edu/~jgallian
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tionships among a tribe of native people of Australia.

Arie Bialostocki, “An Application of Elementary Group Theory to Central 
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The author uses properties of groups to analyze the peg board game 
central solitaire (which also goes by the name peg solitaire).

J. E. White, “Introduction to Group Theory for Chemists,” Journal of 
Chemical Education 44 (1967): 128–135.

Students interested in the physical sciences may find this article worth-
while. It begins with easy examples of groups and builds up to applica-
tions of group theory concepts and terminology to chemistry.
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Finite Groups; Subgroups

In our own time, in the period 1960–1980, we have seen particle 
physics emerge as the playground of group theory.

Freeman Dyson

What brought order and logic to the building blocks of matter . . .  
was something called a “symmetry group”—a mathematical beast 
that Frenkel had never encountered in school. “This was a  moment 
of epiphany,” he recalls, a vision of “an entirely different world.”
 Jim Holt in The New York Review of Books December 5, 2013

Terminology and Notation
As we will soon discover, finite groups—that is, groups with finitely 
many elements—have interesting arithmetic properties. To facilitate the 
study of finite groups, it is convenient to introduce some terminology 
and notation.

Definition Order of a Group
The number of elements of a group (finite or infinite) is called its  
order. We will use |G| to denote the order of G.

Thus, the group Z of integers under addition has infinite order, 
whereas the group U(10) 5 {1, 3, 7, 9} under multiplication modulo 10 
has order 4.

Definition Order of an Element
The order of an element g in a group G is the smallest positive integer n 
such that gn 5 e. (In additive notation, this would be ng 5 0.) If no such 
integer exists, we say that g has infinite order. The order of an  element g 
is denoted by |g|.

So, to find the order of a group element g, you need only compute the 
sequence of products g, g2, g3, . . . , until you reach the identity for the first 

3

60
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time. The exponent of this product (or coefficient if the operation is addi-
tion) is the order of g. If the identity never appears in the sequence, then 
g has infinite order.

 EXAMPLE 1 Consider U(15) 5 {1, 2, 4, 7, 8, 11, 13, 14} under mul-
tiplication modulo 15. This group has order 8. To find the order of the 
element 7, say, we compute the sequence 71 5 7, 72 5 4, 73 5 13, 
74 5 1, so |7| 5 4. To find the order of 11, we compute 111 5 11,  
112 5 1, so |11| 5 2. Similar computations show that |1| 5 1, |2| 5 4, 
|4| 5 2, |8| 5 4, |13| 5 4, |14| 5 2. [Here is a trick that makes these 
calculations easier. Rather than compute the sequence 131, 132, 133, 134, 
we may observe that 13 5 22 mod 15, so that 132 5 (22)2 5 4, 133 5 
22 ? 4 5 28, 134 5 (22)(28) 5 1.]†     

 EXAMPLE 2 Consider Z10 under addition modulo 10. Since 1 ? 2 5 2, 
2 ? 2 5 4, 3 ? 2 5 6, 4 ? 2 5 8, 5 ? 2 5 0, we know that |2| 5 5. Similar 
computations show that |0| 5 1, |7| 5 10, |5| 5 2, |6| 5 5. (Here 2 ? 2 is an 
abbreviation for 2 1 2, 3 ? 2 is an abbreviation for 2 1 2 1 2, etc.) 

 EXAMPLE 3 Consider Z under ordinary addition. Here every nonzero ele-
ment has infinite order, since the sequence a, 2a, 3a, . . . never includes 0 
when a Z 0. 

The perceptive reader may have noticed among our examples of 
groups in Chapter 2 that some are subsets of others with the same  binary 
operation. The group SL(2, R) in Example 17, for instance, is a subset 
of the group GL(2, R) in Example 9. Similarly, the group of complex 
numbers {1, 21, i, 2i} under multiplication is a subset of the group 
described in Example 15 for n equal to any multiple of 4. This situation 
arises so often that we introduce a special term to describe it.

Definition Subgroup
If a subset H of a group G is itself a group under the operation of G, we 
say that H is a subgroup of G.

We use the notation H # G to mean that H is a subgroup of G. If we 
want to indicate that H is a subgroup of G but is not equal to G itself, we 
write H , G. Such a subgroup is called a proper subgroup. The sub-
group {e} is called the trivial subgroup of G; a subgroup that is not {e} 
is called a nontrivial subgroup of G.

Notice that Zn under addition modulo n is not a subgroup of Z under 
addition, since addition modulo n is not the operation of Z.

† The website http://www.google.com provides a convenient way to do modular arith-
metic. For example, to compute 134 mod 15, just type “13ˆ4 mod 15” in the search box.
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Subgroup Tests
When determining whether or not a subset H of a group G is a subgroup 
of G, one need not directly verify the group axioms. The next three re-
sults provide simple tests that suffice to show that a subset of a group is 
a subgroup.

 Theorem 3.1 One-Step Subgroup Test

Let G be a group and H a nonempty subset of G. If ab21 is in H 
whenever a and b are in H, then H is a subgroup of G. (In additive 
notation, if a 2 b is in H whenever a and b are in H, then H is a 
subgroup of G.)

PROOF Since the operation of H is the same as that of G, it is clear that 
this operation is associative. Next, we show that e is in H. Since H is 
nonempty, we may pick some x in H. Then, letting a 5 x and b 5 x in 
the hypothesis, we have e 5 xx21 5 ab21 is in H. To verify that x21 is in 
H whenever x is in H, all we need to do is to choose a 5 e and  
b 5 x in the statement of the theorem. Finally, the proof will be com-
plete when we show that H is closed; that is, if x, y belong to H, we must 
show that xy is in H also. Well, we have already shown that y21 is in H 
whenever y is; so, letting a 5 x and b 5 y21, we have xy 5 x(y21)21 5 ab21 
is in H.     

Although we have dubbed Theorem 3.1 the One-Step Sub group Test, 
there are actually four steps involved in applying the theorem. (After 
you gain some experience, the first three steps will be routine.) Notice 
the similarity between the last three steps listed  below and the three 
steps involved in the Second Principle of Mathematical Induction.

 1.  Identify the property P that distinguishes the elements of H; that is, 
identify a defining condition.

 2.  Prove that the identity has property P. (This verifies that H is 
 nonempty.)

 3.  Assume that two elements a and b have property P.
 4.  Use the assumption that a and b have property P to show that 

ab21 has pro perty P.

The procedure is illustrated in Examples 4 and 5.

 EXAMPLE 4 Let G be an Abelian group with identity e. Then H 5 {x [  
G | x2 5 e} is a subgroup of G. Here, the defining property of H is the 
condition x2 5 e. So, we first note that e2 5 e, so that H is nonempty. Now 
we assume that a and b belong to H. This means that a2 5 e and b2 5 e.  
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633 | Finite Groups; Subgroups

Finally, we must show that (ab21)2 5 e. Since G is Abelian, (ab21)2 5 
ab21ab21 5 a2(b21)2 5 a2(b2)21 5 ee21 5 e. Therefore, ab21 belongs to 
H and, by the One-Step Subgroup Test, H is a subgroup of G.     

In many instances, a subgroup will consist of all elements that have a 
particular form. Then the property P is that the elements have that par-
ticular form. This is illustrated in the following example.

 EXAMPLE 5 Let G be an Abelian group under multiplication with iden-
tity e. Then H 5 {x2 | x [ G} is a subgroup of G. (In words, H is the 
set of all “squares.”) Since e2 5 e, the identity has the correct form. 
Next, we write two elements of H in the correct form, say, a2 and b2. We 
must show that a2(b2)21 also has the correct form; that is, a2(b2)21 is the 
square of some element. Since G is Abelian, we may write a2(b2)21 as 
(ab21)2, which is the correct form. Thus, H is a subgroup of G.     

Beginning students often prefer to use the next theorem instead of 
Theorem 3.1.

 Theorem 3.2 Two-Step Subgroup Test

Let G be a group and let H be a nonempty subset of G. If ab is in H 
whenever a and b are in H (H is closed under the operation), and a21 
is in H whenever a is in H (H is closed under taking inverses), then H 
is a subgroup of G.

PROOF Since H is nonempty, the operation of H is associative, H is 
closed, and every element of H has an inverse in H, all that remains  
to show is that e is in H. To this end, let a belong to H. Then a21 and 
aa21 5 e are in H.      

When applying the Two-Step Subgroup Test, we proceed exactly as in 
the case of the One-Step Subgroup Test, except we use the assumption 
that a and b have property P to prove that ab has property P and that a21 
has property P.

 EXAMPLE 6 Let G be an Abelian group. Then H 5 {x [ G | |x| is 
finite} is a subgroup of G. Since e1 5 e, H Z u. To apply the Two-Step 
Subgroup Test we assume that a and b belong to H and prove that ab and 
a21 belong to H. Let |a| 5 m and |b| 5 n. Then, because G is Abelian, 
we have (ab)mn 5 (am)n(bn)m 5 enem 5 e. Thus, ab has finite order (this 
does not show that |ab| 5 mn). Moveover, (a21)m 5 (am)21 5 e21 5 e 
shows that a21 has finite order. 
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64 Groups

We next illustrate how to use the Two-Step Subgroup Test by intro-
ducing an important technique for creating new subgroups of Abelian 
groups from existing ones. The method will be extended to some sub-
groups of non-Abelian groups in later chapters.

 EXAMPLE 7 Let G be an Abelian group and H and K be subgroups 
of G. Then HK 5 {hk | h [ H, k [ K} is a subgroup of G. First note 
that e 5 ee belongs to HK because e is in both H and K. Now suppose 
that a and b are in HK. Then by definition of H there are elements h1,  
h2 [ H and k1, k2 [ K such that a 5 h1k1 and b 5 h2k2. We must prove 
that ab [ HK and a21 [ HK. Observe that because G is Abelian and H 
and K are subgroups of G, we have ab 5 h1k1h2k2 5 (h1h2)(k1k2) [ HK. 
Likewise, a21 5 (h1k1)

21 5 k1
21h1

21 5 h1
21k1

21 [ HK. 

How do you prove that a subset of a group is not a subgroup? Here are 
three possible ways, any one of which guarantees that the subset is not a 
subgroup:

 1. Show that the identity is not in the set.
 2. Exhibit an element of the set whose inverse is not in the set.
 3. Exhibit two elements of the set whose product is not in the set.

 EXAMPLE 8 Let G be the group of nonzero real numbers un-
der multiplication, H 5 {x [ G | x 5 1 or x is irrational} and K 5  
{x [ G | x $ 1}. Then H is not a subgroup of G, since 22 [ H  
but 22 ? 22 5 2 o H. Also, K is not a subgroup, since 2 [ K but  
221 o K.  

When dealing with finite groups, it is easier to use the following sub-
group test.

 Theorem 3.3 Finite Subgroup Test

Let H be a nonempty finite subset of a group G. If H is closed under 
the operation of G, then H is a subgroup of G.

PROOF In view of Theorem 3.2, we need only prove that a21 [ H when-
ever a [ H. If a 5 e, then a21 5 a and we are done. If a Z e, consider 
the sequence a, a2, . . . . By closure, all of these elements belong to H. 
Since H is finite, not all of these elements are distinct. Say ai 5 aj and  
i . j. Then, ai2j 5 e; and since a Z e, i 2 j . 1. Thus, aai2j21 5 ai2j 5 e  
and, therefore, ai2j21 5 a21. But i 2 j 2 1 $ 1 implies ai2j21 [ H and 
we are done.     
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653 | Finite Groups; Subgroups

Examples of Subgroups
The proofs of the next few theorems show how our subgroup tests work. 
We first introduce an important notation. For any element a from a 
group, we let kal denote the set {an | n [ Z}. In particular, observe that 
the exponents of a include all negative integers as well as 0 and the 
positive integers (a0 is defined to be the identity).

 Theorem 3.4 kal Is a Subgroup

Let G be a group, and let a be any element of G. Then, kal is a sub
group of G.

PROOF Since a [ kal, kal is not empty. Let an, am [ kal. Then,  
an(am)21 5 an2m [ kal; so, by Theorem 3.1, kal is a subgroup of G. 

The subgroup kal is called the cyclic subgroup of G generated by a. In 
the case that G 5 kal, we say that G is cyclic and a is a generator of G. 
(A cyclic group may have many generators.) Notice that although the 
list . . . , a22, a21, a0, a1, a2, . . . has infinitely many entries, the set  
{an | n [ Z} might have only finitely many elements. Also note that, 
since aiaj 5 ai1j 5 aj1i 5 ajai, every cyclic group is Abelian.

 EXAMPLE 9 In U(10), k3l 5 {3, 9, 7, 1} 5 U(10), for 31 5 3,  
32 5 9, 33 5 7, 34 5 1, 35 5 34 ? 3 5 1 ? 3, 36 5 34 ? 32 5 9, . . . ; 321 
5 7 (since 3 ? 7 5 1), 322 5 9, 323 5 3, 324 5 1, 325 5 324 ? 321 5  
1 ? 7, 326 5 324 ? 322 5 1 ? 9 5 9, . . . .     

 EXAMPLE 10 In Z10, k2l 5 {2, 4, 6, 8, 0}. Remember, an means na 
when the operation is addition.     

 EXAMPLE 11 In Z, k21l 5 Z. Here each entry in the list . . . , 22(21), 
21(21), 0(21), 1(21), 2(21), . . . represents a distinct group element.    
 
 EXAMPLE 12 In Dn, the dihedral group of order 2n, let R denote a rota-

tion of 360/n degrees. Then,

Rn 5 R360° 5 e,    Rn11 5 R,    Rn12 5 R2, . . . .

Similarly, R21 5 Rn21, R22 5 Rn22, . . . , so that kRl 5 {e, R, . . . , Rn21}. 
We see, then, that the powers of R “cycle back” periodically with period n.  
Visually, raising R to successive positive powers is the same as moving 
counterclockwise around the following circle one node at a time, 
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whereas raising R to successive negative powers is the same as moving 
around the circle clockwise one node at a time.

 

Rn 5 e

Rn11 5 R R21 5 Rn21 

R22 5 Rn22 Rn12 5 R2

 

In Chapter 4 we will show that |kal| 5 |a|; that is, the order of the 
subgroup generated by a is the order of a itself. (Actually, the definition 
of |a| was chosen to ensure the validity of this equation.)

For any element a of a group G, it is useful to think of kal as the 
smallest subgroup of G containing a. This notion can be extended to any 
collection S of elements from a group G by defining kSl as the  
subgroup of G with the property that kSl contains S and if H is any  
subgroup of G containing S, then H also contains kSl Thus, kSl is the 
smallest subgroup of G that contains S. The set kSl is called the sub-
group generated by S. We illustrate this concept in the next example. 

 EXAMPLE 13 
In Z20 k8,14l 5 {0, 2, 4,…, 18} 5 k2l. 
In Z k8, 13l 5 Z. 
In D4 kH, Vl 5 {H, H2, V, HV} 5 {R0, R180, H, V}. 
In D4 kR90, Vl 5 {R90, R90

2, R90
3, R90

4, V, R90V, R90
2V, R90

3V} 5 D4
In R, the group of real numbers under addition, k2, p, 22l 5 {2a 1 bp 1  
c22 | a, b, c [ Z}.
In C, the group of complex numbers under addition, k1, il 5 {a 1 bi |  
a, b [ Z} (This group is called the “Gaussian integers”);
In C*, the group of nonzero complex numbers under multiplication, k1, il 5  
{1, 21, i, –i} 5 kil. 

We next consider one of the most important subgroups.

Definition Center of a Group
The center, Z(G ), of a group G is the subset of elements in G that  
commute with every element of G. In symbols,

Z(G) 5 {a [ G | ax 5 xa for all x in G}.

[The notation Z(G) comes from the fact that the German word for  
center is Zentrum. The term was coined by J. A. de Séguier in 1904.]
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673 | Finite Groups; Subgroups

 Theorem 3.5 Center Is a Subgroup

The center of a group G is a subgroup of G.

PROOF For variety, we shall use Theorem 3.2 to prove this result. 
Clearly, e [ Z(G), so Z(G) is nonempty. Now, suppose a, b [ Z(G). 
Then (ab)x 5 a(bx) 5 a(xb) 5 (ax)b 5 (xa)b 5 x(ab) for all x in G; and, 
therefore, ab [ Z(G).

Next, assume that a [ Z(G). Then we have ax 5 xa for all x in G. 
What we want is a21x 5 xa21 for all x in G. Informally, all we need do to 
obtain the second equation from the first one is simultaneously to bring 
the a’s across the equals sign:

ax 5 xa

becomes xa21 5 a21x. (Be careful here; groups need not be commuta-
tive. The a on the left comes across as a21 on the left, and the a on the 
right comes across as a21 on the right.) Formally, the desired equation 
can be obtained from the original one by multiplying it on the left and 
right by a21, like so:

a21(ax)a21 5 a21(xa)a21,
(a21a)xa21 5 a21x(aa21),

exa21 5 a21xe,
xa21 5 a21x.

This shows that a21 [ Z(G) whenever a is.     

For practice, let’s determine the centers of the dihedral groups.

 EXAMPLE 14 For n $ 3,

Z1Dn2 � e 5R0, R1806 when n is even,

5 5R06 when n is odd.

To verify this, first observe that since every rotation in Dn is a power 
of R360/n, rotations commute with rotations. We now investigate when a 
rotation commutes with a reflection. Let R be any rotation in Dn and let  
F be any reflection in Dn. Observe that since RF is a reflection we have 
RF 5 (RF )21 5 F21 R21 5 FR21. Thus, it follows that R and F commute 
if and only if FR 5 RF  5 FR21. By cancellation, this holds if and only if 
R 5 R21. But R 5 R21 only when R 5 R0 or R 5 R180, and R180 is in Dn 
only when n is even. So, we have proved that Z(Dn) 5 {R0} when n is 
odd and Z(Dn) 5 {R0, R180} when n is even. 
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Although an element from a non-Abelian group does not necessarily 
commute with every element of the group, there are always some 
 elements with which it will commute. For example, every element a 
commutes with all powers of a. This observation prompts the next defi-
nition and theorem.

Definition Centralizer of a in G
Let a be a fixed element of a group G. The centralizer of a in G, C(a), is 
the set of all elements in G that commute with a. In symbols, C(a) 5 
{g [ G | ga 5 ag}.

 EXAMPLE 15 In D4, we have the following centralizers:

 C(R0) 5 D4 5 C(R180),
 C(R90) 5 {R0, R90, R180, R270} 5 C(R270),
 C(H) 5 {R0, H, R180, V} 5 C(V),
 C(D) 5 {R0, D, R180, D9} 5 C(D9).     

Notice that each of the centralizers in Example 15 is actually a sub-
group of D4. The next theorem shows that this was not a coincidence.

 Theorem 3.6 C(a) Is a Subgroup

For each a in a group G, the centralizer of a is a subgroup of G.

PROOF A proof similar to that of Theorem 3.5 is left to the reader to 
supply (Exercise 43).     

Notice that for every element a of a group G, Z(G) # C(a). Also, 
 observe that G is Abelian if and only if C(a) 5 G for all a in G.

Exercises

The purpose of proof is to understand, not to verify.
Arnold Ross

  1. For each group in the following list, find the order of the group and 
the order of each element in the group. What relation do you see 
between the orders of the elements of a group and the order of the 
group?

Z12,    U(10),    U(12),    U(20),    D4
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693 | Finite Groups; Subgroups

  2. Let Q be the group of rational numbers under addition and let Q* 
be the group of nonzero rational numbers under multiplication. 
In Q, list the elements in k1

2l. In Q*, list the elements in k1
2l.

  3. Let Q and Q* be as in Exercise 2. Find the order of each element in 
Q and in Q*.

  4. Prove that in any group, an element and its inverse have the same 
order.

  5. Without actually computing the orders, explain why the two ele-
ments in each of the following pairs of elements from Z30 must have 
the same order: {2, 28}, {8, 22}. Do the same for the following 
pairs of elements from U(15): {2, 8}, {7, 13}.

  6. In the group Z12, find |a|, |b|, and |a 1 b| for each case.
 a. a 5 6, b 5 2
 b. a 5 3, b 5 8
 c. a 5 5, b 5 4

Do you see any relationship between |a|, |b|, and |a 1 b|?
  7. If a, b, and c are group elements and |a| 5 6, |b| 5 7, express 

(a4c22b4)21 without using negative exponents.
  8. What can you say about a subgroup of D3 that contains R240 and a 

reflection F? What can you say about a subgroup of D3 that con-
tains two reflections?

  9. What can you say about a subgroup of D4 that contains R270 and a 
reflection? What can you say about a subgroup of D4 that contains 
H and D? What can you say about a subgroup of D4 that contains H 
and V?

 10. How many subgroups of order 4 does D4 have?
 11. Determine all elements of finite order in R*, the group of nonzero 

real numbers under multiplication.
 12. Complete the statement “A group element x is its own inverse if and 

only if |x| �  .”
 13. For any group elements a and x, prove that |xax�1| � |a|. This exercise 

is referred to in Chapter 24.
 14. Prove that if a is the only element of order 2 in a group, then a lies in 

the center of the group.
 15. (1969 Putnam Competition) Prove that no group is the union of two 

proper subgroups. Does the statement remain true if “two” is 
 replaced by “three”?

 16. Let G be the group of symmetries of a circle and R be a rotation of 
the circle of 22 degrees. What is |R|?

57960_ch03_ptg01_060-074.indd   69 10/26/15   10:34 AM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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 17. For each divisor k . 1 of n, let Uk(n) 5 {x [ U(n) | x mod k 5 1}. 
[For example, U3(21) 5 {1, 4, 10, 13, 16, 19} and U7(21) 5 {1, 8}.] 
List the elements of U4(20), U5(20), U5(30), and U10(30). Prove that 
Uk(n) is a subgroup of U(n). Let H 5 {x [ U(10) | x mod 3 5 1}. Is 
H a subgroup of U(10)? (This exercise is referred to in Chapter 8.)

 18. Suppose that a is a group element and a6 5 e. What are the possi-
bilities for |a|? Provide reasons for your answer.

 19. If a is a group element and a has infinite order, prove that am ? an 
when m ? n.

 20. For any group elements a and b, prove that |ab| � |ba|.
 21. Show that if a is an element of a group G, then |a| # |G|.
 22. Show that U(14) 5 k3l 5 k5l. [Hence, U(14) is cyclic.] Is  

U(14) 5 k11l?
 23. Show that U(20) 2 kkl for any k in U(20). [Hence, U(20) is not  

cyclic.]
 24. Suppose n is an even positive integer and H is a subgroup of Zn. 

Prove that either every member of H is even or exactly half of the 
members of H are even.

 25. Let n be a positive even integer and let H be a subgroup of Zn of odd 
order. Prove that every member of H is an even integer.

 26. Prove that for every subgroup of Dn, either every member of the 
subgroup is a rotation or exactly half of the members are rotations.

 27. Let H be a subgroup of Dn of odd order. Prove that every member of  
H is a rotation.

 28. Prove that a group with two elements of order 2 that commute must 
have a subgroup of order 4.

 29. For every even integer n, show that Dn has a subgroup of order 4.
 30. Suppose that H is a proper subgroup of Z under addition and H con-

tains 18, 30, and 40. Determine H.
 31. Suppose that H is a proper subgroup of Z under addition and that H 

contains 12, 30, and 54. What are the possibilities for H?
 32. Suppose that H is a subgroup of Z under addition and that H con-

tains 250 and 350. What are the possibilities for H?
 33. Prove that the dihedral group of order 6 does not have a subgroup of 

order 4.
 34. If H and K are subgroups of G, show that H > K is a subgroup of G. 

(Can you see that the same proof shows that the intersection of any 
number of subgroups of G, finite or infinite, is again a  subgroup of G?)

 35. Let G be a group. Show that Z(G) 5 >a[GC(a). [This means the 
 intersection of all subgroups of the form C(a).]
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713 | Finite Groups; Subgroups

 36. Let G be a group, and let a [ G. Prove that C(a) 5 C(a21).
 37. For any group element a and any integer k, show that C(a) # C(ak). 

Use this fact to complete the following statement: “In a group, if x 
commutes with a, then . . . .” Is the converse true?

 38. Let G be an Abelian group and H 5 {x [ G | |x| is odd}. Prove that 
H is a subgroup of G.

 39. Let G be an Abelian group and H 5 {x [ G | |x| is 1 or even}. Give 
an example to show that H need not be a subgroup of G.

 40. If a and b are distinct group elements, prove that either a2 2 b2 or 
a3 2 b3.

 41. Let S be a subset of a group and let H be the intersection of all sub-
groups of G that contain S.

 a. Prove that kSl 5 H.
 b. If S is nonempty, prove that kSl 5 {s1

n1 s2
n2 … sm

nm | m $ 1, si [ S, 
ni [ Z}. (The si terms need not be distinct.)

 42. In the group Z, find
 a. k8, 14l;
 b. k8, 13l;
 c. k6, 15l;
 d. km, nl;
 e. k12, 18, 45l.

In each part, find an integer k such that the subgroup is kkl.
 43. Prove Theorem 3.6.

 44. If H is a subgroup of G, then by the centralizer C(H) of H we mean 
the set {x [ G | xh 5 hx for all h [ H}. Prove that C(H) is a sub-
group of G.

 45. Must the centralizer of an element of a group be Abelian? Must the 
center of a group be Abelian?

 46. Suppose a belongs to a group and |a| 5 5. Prove that C(a) 5 C(a3). 
Find an element a from some group such that |a| 5 6 and C(a) ? 
C(a3).

 47. Let G be an Abelian group with identity e and let n be some fixed inte-
ger. Prove that the set of all elements of G that satisfy the equation  
xn 5 e is a subgroup of G. Give an example of a group G in which the 
set of all elements of G that satisfy the equation x2 5 e does not form 
a subgroup of G. (This exercise is referred to in Chapter 11.)

 48. In each case, find elements a and b from a group such that |a| 5  
|b| 5 2.

 a. |ab| 5 3   b. |ab| 5 4   c. |ab| 5 5
  Can you see any relationship among |a|, |b|, and |ab|?
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72 Groups

 49. Prove that a group of even order must have an odd number of ele-
ments of order 2.

 50. Consider the elements A � c0 �1

1     0
d and B � c 0 1

�1 �1
d from 

  SL(2, R). Find |A|, |B|, and |AB|. Does your answer surprise you?

 51. Let a be a group element of order n, and suppose that d is a positive 
divisor of n. Prove that |ad | 5 n/d.

 52. Give an example of elements a and b from a group such that a has 
finite order, b has infinite order and ab has finite order.

 53. Consider the element A � c1 1

0 1
d  in SL(2, R). What is the order of 

  A? If we view A � c1 1

0 1
d  as a member of SL(2, Zp) (p is a prime), 

  what is the order of A?
 54. For any positive integer n and any angle u, show that in the group 

SL(2, R),

c cos u � sin u

sin u      cos u
d

n

� c cos nu � sin nu

sin nu      cos nu
d .

Use this formula to find the order of

c cos 60� � sin 60�

sin 60�      cos 60�
d  and c cos 22� � sin 22�

sin 22 �     cos 22�
d .

  (Geometrically, c cos u � sin u

sin u      cos u
d  represents a rotation of the plane 

  u degrees.)
 55. Let G be the symmetry group of a circle. Show that G has elements 

of every finite order as well as elements of infinite order.
 56. In the group R* find elements a and b such that |a| � q, |b| � q 

and |ab| � 2.
 57. Let G be the symmetry group of a circle. Explain why G contains  

Dn for all n.
 58. Prove that the subset of elements of finite order in an Abelian group 

forms a subgroup. (This subgroup is called the torsion subgroup.) Is 
the same thing true for non-Abelian groups?

 59. Let H be a subgroup of a finite group G. Suppose that g belongs to 
G and n is the smallest positive integer such that gn [ H. Prove that 
n divides |g|.
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 60. Compute the orders of the following groups.
  a. U(3), U(4), U(12)
  b. U(5), U(7), U(35)
  c. U(4), U(5), U(20)
  d. U(3), U(5), U(15)
  On the basis of your answers, make a conjecture about the relation-

ship among |U(r)|, |U(s)|, and |U(rs)|.
 61. Let R* be the group of nonzero real numbers under multiplication 

and let H 5 {x [ R* | x2 is rational}. Prove that H is a subgroup of 
R*. Can the exponent 2 be replaced by any positive integer and still 
have H be a subgroup?

 62. Compute |U(4)|, |U(10)|, and |U(40)|. Do these groups provide a 
counterexample to your answer to Exercise 60? If so, revise your 
conjecture.

 63. Find a noncyclic subgroup of order 4 in U(40).
 64. Prove that a group of even order must have an element of order 2.

 65. Let G 5 e  ca b

c d
d ` a, b, c, d [ Z f  under addition. Let H 5

  e ca b

c d
d  [  G | a� b�c� d � 0f .  Prove that H is a subgroup of G.

  What if 0 is replaced by 1?
 66. Let H 5 {A [ GL(2, R) | det A is an integer power of 2}. Show that 

H is a subgroup of GL(2, R).
 67. Let H be a subgroup of R under addition. Let K 5 {2a | a [ H}. 

Prove that K is a subgroup of R* under multiplication.
 68. Let G be a group of functions from R to R*, where the operation of 

G is multiplication of functions. Let H 5 { f  [ G | f(2) 5 1}. Prove 
that H is a subgroup of G. Can 2 be replaced by any real number?

 69. Let G 5 GL(2, R) and H � e ca 0

0 b
d ` a and b are nonzero inte-

gers f
 
under the operation of matrix multiplication. Prove or

  disprove that H is a subgroup of GL(2, R).
 70. Let H 5 {a 1 bi | a, b [ R, ab $ 0}. Prove or disprove that H is a 

subgroup of C under addition.
 71. Let H 5 {a 1 bi | a, b [ R, a2 1 b2 5 1}. Prove or disprove that H 

is a subgroup of C* under multiplication. Describe the elements of 
H geometrically.

 72. Let G be a finite Abelian group and let a and b belong to G. Prove 
that the set Ka, bL 5 {aib j | i, j [ Z} is a subgroup of G. What can 
you say about |Ka, bL| in terms of |a| and |b|?
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 73. Let H be a subgroup of a group G. Prove that the set HZ(G) 5  
{hz | h [ H, z [ Z(G)} is a subgroup of G. This exercise is referred 
to in this chapter.

 74. If H and K are nontrivial subgroups of the rational numbers under 
addition, prove that H > K is nontrivial.

 75. Let H be a nontrival subgroup of the group of rational numbers 
under addition. Prove that H has a nontrivial proper subgroup.

 76. Prove that a group of order n greater than 2 cannot have a subgroup 
of order n – 1.

 77. Let a belong to a group and |a| 5 m. If n is relatively prime to m, 
show that a can be written as the nth power of some element in the 
group.

 78. Let G be a finite group with more than one element. Show that G 
has an element of prime order.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian

Suggested Readings

Ruth Berger, “Hidden Group Structure,” Mathematics Magazine 78 
(2005): 45–48.

In this note, the author investigates groups obtained from U(n) by mul-
tiplying each element by some k in U(n). Such groups have identities 
that are not obvious.

J. Gallian and M. Reid, “Abelian Forcing Sets,” American Mathematical 
Monthly 100 (1993): 580–582.

A set S is called Abelian forcing if the only groups that satisfy (ab)n 5 
anbn for all a and b in the group and all n in S are the Abelian ones. This 
paper characterizes the Abelian forcing sets. It can be downloaded at 
http://www.d.umn.edu/~jgallian/forcing.pdf

Gina Kolata, “Perfect Shuffles and Their Relation to Math,” Science 216 
(1982): 505–506.

This is a delightful nontechnical article that discusses how group theory 
and computers were used to solve a difficult problem about shuffling a 
deck of cards. Serious work on the problem was begun by an under-
graduate student as part of a programming course.
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Cyclic Groups

The notion of a “group,” viewed only 30 years ago as the epitome 
of sophistication, is today one of the mathematical concepts most 
widely used in physics, chemistry, biochemistry, and mathematics 
itself.

Alexey Sosinsky, 1991

Indeed, group theory achieved precisely that–a unity and 
 indivisibility of the patterns underlying a wide range of seemingly 
unrelated disciplines.

Mario Livio, The Equation That Could Not Be Solved

Properties of Cyclic Groups
Recall from Chapter 3 that a group G is called cyclic if there is an ele-
ment a in G such that G 5 {an | n [ Z}. Such an element a is called a 
generator of G. In view of the notation introduced in the preceding 
chapter, we may indicate that G is a cyclic group generated by a by 
writing G 5 kal.

In this chapter, we examine cyclic groups in detail and determine 
their important characteristics. We begin with a few examples.

 EXAMPLE 1 The set of integers Z under ordinary addition is cyclic. 
Both 1 and 21 are generators. (Recall that, when the operation is addi-
tion, 1n is interpreted as

1 1 1 1 ? ? ?  1 1
 

n terms

when n is positive and as

 (21) 1 (21) 1 ? ? ?  1 (21)
 
 |n| terms

when n is negative.)   

4
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 EXAMPLE 2 The set Zn 5 {0, 1, . . . , n 2 1} for n $ 1 is a   
cy  clic group under addition modulo n. Again, 1 and 21 5 n 2 1 are  
generators.     

Unlike Z, which has only two generators, Zn may have many genera-
tors (depending on which n we are given).

 EXAMPLE 3 Z8 5 k1l 5 k3l 5 k5l 5 k7l. To verify, for instance, that  
Z8 5 k3l, we note that k3l 5 {3, 3 1 3, 3 1 3 1 3, . . .} is the set {3, 6, 
1, 4, 7, 2, 5, 0} 5 Z8. Thus, 3 is a gen erator of Z8. On the other hand, 2 
is not a generator, since k2l 5 {0, 2, 4, 6} 2 Z8.  

 EXAMPLE 4 (See Example 11 in Chapter 2.)
U(10) 5 {1, 3, 7, 9} 5 {30, 31, 33, 32} 5 k3l. Also, {1, 3, 7, 9} 5  
{70, 73, 71, 72} 5 k7l. So both 3 and 7 are generators for U(10). 

Quite often in mathematics, a “nonexample” is as helpful in under-
standing a concept as an example. With regard to cyclic groups, U(8) 
serves this purpose; that is, U(8) is not a cyclic group. How can we ver-
ify this? Well, note that U(8) 5 {1, 3, 5, 7}. But

k1l 5 {1},
k3l 5 {3, 1},
k5l 5 {5, 1},
k7l 5 {7, 1},

so U(8) 2 kal for any a in U(8).
With these examples under our belts, we are now ready to tackle  

cyclic groups in an abstract way and state their key properties.

 Theorem 4.1 Criterion for ai 5 a j

Let G be a group, and let a belong to G. If a has infinite order, then  
ai 5 aj if and only if i 5 j. If a has finite order, say, n, then kal 5  
{e, a, a2, . . . , an–1} and ai 5 aj if and only if n divides i – j.

PROOF If a has infinite order, there is no nonzero n such that an is the 
identity. Since ai 5 a j implies ai2j 5 e, we must have i 2 j 5 0, and the 
first statement of the theorem is proved.

Now assume that |a| 5 n. We will prove that kal 5 {e, a, . . . , an21}. 
Certainly, the elements e, a, . . . , an21 are in kal.
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Now, suppose that ak is an arbitrary member of kal. By the division 
algorithm, there exist integers q and r such that

k 5 qn 1 r  with  0 # r , n.

Then ak 5 aqn1r 5 aqnar 5 (an)qar 5 ear 5 ar, so that ak [ {e, a,  
a2, . . . , an21}. This proves that kal 5 {e, a, a2, . . . , an21}.

Next, we assume that ai 5 aj and prove that n divides i 2 j. We  begin 
by observing that ai 5 aj implies ai2j 5 e. Again, by the division algo-
rithm, there are integers q and r such that

i 2 j 5 qn 1 r    with    0 # r , n.

Then ai2j 5 aqn1r, and therefore e 5 ai2j 5 aqn1r 5 (an)qar 5 eqar 5  
ear 5 ar. Since n is the least positive integer such that an is the identity, 
we must have r 5 0, so that n divides i 2 j.

Conversely, if i 2 j 5 nq, then ai2j 5 anq 5 eq 5 e, so that  
ai 5 aj. 

Theorem 4.1 reveals the reason for the dual use of the notation and 
terminology for the order of an element and the order of a group.

 Corollary 1 |a| 5 |kal|

For any group element a, |a| 5 |kal|.

One special case of Theorem 4.1 occurs so often that it deserves 
 singling out.

 Corollary 2 ak 5 e Implies That |a| Divides k

Let G be a group and let a be an element of order n in G. If ak 5 e, 
then n divides k.

PROOF Since ak 5 e 5 a0, we know by Theorem 4.1 that n divides  
k 2 0. 

Exercises 48 and 50 of Chapter 3 demonstrate that, in general, there 
is no relationship between |ab| and |a| and |b|. However, we have the  
following.

 Corollary 3 Relationship between |ab| and |a||b|

If a and b belong to a finite group and ab 5 ba, then |ab| divides |a||b|.
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PROOF Let |a| 5 m and |b| 5 n. Then (ab)mn 5 (am)n(bn)m 5 enem 5 e. So, 
by Corollary 2 of Theorem 4.1 we have that |ab| divides mn. 

Theorem 4.1 and its corollaries for the case |a| 5 6 are illustrated in 
Figure 4.1.

... a–6 = a0 = a6 ...

... a–5 = a = a7...

... a–4 = a2 = a8 ...

... a–3 = a3 = a9...

... a–2 = a4 = a10...

... a–1 = a5 = a11...

Figure 4.1

What is important about Theorem 4.1 in the finite case is that it says 
that multiplication in kal is essentially done by addition modulo n. That 
is, if (i 1 j) mod n 5 k, then aia j 5 ak. Thus, no matter what group G is, 
or how the element a is chosen, multiplication in kal works the same as 
addition in Zn whenever |a| 5 n. Similarly, if a has infinite order, then 
multiplication in kal works the same as addition in Z, since aia j 5 ai1j 
and no modular arithmetic is done.

For these reasons, the cyclic groups Zn and Z serve as prototypes for 
all cyclic groups, and algebraists say that there is essentially only one 
cyclic group of each order. What is meant by this is that, although there 
may be many different sets of the form {an | n [ Z}, there is  essentially 
only one way to operate on these sets. Algebraists do not really care 
what the elements of a set are; they care only about the  algebraic prop-
erties of the set—that is, the ways in which the elements of a set can be 
combined. We will return to this theme in the chapter on isomorphisms 
(Chapter 6).

The next theorem provides a simple method for computing |ak| 
knowing only |a|, and its first corollary provides a simple way to tell 
when kail 5 kajl.

 Theorem 4.2 kakl 5 kagcd(n,k)l and |ak| 5 n/gcd(n, k)

Let a be an element of order n in a group and let k be a positive 
integer. Then kakl 5 kagcd(n,k)l and |ak| 5 n/gcd(n, k).

PROOF To simplify the notation, let d 5 gcd(n, k) and let k 5 dr. Since  
ak 5 (ad)r, we have by closure that kakl # kadl. By Theorem 0.2 (the gcd 

78 Groups

57960_ch04_ptg01_075-092.indd   78 10/26/15   3:21 PM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



theorem), there are integers s and t such that d 5 ns 1 kt. So, ad 5 ans1kt 5  
ansakt 5 (an)s(ak)t 5 e(ak)t 5 (ak)t [ kakl. This proves kadl # kakl. So, we 
have verified that kakl 5 kagcd(n,k)l.

We prove the second part of the theorem by showing first that |ad| 5  
n/d for any divisor d of n. Clearly, (ad)n/d 5 an 5 e, so that |ad| # n/d. On  
the other hand, if i is a positive integer less than n/d, then (ad)i 2 e by 
 de finition of |a|. We now apply this fact with d 5 gcd(n, k) to obtain |ak| 5  
|kakl| 5 |kagcd(n,k)l| 5 |agcd(n,k)| 5 n/gcd(n, k).  

By doing simple arithmetic the next two examples illustrate how The-
orem 4.2 allows us to easily list the elements of cyclic subgroups and 
compute the orders of elements of a cyclic group in cases where the ele-
ments are inconvenient to work with.

 EXAMPLE 5 For |a| � 30 we find ka26l, ka17l, ka18l and |a26|, |a17|, and |a18|.  
Since gcd(30,26) 5 2, we have ka26l � ka2l � 5e, a2, a4, a6, p , a286  
and |a26| � |a2| � 30/2 � 15. Since gcd(30,17) 5 1, we have ka17l �
ka1l � 5e, a, a2, a3, p , a296 and |a17| � |a1| � 30/1 � 30. Since 
gcd(30,18) 5 6, we have ka18l � ka6l � 5e, a6, a12, a18, a246 and |a18| �
|a6| � 30/6 � 5. 

For large values of n and k we find gcd1n, k2 by using the prime-power 
factorization of n and k.

 EXAMPLE 6 For |a| � 1000 we find ka185l, ka400l, ka62l and |a185|, |a400|, 
and |a62|. Since gcd(1000,185) 5 gcd12353, 225 ? 172 � 225 � 20 we 
have ka185l � ka20l � 5e, a20, a40, a60, p , a9806 and |a185| � |a20| �
1000/20 � 50. Since gcd(1000,400) = gcd12353, 24522 � 2352 � 200 
we have ka400l � ka200l � 5e, a200, a400, a600, a8006 and |a400| � |a200| �
1000/200 � 5. Since gcd(1000, 62) 5 gcd12353, 2 ? 312 � 2 we have 
ka62l � ka2l � 5e, a2, a4, a6, p , a9986 and |a62| � |a2| �1000/2 � 500. 

Theorem 4.2 establishes an important relationship between the order 
of an element in a finite cyclic group and the order of the group.

 Corollary 1 Orders of Elements in Finite Cyclic Groups

In a finite cyclic group, the order of an element divides the order  
of the group.

 Corollary 2 Criterion for kail 5 kajl and |ai| 5 |aj|

Let |a| 5 n. Then kail 5 kajl if and only if gcd(n, i) 5 gcd(n, j),  
and |ai| 5 |aj| if and only if gcd(n, i) 5 gcd(n, j) .
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PROOF Theorem 4.2 shows that kail 5 kagcd(n,i)l and ka jl 5 kagcd(n,j)l, so that 
the proof reduces to proving that kagcd(n,i)l 5 kagcd(n,j)l if and only if gcd(n, i) 5  
gcd(n,  j). Certainly, gcd(n, i) 5 gcd(n, j) implies that kagcd(n,i)l 5  
kagcd(n, j)l. On the other hand, kagcd(n,i)l 5 kagcd(n,j)l  implies that |agcd(n,i)| 5 
|agcd(n,j)|, so that by the second conclusion of Theorem 4.2, we have  
n/gcd(n, i) 5 n/gcd(n, j), and therefore gcd(n, i) 5 gcd(n, j). 

The second part of the corollary follows from the first part and 
Corollary 1 of Theorem 4.1.

The next two corollaries are important special cases of the preceding 
corollary.

 Corollary 3 Generators of Finite Cyclic Groups

Let |a| 5 n. Then kal 5 kajl  if and only if gcd(n, j) 5 1, and  
|a| 5 |kajl| if and only if gcd(n, j) 5 1.

 Corollary 4 Generators of Zn

An integer k in Zn  is a generator of Zn if and only if gcd(n, k) 5 1.

The value of Corollary 3 is that once one generator of a cyclic group has 
been found, all generators of the cyclic group can easily be determined. For 
example, consider the subgroup of all rotations in D6. Clearly, one genera-
tor is R60. And, since |R60| 5 6, we see by Corollary 3 that the only other 
generator is (R60)

5 5 R300. Of course, we could have readily deduced this 
information without the aid of Corollary 3 by direct calculations. So, to il-
lustrate the real power of Corollary 3, let us use it to find all generators of 
the cyclic group U(50). First, note that direct computations show that 
|U(50)| 5 20 and that 3 is one of its generators. Thus, in view of Corollary 
3, the complete list of generators for U(50) is

 3 mod 50 5 3, 311 mod 50 5 47,
 33 mod 50 5 27, 313 mod 50 5 23,
 37 mod 50 5 37, 317 mod 50 5 13,
 39 mod 50 5 33, 319 mod 50 5 17.

Admittedly, we had to do some arithmetic here, but it certainly entailed 
much less work than finding all the generators by simply determining 
the order of each element of U(50) one by one.

The reader should keep in mind that Theorem 4.2 and its corollaries 
apply only to elements of finite order.
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Classification of Subgroups 
of Cyclic Groups

The next theorem tells us how many subgroups a finite cyclic group has 
and how to find them.

 Theorem 4.3 Fundamental Theorem of Cyclic Groups

Every subgroup of a cyclic group is cyclic. Moreover, if |kal| 5 n, 
then the order of any subgroup of kal is a divisor of n; and, for each 
positive divisor k of n, the group kal has exactly one subgroup of 
order k—namely, kan/kl.

Before we prove this theorem, let’s see what it means. Understand- 
ing what a theorem means is a prerequisite to understanding its proof. 
Suppose G 5 kal and G has order 30. The first and second parts of the 
theorem say that if H is any subgroup of G, then H has the form ka30/kl for 
some k that is a divisor of 30. The third part of the theorem says that G 
has one subgroup of each of the orders 1, 2, 3, 5, 6, 10, 15, and 30—and 
no others. The proof will also show how to find these subgroups.

PROOF Let G 5 kal and suppose that H is a subgroup of G. We must 
show that H is cyclic. If it consists of the identity alone, then clearly H is 
cyclic. So we may assume that H 2 {e}. We now claim that H contains 
an element of the form at, where t is positive. Since G 5 kal, every 
 element of H has the form at; and when at belongs to H with t , 0, then 
a2t belongs to H also and 2t is positive. Thus, our claim is verified. Now 
let m be the least positive integer such that am [ H. By closure, kaml # H. 
We next claim that H 5 kaml. To prove this claim, it suffices to let b be an 
arbitrary member of H and show that b is in kaml. Since b [ G 5 kal, we 
have b 5 ak for some k. Now, apply the division algorithm to k and m to 
obtain integers q and r such that k 5 mq 1 r where 0 # r , m. Then ak 5 
amq1r 5 amqar, so that ar 5 a2mqak. Since ak 5 b [ H and a2mq 5 (am)2q 
is in H also, ar [ H. But, m is the least positive integer such that am [ H, 
and 0 # r , m, so r must be 0. Therefore, b 5 ak 5 amq 5  
(am)q [ kaml. This proves the assertion of the theorem that every subgroup 
of a cyclic group is cyclic.

To prove the next portion of the theorem, suppose that |kal| 5 n and 
H is any subgroup of kal. We have already shown that H 5 kaml, where 
m is the least positive integer such that am [ H. Using e 5 b 5 an as in 
the preceding paragraph, we have n 5 mq.
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Finally, let k be any positive divisor of n. We will show that kan/kl is the 
one and only subgroup of kal of order k. From Theorem 4.2, we see that 
kan/kl has order n/gcd(n, n/k) 5 n/(n/k) 5 k. Now let H be any  subgroup of 
kal of order k. We have already shown above that H 5 kaml, where m is a di-
visor of n. Then m 5 gcd(n, m) and k 5 |am| 5 |agcd(n,m)| 5 n/gcd (n, m) 5  
n/m. Thus, m 5 n/k and H 5 kan/kl. 

Returning for a moment to our discussion of the cyclic group kal, 
where a has order 30, we may conclude from Theorem 4.3 that the sub-
groups of kal are precisely those of the form kaml, where m is a divisor 
of 30. Moreover, if k is a divisor of 30, the subgroup of order k is  
ka30/kl. So the list of subgroups of kal is:

 kal 5 {e, a, a2, . . . , a29} order 30,
 ka2l 5 {e, a2, a4, . . . , a28} order 15,
 ka3l 5 {e, a3, a6, . . . , a27} order 10,

ka5l 5 {e, a5, a10, a15, a20, a25} order 6,
 ka6l 5 {e, a6, a12, a18, a24} order 5,
 ka10l 5 {e, a10, a20} order 3,
 ka15l 5 {e, a15} order 2,
 ka30l 5 {e} order 1.

In general, if kal has order n and k divides n, then kan/kl is the unique 
subgroup of order k.

Taking the group in Theorem 4.3 to be Zn and a to be 1, we obtain the 
following important special case.

 Corollary Subgroups of Zn

For each positive divisor k of n, the set kn/kl is the unique subgroup 
of Zn of order k; moreover, these are the only subgroups of Zn.

 EXAMPLE 7 The list of subgroups of Z30 is

 k1l 5 {0, 1, 2, . . . , 29} order 30,
 k2l 5 {0, 2, 4, . . . , 28} order 15,
 k3l 5 {0, 3, 6, . . . , 27} order 10,
 k5l 5 {0, 5, 10, 15, 20, 25} order 6,
 k6l 5 {0, 6, 12, 18, 24} order 5,
k10l 5 {0, 10, 20} order 3,
k15l 5 {0, 15} order 2,
k30l 5 {0} order 1.     
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Theorems 4.2 and 4.3 provide a simple way to find all the generators 
of the subgroups of a finite cyclic group.

 EXAMPLE 8 To find the generators of the subgroup of order 9 in Z36, 
we observe that 36/9 5 4 is one generator. To find the others, we have 
from Corollary 3 of Theorem 4.2 that they are all elements of Z36 of the 
form 4j, where gcd(9, j) 5 1. Thus,

k4 ? 1l 5 k4 ? 2l 5 k4 ? 4l 5 k4 ? 5l 5 k4 ? 7l 5 k4 ? 8l.

In the generic case, to find all the subgroups of kal of order 9 where  
|a| 5 36, we have 

k(a4)1l 5 k(a4)2l 5 k(a4)4l 5 k(a4)5l 5 k(a4)7l 5 k(a4)8l.

In particular, note that once you have the generator an/d for the subgroup 
of order d where d is a divisor of |a| 5 n, all the generators of kadl have 
the form (ad) j where j [ U(d). 

By combining Theorems 4.2 and 4.3, we can easily count the number 
of elements of each order in a finite cyclic group. For convenience, we 
introduce an important number-theoretic function called the Euler phi 
function. Let f(1) 5 1, and for any integer n . 1, let f(n) denote the 
number of positive integers less than n and relatively prime to n. Notice 
that by definition of the group U(n), |U(n)| 5 f(n). The first 12 values 
of f(n) are given in Table 4.1.

Table 4.1 Values of f(n)

n 1 2 3 4 5 6 7 8 9 10 11 12

f(n) 1 1 2 2 4 2 6 4 6 4 10 4

 Theorem 4.4 Number of Elements of Each Order in a Cyclic Group

If d is a positive divisor of n, the number of elements of order d in  
a cyclic group of order n is f(d).

PROOF By Theorem 4.3, the group has exactly one subgroup of order d—
call it kal. Then every element of order d also generates the subgroup kal 
and, by Corollary 3 of Theorem 4.2, an element ak generates kal if and only 
if gcd(k, d ) 5 1. The number of such elements is precisely f(d). 

Notice that for a finite cyclic group of order n, the number of  elements 
of order d for any divisor d of n depends only on d. Thus, Z8, Z640, and 
Z80000 each have f(8) 5 4 elements of order 8.
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Although there is no formula for the number of elements of each 
 order for arbitrary finite groups, we still can say something important in 
this regard.

 Corollary Number of Elements of Order d in a Finite Group

In a finite group, the number of elements of order d is a multiple  
of f(d).

PROOF If a finite group has no elements of order d, the statement is true, 
since f(d) divides 0. Now suppose that a [ G and |a| 5 d. By Theorem 
4.4, we know that kal has f(d) elements of order d. If all  elements of or-
der d in G are in kal, we are done. So, suppose that there is an element b 
in G of order d that is not in kal. Then, kbl also has f(d)  elements of order 
d. This means that we have found 2f(d) elements of order d in G pro-
vided that kal and kbl have no elements of order d in common. If there is 
an element c of order d that belongs to both kal and kbl, then we have  
kal 5 kcl 5 kbl, so that b [ kal, which is a contradiction. Continuing in 
this fashion, we see that the number of elements of order d in a finite 
group is a multiple of f(d).  

On its face, the value of Theorem 4.4 and its corollary seem limited 
for large values of n, because it is tedious to determine the number of 
positive integers less than or equal to n and relatively prime to n by 
 examining them one by one. However, the following properties of the 
f function make computing f (n) simple: For any prime p, f (pn) 5 
pn � pn�1

 (see Exercise 65) and for relatively prime m and n, f(mn) 5 
f (m) f (n). Thus, f (40) 5 f (8) f (5) 5 4 ? 4 5 16; f (75) 5 f (52)
f (3)  5 (25 2 5) ? 2 5 40.

The relationships among the various subgroups of a group can be 
 illustrated with a subgroup lattice of the group. This is a diagram that in-
cludes all the subgroups of the group and connects a subgroup H at one 
level to a subgroup K at a higher level with a sequence of line segments 
if and only if H is a proper subgroup of K. Although there are many 
ways to draw such a diagram, the connections between the  subgroups 
must be the same. Typically, one attempts to present the diagram in an 
eye-pleasing fashion. The lattice diagram for Z30 is shown in Figure 4.2. 
Notice that k10l is a subgroup of both k2l and k5l, but k6l is not a sub-
group of k10l.
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<10>

<0>

<6> <15>

<3>

<5>
<2>

<1>

Figure 4.2 Subgroup lattice of Z30.

The precision of Theorem 4.3 can be appreciated by comparing the 
ease with which we are able to identify the subgroups of Z30 with that of 
doing the same for, say, U(30) or D30. And these groups have relatively 
simple structures among noncyclic groups.

We will prove in Chapter 7 that a certain portion of Theorem 4.3 
 extends to arbitrary finite groups; namely, the order of a subgroup di-
vides the order of the group itself. We will also see, however, that a finite 
group need not have exactly one subgroup corresponding to each divisor 
of the order of the group. For some divisors, there may be none at all, 
whereas for other divisors, there may be many. Indeed, D4, the dihedral 
group of order 8, has five subgroups of order 2 and three of order 4.

One final remark about the importance of cyclic groups is appropri-
ate. Although cyclic groups constitute a very narrow class of finite 
groups, we will see in Chapter 11 that they play the role of building 
blocks for all finite Abelian groups in much the same way that primes 
are the building blocks for the integers and that chemical elements are 
the building blocks for the chemical compounds.

Exercises

It is not unreasonable to use the hypothesis.
Arnold Ross

  1. Find all generators of Z6, Z8, and Z20.
  2. Suppose that kal, kbl, and kcl are cyclic groups of orders 6, 8, and 

20, respectively. Find all generators of kal, kbl, and kcl.
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  3. List the elements of the subgroups k20l and k10l in Z30. Let a be a 
group element of order 30. List the elements of the subgroups ka20l 
and ka10l.

  4. List the elements of the subgroups k3l and k15l in Z18. Let a be a 
group element of order 18. List the elements of the subgroups ka3l 
and ka15l.

  5. List the elements of the subgroups k3l and k7l in U(20).
  6. What do Exercises 3, 4, and 5 have in common? Try to make a gen-

eralization that includes these three cases.
  7. Find an example of a noncyclic group, all of whose proper sub-

groups are cyclic.
  8. Let a be an element of a group and let |a| 5 15. Compute the orders 

of the following elements of G.
  a. a3, a6, a9, a12

  b. a5, a10

  c. a2, a4, a8, a14

  9. How many subgroups does Z20 have? List a generator for each of 
these subgroups. Suppose that G 5 kal and |a| 5 20. How many 
subgroups does G have? List a generator for each of these sub-
groups.

 10. In Z24, list all generators for the subgroup of order 8. Let G 5 kal 
and let |a| 5 24. List all generators for the subgroup of order 8.

 11. Let G be a group and let a [ G. Prove that ka21l 5 kal.
 12. In Z, find all generators of the subgroup k3l. If a has infinite order, 

find all generators of the subgroup ka3l.
 13. In Z24, find a generator for k21l > k10l. Suppose that |a| 5 24. Find 

a generator for ka21l > ka10l. In general, what is a generator for the 
subgroup kaml > kanl?

 14. Suppose that a cyclic group G has exactly three subgroups: G  itself, 
{e}, and a subgroup of order 7. What is |G|? What can you say if 7 
is replaced with p where p is a prime?

 15. Let G be an Abelian group and let H 5 {g [ G | |g| divides 12}. 
Prove that H is a subgroup of G. Is there anything special about 12 
here? Would your proof be valid if 12 were replaced by some other 
positive integer? State the general result.

 16. Complete the statement: |a| 5 |a2| if and only if |a| . . . .
 17. Complete the statement: |a2|5 |a12| if and only if . . . .
 18. Let a be a group element and |a| � q. Complete the following 

statement: |ai| � |aj| if and only if . . . . 
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 19. If a cyclic group has an element of infinite order, how many ele-
ments of finite order does it have?

 20. Suppose that G is an Abelian group of order 35 and every element 
of G satisfies the equation x35 5 e. Prove that G is cyclic. Does your 
argument work if 35 is replaced with 33?

 21. Let G be a group and let a be an element of G.
  a. If a12 5 e, what can we say about the order of a?
  b. If am 5 e, what can we say about the order of a?
  c.  Suppose that |G| 5 24 and that G is cyclic. If a8 2 e and a12 2 e, 

show that kal 5 G.
 22. Prove that a group of order 3 must be cyclic.
 23. Let Z denote the group of integers under addition. Is every subgroup 

of Z cyclic? Why? Describe all the subgroups of Z. Let a be a group 
element with infinite order. Describe all subgroups of kal.

 24. For any element a in any group G, prove that kal is a subgroup of 
C(a) (the centralizer of a).

 25. If d is a positive integer, d 2 2, and d divides n, show that the num-
ber of elements of order d in Dn is f(d ). How many elements of 
order 2 does Dn have?

 26. Find all generators of Z. Let a be a group element that has infinite 
order. Find all generators of kal.

 27. Prove that C*, the group of nonzero complex numbers under multipli-
cation, has a cyclic subgroup of order n for every positive integer n.

 28. Let a be a group element that has infinite order. Prove that kail 5 
kajl if and only if i 5 6j.

 29. List all the elements of order 8 in Z8000000. How do you know your list 
is complete? Let a be a group element such that |a| � 8000000. List 
all elements of order 8 in kal. How do you know your list is  complete?

 30. Suppose that G is a group with more than one element. If the only 
subgroups of G are 5e6 and G, prove that G is cyclic and has prime 
order.

 31. Let G be a finite group. Show that there exists a fixed positive integer 
n such that an 5 e for all a in G. (Note that n is independent of a.)

 32. Determine the subgroup lattice for Z12. Generalize to Zp2q, where p 
and q are distinct primes.

 33. Determine the subgroup lattice for Z8. Generalize to Zpn, where p is 
a prime and n is some positive integer.

 34. Prove that a finite group is the union of proper subgroups if and 
only if the group is not cyclic.
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 35. Show that the group of positive rational numbers under multiplica-
tion is not cyclic. Why does this prove that the group of nonzero 
rationals under multiplication is not cyclic?

 36. Consider the set {4, 8, 12, 16}. Show that this set is a group under 
multiplication modulo 20 by constructing its Cayley table. What 
is the identity element? Is the group cyclic? If so, find all of its 
generators.

 37. Give an example of a group that has exactly 6 subgroups (including 
the trivial subgroup and the group itself). Generalize to exactly n 
subgroups for any positive integer n.

 38. Let m and n be elements of the group Z. Find a generator for the 
group kml > knl.

 39. Suppose that a and b are group elements that commute. If |a| is 
 finite and |b| infinite, prove that |ab| has infinite order.

 40. Suppose that a and b belong to a group G, a and b commute, and |a| 
and |b| are finite. What are the possibilities for |ab|?

 41. Let a belong to a group and |a| � 100. Find |a98| and |a70|.
 42. Let F and F9 be distinct reflections in D21. What are the possibilities 

for |FF9|?
 43. Suppose that H is a subgroup of a group G and |H| 5 10. If a  

belongs to G and a6 belongs to H, what are the possibilities for |a|?
 44. Which of the following numbers could be the exact number of  

elements of order 21 in a group: 21600, 21602, 21604?
 45. If G is an infinite group, what can you say about the number of  

elements of order 8 in the group? Generalize.
 46. If G is a cyclic group of order n, prove that for every element a in G, 

an � e.
 47. For each positive integer n, prove that C*, the group of nonzero 

complex numbers under multiplication, has exactly f(n) elements 
of order n.

 48. Prove or disprove that H 5 {n [ Z | n is divisible by both 8 and 10} 
is a subgroup of Z. What happens if “divisible by both 8 and 10” is 
changed to “divisible by 8 or 10?”

 49. Suppose that G is a finite group with the property that every non-
identity element has prime order (for example, D3 and D5). If Z(G) 
is not trivial, prove that every nonidentity element of G has the 
same order.

 50. Prove that an infinite group must have an infinite number of  
subgroups.

 51. Let p be a prime. If a group has more than p 2 1 elements of order p, 
why can’t the group be cyclic?
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 52. Suppose that G is a cyclic group and that 6 divides |G|. How many 
elements of order 6 does G have? If 8 divides |G|, how many ele-
ments of order 8 does G have? If a is one element of order 8, list the 
other elements of order 8.

 53. List all the elements of Z40 that have order 10. Let |x| 5 40. List all 
the elements of kxl that have order 10.

 54. Reformulate the corollary of Theorem 4.4 to include the case when 
the group has infinite order.

 55. Determine the orders of the elements of D33 and how many there are 
of each.

 56. When checking to see if k2l � U1252 explain why it is sufficient 
to check that 210 ? 1 and 24 ? 1.

 57. If G is an Abelian group and contains cyclic subgroups of orders 4 
and 5, what other sizes of cyclic subgroups must G contain? 
Generalize.

 58. If G is an Abelian group and contains cyclic subgroups of orders 4 
and 6, what other sizes of cyclic subgroups must G contain? 
Generalize.

 59. Prove that no group can have exactly two elements of order 2.
 60. Given the fact that U(49) is cyclic and has 42 elements, deduce the 

number of generators that U(49) has without actually finding any of 
the generators.

 61. Let a and b be elements of a group. If |a| 5 10 and |b| 5 21, show 
that kal > kbl 5 {e}.

 62. Let a and b belong to a group. If |a| and |b| are relatively prime, 
show that kal > kbl 5 {e}.

 63. Let a and b belong to a group. If |a| 5 24 and |b| 5 10, what are the 
possibilities for |kal > kbl|?

 64. Prove that U(2n) (n $ 3) is not cyclic.
 65. Prove that for any prime p and positive integer n, f 1pn2  5 p

n � pn�1.
 66. Prove that Zn has an even number of generators if n . 2. What does 

this tell you about f(n)?
 67. If |a5| 5 12, what are the possibilities for |a|? If |a4| 5 12, what are 

the possibilities for |a|?
 68. Suppose that |x| 5 n. Find a necessary and sufficient condition on r 

and s such that kxrl # kxsl.
 69. Let a be a group element such that �a� � 48. For each part, find a  

divisor k of 48 such that
  a. ka21l 5 kakl;
  b. ka14l 5 kakl;
  c. ka18l 5 kakl.
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 70. Prove that H � e c1 n

0 1
d  `  n [ Z f  is a cyclic subgroup of  

GL(2, R).
 71. Suppose that |a| and |b| are elements of a group and a and b com-

mute. If |a| � 5 and |b| � 16, prove that |ab| � 80.
 72. Let a and b belong to a group. If |a| 5 12, |b| 5 22, and kal > kbl 2 

{e}, prove that a6 5 b11.
 73. Determine f1812, f1602 and f11052 where f is the Euler phi 

 function.
 74. If n is an even integer prove that f12n2 � 2f1n2.
 75. Let a and b belong to some group. Suppose that �a� � m, �b� � n, 

and m and n are relatively prime. If ak � bk for some integer k, 
prove that mn divides k. Give an example to show that the condition 
that m and n are relatively prime is necessary.

 76. For every integer n greater than 2, prove that the group U 1n2 � 12  
is not cyclic.

 77. (2008 GRE Practice Exam) If x is an element of a cyclic group of 
order 15 and exactly two of x3, x5, and x9 are equal, determine |x13|.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian

Suggested Reading

Deborah L. Massari, “The Probability of Generating a Cyclic Group,”  
Pi Mu Epsilon Journal 7 (1979): 3–6.

In this easy-to-read paper, it is shown that the probability of a randomly 
chosen element from a cyclic group being a generator of the group de-
pends only on the set of prime divisors of the order of the group, and 
not on the order itself. This article, written by an under graduate student, 
received first prize in a Pi Mu Epsilon paper contest.
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James Joseph Sylvester

I really love my subject.
j. j. sylvester

†F. Cajori, Teaching and History of Mathematics in the United States, Washington: Government Printing 
Office, 1890, 265–266.

James Joseph Sylvester was the most  influ - 
ential mathematician in America in the 19th 
century. Sylvester was born on September 3, 
1814, in London and showed his mathemati-
cal genius early. At the age of 14, he studied 
under De Morgan and won several prizes for 
his mathematics, and at the unusually young 
age of 25, he was elected a fellow of the 
Royal Society.

After receiving B.A. and M.A. degrees 
from Trinity College in Dublin in 1841, 
Sylvester began a professional life that was to 
include academics, law, and actuarial careers. 
In 1876, at the age of 62, he was appointed to 
a prestigious position at the newly founded 
Johns Hopkins University. During his seven 
years at Johns Hopkins, Sylvester pursued re-
search in pure mathematics with tremendous 
vigor and enthusiasm. He also founded the 
American Journal of Mathematics, the first 
journal in America devoted to mathematical 
research. Sylvester returned to England in 
1884 to a professorship at Oxford, a position 
he held until his death on March 15, 1897.

Sylvester’s major contributions to mathe-
matics were in the theory of equations,  matrix 
theory, determinant theory, and invariant the-
ory (which he founded with Cayley). His 
writings and lectures—flowery and eloquent, 
pervaded with poetic flights, emotional ex-
pressions, bizarre utterances, and para-
doxes—reflected the personality of this sen-
sitive, excitable, and enthusiastic man. We 
quote three of his students.† E. W. Davis com-
mented on Sylvester’s teaching methods.

Sylvester’s methods! He had none. “Three 
lectures will be delivered on a New Universal 
Algebra,” he would say; then, “The course 
must be extended to twelve.” It did last all the 
rest of that year. The following year the 
course was to be Substitutions-Theorie, by 
Netto. We all got the text. He lectured about 
three times, following the text closely and 
stopping sharp at the end of the hour. Then he 
began to think about matrices again. “I must 
give one lecture a week on those,” he said. 
He could not confine himself to the hour, nor 
to the one lecture a week. Two weeks were 
passed, and Netto was forgotten entirely and 
never mentioned again. Statements like the 
following were not infrequent in his  lectures: 
“I haven’t proved this, but I am as sure as I 
can be of anything that it must be so. From 
this it will follow, etc.” At the next lecture it 
turned out that what he was so sure of was 
false. Never mind, he kept on forever guess-
ing and trying, and presently a wonderful dis-
covery followed, then another and another. 
Afterward he would go back and work it all 
over again, and surprise us with all sorts of 
side lights. He then made another leap in the 
dark, more treasures were discovered, and so 
on forever.
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Sylvester’s enthusiasm for teaching and his 
influence on his students are captured in the 
following passage written by Sylvester’s first 
student at Johns Hopkins, G. B. Halsted.

A short, broad man of tremendous vitality, . . . 
Sylvester’s capacious head was ever lost in  
the highest cloud-lands of pure mathematics. 
Often in the dead of night he would get his 
 favorite pupil, that he might communicate  
the very last product of his creative thought. 
Everything he saw suggested to him  some- 
thing new in the higher algebra. This transmu-
tation of everything into new  mathematics  
was a revelation to those who knew him 
 intimately. They began to do it themselves.

Another characteristic of Sylvester, which 
is very unusual among mathematicians, was 
his apparent inability to remember mathemat-
ics! W. P. Durfee had the following to say.

Sylvester had one remarkable peculiarity. He 
seldom remembered theorems, propositions, 
etc., but had always to deduce them when he 
wished to use them. In this he was the very 
antithesis of Cayley, who was thoroughly 
conversant with everything that had been 
done in every branch of mathematics.

I remember once submitting to Sylvester 
some investigations that I had been engaged 
on, and he immediately denied my first state-
ment, saying that such a proposition had never 
been heard of, let alone proved. To his aston-
ishment, I showed him a paper of his own in 
which he had proved the proposition; in fact,  
I believe the object of his paper had been the 
very proof which was so strange to him.

For more information about Sylvester, 
visit:

http://www-groups.dcs.st-and 
.ac.uk/~history/
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93

Permutation Groups

Wigner’s discovery about the electron permutation group was just 
the beginning. He and others found many similar applications and 
nowadays group theoretical methods—especially those involving 
characters and representations—pervade all branches of  quantum 
mechanics.

George Mackey, Proceedings of the American Philosophical Society

Symmetry has been the scientists’ pillar of fire, leading toward 
relativity and the standard model.

Mario Livio, The Equation That Could Not Be Solved

5

 Definition and Notation
In this chapter, we study certain groups of functions, called permutation 
groups, from a set A to itself. In the early and mid-19th century, groups 
of permutations were the only groups investigated by mathematicians. It 
was not until around 1850 that the notion of an abstract group was intro-
duced by Cayley, and it took another quarter century before the idea 
firmly took hold.

Definitions Permutation of A, Permutation Group of A
A permutation of a set A is a function from A to A that is both one- 
to-one and onto. A permutation group of a set A is a set of permutations 
of A that forms a group under function composition.

Although groups of permutations of any nonempty set A of objects 
exist, we will focus on the case where A is finite. Furthermore, it is 
customary, as well as convenient, to take A to be a set of the form 
{1, 2, 3, . . . , n} for some positive integer n. Unlike in calculus, where 
most functions are defined on infinite sets and are given by formulas, 
in algebra, permutations of finite sets are usually given by an explicit 
listing of each element of the domain and its corresponding functional 
value. For example, we define a permutation a of the set {1, 2, 3, 4} 
by specifying

a(1) 5 2,    a(2) 5 3,    a(3) 5 1,    a(4) 5 4.
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gs 5 £
1 2 3 4 5

5 4 1 2 3

§  £
1 2 3 4 5

2 4 3 5 1

§  5 c1 2 3 4 5

4 2 1 3 5
d

A more convenient way to express this correspondence is to write a in 
array form as

a � c1 2 3 4

2 3 1 4
d .

Here a( j) is placed directly below j for each j. Similarly, the permuta-
tion b of the set {1, 2, 3, 4, 5, 6} given by

b(1) 5 5,  b(2) 5 3,  b(3) 5 1,  b(4) 5 6,  b(5) 5 2,  b(6) 5 4

is expressed in array form as

b � c1 2 3 4 5 6

5 3 1 6 2 4
d .

Composition of permutations expressed in array notation is carried 
out from right to left by going from top to bottom, then again from top 
to bottom. For example, let

s � c1 2 3 4 5

2 4 3 5 1
d

and

g � c1 2 3 4 5

5 4 1 2 3
d ;

then

On the right we have 4 under 1, since (gs)(1) 5 g(s(1)) 5 g(2) 5 4, so 
gs sends 1 to 4. The remainder of the bottom row gs is obtained in a 
similar fashion.

We are now ready to give some examples of permutation groups.

 EXAMPLE 1 Symmetric Group S3 Let S3 denote the set of all   one-to-one 
functions from {1, 2, 3} to itself. Then S3, under function composition, 
is a group with six elements. The six elements are

e � c1 2 3

1 2 3
d ,    a � c1 2 3

2 3 1
d ,    a2 � c1 2 3

3 1 2
d ,
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b � c1 2 3

1 3 2
d ,    ab � c1 2 3

2 1 3
d ,    a2b � c1 2 3

3 2 1
d .

Note that ba 5 c1 2 3

3 2 1
d  5 a2b 2 ab, so that S3 is non-Abelian. 

The relation ba 5 a2b can be used to compute other products in S3 
without resorting to the arrays. For example, ba2 5 (ba)a 5 (a2b)a 5 
a2(ba) 5 a2(a2b) 5 a4b 5 ab.

Example 1 can be generalized as follows.

 EXAMPLE 2 Symmetric Group Sn Let A 5 {1, 2, . . . , n}. The set of all 
permutations of A is called the symmetric group of degree n and is de-
noted by Sn. Elements of Sn have the form

a � c 1 2 p n

a(1) a(2) p a(n)
d .

It is easy to compute the order of Sn. There are n choices of a(1). Once 
a(1) has been determined, there are n 2 1 possibilities for a(2) [since  
a is one-to-one, we must have a(1) 2 a(2)]. After choosing a(2), there 
are exactly n 2 2 possibilities for a(3). Continuing along in this fashion, 
we see that Sn has n(n 2 1) ? ? ? 3 ? 2 ? 1 5 n! elements. We leave it to the 
reader to prove that Sn is non-Abelian when n $ 3 (Exercise 43).     

The symmetric groups are rich in subgroups. The group S4 has 30 
subgroups, and S5 has well over 100 subgroups.

 EXAMPLE 3 Symmetries of a Square As a third example, we  associate 
each motion in D4 with the permutation of the locations of each of the 
four corners of a square. For example, if we label the four corner positions 
as in the figure below and keep these labels fixed for reference, we may 
describe a 90°  counterclockwise rotation by the permutation

3

4

2

1

r � c1 2 3 4

2 3 4 1
d ,
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whereas a reflection across a horizontal axis yields

f � c1 2 3 4

2 1 4 3
d .

These two elements generate the entire group (that is, every element is 
some combination of the r’s and f’s). 

When D4 is represented in this way, we see that it is a subgroup  
of S4.     

Cycle Notation
There is another notation commonly used to specify permutations. It is 
called cycle notation and was first introduced by the great French mathe-
matician Cauchy in 1815. Cycle notation has theoretical advantages in 
that certain important properties of the permutation can be readily deter-
mined when cycle notation is used.

As an illustration of cycle notation, let us consider the permu tation

a � c1 2 3 4 5 6

2 1 4 6 5 3
d .

This assignment of values could be presented schematically as follows.

2

1

α α

α α

α α

6

3 5

4

Although mathematically satisfactory, such diagrams are cumbersome. 
Instead, we leave out the arrows and simply write a 5 (1, 2) 
(3, 4, 6)(5). As a second example, consider

b � c1 2 3 4 5 6

5 3 1 6 2 4
d .

In cycle notation, b can be written (2, 3, 1, 5)(6, 4) or (4, 6)(3, 1, 5, 2), 
since both of these unambiguously specify the function b. An expression 
of the form (a1, a2, . . . , am) is called a cycle of length m or an m-cycle.

A multiplication of cycles can be introduced by thinking of a  
cycle as a permutation that fixes any symbol not appearing in the 
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cycle. Thus, the cycle (4, 6) can be thought of as representing the 

permutation c1 2 3 4 5 6

1 2 3 6 5 4
d . In this way, we can multiply cycles

by thinking of them as permutations given in array form. Consider the 
following example from S8. Let a 5 (13)(27)(456)(8) and b 5  
(1237)(648)(5). (When the domain consists of single-digit integers, it is 
common practice to omit the commas between the digits.) What  
is the cycle form of ab? Of course, one could say that ab 5  
(13)(27)(456)(8)(1237)(648)(5), but it is usually more desirable to ex-
press a permutation in a disjoint cycle form (that is, the various cycles 
have no number in common). Well, keeping in mind that function com-
position is done from right to left and that each cycle that does not contain 
a symbol fixes the symbol, we observe that (5) fixes 1; (648) fixes 1; 
(1237) sends 1 to 2; (8) fixes 2; (456) fixes 2; (27) sends 2 to 7; and (13) 
fixes 7. So the net effect of ab is to send 1 to 7. Thus, we begin  
ab 5 (17 ? ? ?) ? ? ? . Now, repeating the entire process beginning with 7, 
we have, cycle by cycle, right to left, 

7 → 7 → 7 → 1 → 1 → 1 → 1 → 3, 

so that ab 5 (173 ? ? ?) ? ? ? . Ultimately, we have ab 5 (1732)(48)(56). 
The important thing to bear in mind when multiplying cycles is to “keep 
moving” from one cycle to the next from right to left. (Warning: Some 
authors compose cycles from left to right. When reading another text, be 
sure to determine which convention is being used.)

To be sure you understand how to switch from one notation to the 
other and how to multiply permutations, we will do one more example 
of each.

If array notations for a and b, respectively, are

c1 2 3 4 5

2 1 3 5 4
d     and    c1 2 3 4 5

5 4 1 2 3
d ,

then, in cycle notation, a 5 (12)(3)(45), b 5 (153)(24), and ab 5  
(12)(3)(45)(153)(24).

To put ab in disjoint cycle form, observe that (24) fixes 1; (153) 
sends 1 to 5; (45) sends 5 to 4; and (3) and (12) both fix 4. So, ab sends 
1 to 4. Continuing in this way we obtain ab 5 (14)(253).

One can convert ab back to array form without converting each cycle 
of ab into array form by simply observing that (14) means 1 goes to 4 
and 4 goes to 1; (253) means 2 → 5, 5 → 3, 3 → 2.

One final remark about cycle notation: Mathematicians prefer not to 
write cycles that have only one entry. In this case, it is understood that any 
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missing element is mapped to itself. With this convention, the permutation 
a above can be written as (12)(45). Similarly,

a � c1 2 3 4 5

3 2 4 1 5
d

can be written a 5 (134). Of course, the identity permutation consists 
only of cycles with one entry, so we cannot omit all of these! In this 
case, one usually writes just one cycle. For example,

e � c1 2 3 4 5

1 2 3 4 5
d

can be written as e 5 (5) or e 5 (1). Just remember that missing  elements 
are mapped to themselves.

Properties of Permutations
We are now ready to state several theorems about permutations and 
 cycles. The proof of the first theorem is implicit in our discussion of 
writing permutations in cycle form.

 Theorem 5.1 Products of Disjoint Cycles

Every permutation of a finite set can be written as a cycle or as a 
product of disjoint cycles.

PROOF Let a be a permutation on A 5 {1, 2, . . . , n}. To write a in 
 disjoint cycle form, we start by choosing any member of A, say a1, and let

a2 5 a(a1),    a3 5 a(a(a1)) 5 a2(a1),

and so on, until we arrive at a1 5 am(a1) for some m. We know that such 
an m exists because the sequence a1, a(a1), a

2(a1), ? ? ? must be finite; so 
there must eventually be a repetition, say a i(a1) 5 a j(a1) for some i and 
j with i , j. Then a1 5 am(a1), where m 5 j 2 i. We express this rela-
tionship among a1, a2, . . . , am as

a 5 (a1, a2, . . . , am) ? ? ? .

The three dots at the end indicate the possibility that we may not have ex-
hausted the set A in this process. In such a case, we merely choose any ele-
ment b1 of A not appearing in the first cycle and proceed to create a new 
cycle as before. That is, we let b2 5 a(b1), b3 5 a2(b1), and so on, until we 
reach b1 5 ak(b1) for some k. This new cycle will have no elements in 
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common with the previously constructed cycle. For, if so, then a i(a1) 5 
aj(b1) for some i and j. But then a i2j(a1) 5 b1, and therefore b1 5 at  
for some t. This contradicts the way b1 was chosen. Continuing this pro-
cess until we run out of elements of A, our permutation will appear as

a 5 (a1, a2, . . . , am)(b1, b2, . . . , bk) ? ? ? (c1, c2, . . . , cs).

In this way, we see that every permutation can be written as a product of 
disjoint cycles.     

 Theorem 5.2 Disjoint Cycles Commute

If the pair of cycles a 5 (a1, a2, . . . , am) and b 5 (b1,b2, . . . , bn)  
have no entries in common, then ab 5 ba.

PROOF For definiteness, let us say that a and b are permutations of the set

S 5 {a1, a2, . . . , am, b1, b2, . . . , bn, c1, c2, . . . , ck},

where the c’s are the members of S left fixed by both a and b (there may 
not be any c’s). To prove that ab 5 ba, we must show that (ab)(x) 5 
(ba)(x) for all x in S. If x is one of the a elements, say ai, then

(ab)(ai) 5 a(b(ai)) 5 a(ai) 5 ai11,

since b fixes all a elements. (We interpret ai11 as a1 if i 5 m.) For the 
same reason,

(ba)(ai) 5 b(a (ai)) 5 b(ai11) 5 ai11.

Hence, the functions of ab and ba agree on the a elements. A similar 
argument shows that ab and ba agree on the b elements as well.  Finally, 
suppose that x is a c element, say ci. Then, since both a and b fix c ele-
ments, we have

(ab)(ci) 5 a(b(ci)) 5 a(ci) 5 ci

and

(ba)(ci) 5 b(a(ci)) 5 b(ci) 5 ci.

This completes the proof.     

In demonstrating how to multiply cycles, we showed that the  product 
(13)(27)(456)(8)(1237)(648)(5) can be written in disjoint  cycle form as 
(1732)(48)(56). Is economy in expression the only advantage to writing 
a permutation in disjoint cycle form? No. The next theorem shows that 
the disjoint cycle form has the enormous advantage of  allowing us to 
“eyeball” the order of the permutation.
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 Theorem 5.3 Order of a Permutation (Ruffini, 1799)

The order of a permutation of a finite set written in disjoint cycle 
form is the least common multiple of the lengths of the cycles.

PROOF First, observe that a cycle of length n has order n. (Verify this 
yourself.) Next, suppose that a and b are disjoint cycles of lengths m 
and n, and let k be the least common multiple of m and n. It follows 
from Theorem 4.1 that both ak and bk are the identity permutation e 
and, since a and b commute, (ab)k 5 akbk is also the identity. Thus, 
we know by Corollary 2 to Theorem 4.1 (ak 5 e implies that |a| 
 divides k) that the order of ab—let us call it t—must divide k. But 
then (ab)t 5 a tb t 5 e, so that a t 5 b 2t. However, it is clear that if a 
and b have no common symbol, the same is true for a t and b 2t, since 
raising a cycle to a power does not introduce new symbols. But, if a t 
and b 2t are equal and have no common symbol, they must both be the 
identity, because every symbol in a t is fixed by b 2t and vice versa (re-
member that a symbol not  appearing in a permutation is fixed by the 
permutation). It follows, then, that both m and n must divide t. This 
means that k, the least common multiple of m and n, divides t also. 
This shows that k 5 t.

Thus far, we have proved that the theorem is true in the cases where 
the permutation is a single cycle or a product of two disjoint cycles. 
The general case involving more than two cycles can be handled in an 
analogous way. 

Theorem 5.3 is an powerful tool for calculating the orders of permu-
tations and the number of permutations of a particular order. We demon-
strate this in the next four examples.

 EXAMPLE 4

|(132)(45)| 5 6
|(1432)(56)| 5 4
|(123)(456)(78)| 5 6
|(123)(145)| 5 |14532| 5 5 

Arranging all possible disjoint cycle structures of elements of Sn 
 according to the longest cycle lengths listed from left to right provides a 
systematic way of counting the number of elements in Sn of any particu-
lar order. There are two cases: permutations where the lengths of the 
disjoint cycles (ignoring 1-cycles) are distinct and permutations where 
there are at least two disjoint cycles (ignoring 1-cycles) of the same 
length. The two cases are illustrated in Examples 5, 6, and 7.
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 EXAMPLE 5 To determine the orders of the 7! 5 5040 elements of 
S7, we need only consider the possible disjoint cycle structures of the 
 elements of S7. For convenience, we denote an n-cycle by (n). Then,  
arranging all possible disjoint cycle structures of elements of S7 
 according to longest cycle lengths left to right, we have

(7)
(6) (1)
(5) (2)
(5) (1) (1)
(4) (3)
(4) (2) (1)
(4) (1) (1) (1)
(3) (3) (1)
(3) (2) (2)
(3) (2) (1) (1)
(3) (1) (1) (1) (1)
(2) (2) (2) (1)
(2) (2) (1) (1) (1)
(2) (1) (1) (1) (1) (1)
(1) (1) (1) (1) (1) (1) (1). 

Now, from Theorem 5.3 we see that the orders of the elements of S7 
are 7, 6, 10, 5, 12, 4, 3, 2, and 1. To do the same for the 10! 5 3628800 
elements of S10 would be nearly as simple. 

 EXAMPLE 6 We determine the number of elements in S7 of order 12. By 
Theorems 5.2 and 5.3, we need only count the number of permutations with 
disjoint cycle form (a1a2a3a4) (a5a6a7). First consider the cycle (a1a2a3a4). 
Although the number of ways to fill these slots is 7 ? 6 ? 5 ? 4, this product 
counts the cycle (a1a2a3a4) four times. For example, the 4-cycle (2741) can 
also be written as (7412), (4127), (1274) whereas the product 7 ? 6 ? 5 ? 4 
counts them as distinct. Likewise, the 3 ? 2 ? 1 expressions for (a5a6a7) 
counts the cycles (a5a6a7), (a6a7a5) and (a7a5a6) as distinct even though they 
are equal in S7. Adjusting for these multiple countings, we have that there 
are (7 ? 6 ? 5 ? 4)(3 ? 2 ? 1)/(4 ? 3) 5 420 elements of order 12 in S7. 

 EXAMPLE 7 We determine the number of elements in S7 of order 3. By 
Theorem 5.3, we need only count the number of permutations of the form 
(a1a2a3) and (a1a2a3)(a4a5a6). As in Example 6, there are (7 ? 6 ? 5)/3 5 70 
elements of the form (a1a2a3). For elements of S7 of the form (a1a2a3) 
(a4a5a6) there are (7 ? 6 ? 5)/3 ways to create the first cycle and (4 ? 3 ? 2)/3 
to create the second cycle but the product of (7 ? 6 ? 5)/3 and (4 ?  
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3 ? 2)/3) counts (a1a2a3) (a4a5a6) and (a4a5a6)(a3a2a1) as distinct when 
they are equal group elements. Thus, the number of elements in S7 of the 
form (a1a2a3) (a4a5a6) is (7 ? 6 ? 5)(4 ? 3 ? 2)/(3 ? 3 ? 2) 5 280. This gives 
us 350 elements of order 3 in S7.

To count the number of elements in S7 of the form say (a1a2)(a3a4)
(a5a6), we proceed as before to obtain (7 ? 6)(5 ? 4)(3 ? 2)/(2 ? 2 ? 2 ? 3!) 
5 105. The 3! term in the denominator appears because there are 3! 
ways the product of three 2-cycles can be written and each represents 
the same group element. 

As we will soon see, it is often greatly advantageous to write a per-
mutation as a product of cycles of length 2—that is, as permutations of 
the form (ab) where a 2 b. Many authors call these permutations trans-
positions, since the effect of (ab) is to interchange or transpose a and b.

Example 8 and Theorem 5.4 show how this can always be done.

 EXAMPLE 8
 (12345) 5 (15)(14)(13)(12)
 (1632)(457) 5 (12)(13)(16)(47)(45) 

 Theorem 5.4 Product of 2-Cycles

Every permutation in Sn, n . 1, is a product of 2-cycles.

PROOF First, note that the identity can be expressed as (12)(12), and so it 
is a product of 2-cycles. By Theorem 5.1, we know that every permuta-
tion can be written in the form

(a1a2 ? ? ? ak)(b1b2 ? ? ? bt) ? ? ? (c1c2 ? ? ? cs).

A direct computation shows that this is the same as

(a1ak)(a1ak21) ? ? ? (a1a2)(b1bt)(b1bt21) ? ? ? (b1b2) 
 ? ? ? (c1cs)(c1cs21) ? ? ? (c1c2).

This completes the proof.     

The decomposition of a permutation into a product of 2-cycles given 
in Example 8 and in the proof of Theorem 5.4 is not the only way a per-
mutation can be written as a product of 2-cycles. Although the next 
 example shows that even the number of 2-cycles may vary from one de-
composition to another, we will prove in Theorem 5.5 (first proved by 
Cauchy) that there is one aspect of a decomposition that never varies.
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 EXAMPLE 9
 (12345) 5 (54)(53)(52)(51)
 (12345) 5 (54)(52)(21)(25)(23)(13) 

We isolate a special case of Theorem 5.5 as a lemma.

 Lemma  

If e 5 b1b2 ? ? ? br , where the b’s are 2-cycles, then r is even. 

PROOF Clearly, r 2 1, since a 2-cycle is not the identity. If r 5 2, we are 
done. So, we suppose that r . 2, and we proceed by induction. Suppose 
that the rightmost 2-cycle is (ab). Then, since (ij) 5 ( ji), the product 
br21br can be expressed in one of the following forms shown on the right:

e 5 (ab)(ab),
(ab)(bc) 5 (ac)(ab),

 (ac)(cb )  5 (bc)(ab),
(ab)(cd) 5 (cd)(ab).

If the first case occurs, we may delete br21br from the original product to 
obtain e 5 b1b2 ? ? ? br22, and therefore, by the Second Principle of 
Mathematical Induction, r 2 2 is even. In the other three cases, we  replace 
the form of br21br on the right by its counterpart on the left to obtain a new 
product of r 2-cycles that is still the identity, but where the rightmost occur-
rence of the integer a is in the second-from-the-rightmost 2-cycle of the 
product instead of the rightmost 2-cycle. We now repeat the procedure just 
described with br22br21, and, as be fore, we obtain a product of (r 2 2) 
2-cycles equal to the identity or a new  product of r 2-cycles, where the 
rightmost occurrence of a is in the third 2-cycle from the right. Continuing 
this process, we must ob tain a product of (r 2 2) 2-cycles equal to the iden-
tity, because otherwise we have a product equal to the identity in which the 
only occurrence of the integer a is in the leftmost 2-cycle, and such a prod-
uct does not fix a, whereas the identity does. Hence, by the Second Principle 
of Mathematical Induction, r 2 2 is even, and r is even as well.     

 Theorem 5.5 Always Even or Always Odd

If a permutation a can be expressed as a product of an even (odd) 
number of 2-cycles, then every decomposition of a into a product of 
2-cycles must have an even (odd) number of 2-cycles. In symbols, if

a 5 b1b2 ? ? ? br    and    a 5 g1g2 ? ? ? gs,

where the b’s and the g’s are 2-cycles, then r and s are both even or 
both odd.
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PROOF Observe that b1b2 ? ? ? br 5 g1g2 ? ? ? gs implies

e 5 g1g2 ? ? ? gsbr
21 ? ? ? b2

21b1
21

     5 g1g2 ? ? ? gsbr ? ? ? b2b1,

since a 2-cycle is its own inverse. Thus, the lemma on page 103 guarantees 
that s 1 r is even. It follows that r and s are both even or both odd. 

Definition Even and Odd Permutations
A permutation that can be expressed as a product of an even number 
of 2-cycles is called an even permutation. A permutation that can be 
 expressed as a product of an odd number of 2-cycles is called an odd 
permutation.

Theorems 5.4 and 5.5 together show that every permutation can be 
unambiguously classified as either even or odd. The significance of  
this observation is given in Theorem 5.6.

 Theorem 5.6 Even Permutations Form a Group

The set of even permutations in Sn forms a subgroup of Sn.

PROOF This proof is left to the reader (Exercise 17).     

The subgroup of even permutations in Sn arises so often that we give 
it a special name and notation.

Definition Alternating Group of Degree n
The group of even permutations of n symbols is denoted by An and is 
called the alternating group of degree n.

The next result shows that exactly half of the elements of Sn (n . 1) 
are even permutations.

 Theorem 5.7

For n . 1, An has order n!/2.

PROOF For each odd permutation a, the permutation (12)a is even and, 
by the cancellation property in groups, (12)a 2 (12)b when a 2 b. 
Thus, there are at least as many even permutations as there are odd ones. 
On the other hand, for each even permutation a, the permutation (12)a 
is odd and (12)a 2 (12)b when a 2 b. Thus, there are at least as 
many odd permutations as there are even ones. It follows that there are 
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equal numbers of even and odd permutations. Since |Sn| 5 n!, we have 
|An| 5 n!/2. 

The names for the symmetric group and the alternating group of  degree 
n come from the study of polynomials over n variables. A symmetric poly-
nomial in the variables x1, x2, . . . , xn is one that is  unchanged under any 
transposition of two of the variables. An alternating polynomial is one that 
changes signs under any transposition of two of the variables. For exam-
ple, the polynomial x1x2x3 is unchanged by any transposition of two of the 
three variables, whereas the polynomial (x12x2)(x12x3)(x22x3) changes 
signs when any two of the variables are transposed. Since every member 
of the symmetric group is the product of transpositions, the symmetric 
polynomials are those that are unchanged by members of the symmetric 
group. Likewise, since any member of the alternating group is the product 
of an even number of transpositions, the alternating polynomials are those 
that are unchanged by members of the alternating group.

The alternating groups are among the most important examples of 
groups. The groups A4 and A5 will arise on several occasions in later 
chapters. In particular, A5 has great historical significance.

A geometric interpretation of A4 is given in Example 10, and a multi-
plication table for A4 is given as Table 5.1.

 EXAMPLE 10 Rotations of a Tetrahedron
The 12 rotations of a regular tetrahedron can be conveniently described 
with the  elements of A4. The top row of Figure 5.1 illustrates the identity 
and three 180° “edge” rotations about axes joining midpoints of two 

Table 5.1  The Alternating Group A4 of Even Permutations of {1, 2, 3, 4}

(In this table, the permutations of A4 are designated as a1, a2, . . . , a12 and an entry k inside the table 
represents ak. For example, a3 a8 5 a6.)

  a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

 (1) 5 a1 1 2 3 4 5 6 7 8 9 10 11 12
 (12)(34) 5 a2 2 1 4 3 6 5 8 7 10 9 12 11
 (13)(24) 5 a3 3 4 1 2 7 8 5 6 11 12 9 10
 (14)(23) 5 a4 4 3 2 1 8 7 6 5 12 11 10 9
 (123) 5 a5 5 8 6 7 9 12 10 11 1 4 2 3
 (243) 5 a6 6 7 5 8 10 11 9 12 2 3 1 4
 (142) 5 a7 7 6 8 5 11 10 12 9 3 2 4 1
 (134) 5 a8 8 5 7 6 12 9 11 10 4 1 3 2
 (132) 5 a9 9 11 12 10 1 3 4 2 5 7 8 6
 (143) 5 a10 10 12 11 9 2 4 3 1 6 8 7 5
 (234) 5 a11 11 9 10 12 3 1 2 4 7 5 6 8
 (124) 5 a12 12 10 9 11 4 2 1 3 8 6 5 7
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edges. The second row consists of 120° “face” rotations about axes join-
ing a vertex to the center of the opposite face. The third row consists of 
–120° (or 240°) “face” rotations. Notice that the four rotations in the sec-
ond row can be obtained from those in the first row by left- multiplying 
the four in the first row by the rotation (123), whereas those in the third 
row can be obtained from those in the first row by left-multiplying the 
ones in the first row by (132). 

Many molecules with chemical formulas of the form AB4, such as 
methane (CH4) and carbon tetrachloride (CCl4), have A4 as their sym-
metry group. Figure 5.2 shows the form of one such molecule.

Many games and puzzles can be analyzed using permutations.

 EXAMPLE 11 Encryption Using a Permutation
An interesting application of permutations is cryptography. Cryptography 
is the study of methods to make and break secret codes. The process of 
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Figure 5.1 Rotations of a regular tetrahedron.
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Figure 5.2 A tetrahedral AB4 molecule.

coding information to prevent unauthorized use is called encryption. 
Historically, encryption was used primarily for military and diplomatic 
transmissions. Today, encryption is essential for securing electronic 
transactions of all kinds. Cryptography is what  allows you to have a 
Web site safely receive your credit card number. Cryptographic schemes 
prevent hackers from charging calls to your cell phone account.

Among the first known cryptosystems is the Caesar cipher, used by 
Julius Caesar to send messages to his troops. Caesar encrypted a mes-
sage by replacing each letter with the letter three positions further in 
the alphabet with x, y and z wrapping around to a, b and c. Identifying 
the 26 letters of the alphabet with 0, 1, . . . , 25 in order, the Caesar 
method replaces letter i with letter (i 1 3) mod 26. For example, the 
message ATTACK AT DAWN is encrypted as DWWDFN DW GDZQ. 
To decrypt the message one replaces letter i with letter (i 2 3) mod 26.

Any permutation can be used as a cipher. To use the permutation a 5 

c1 2 3 4

3 4 2 1
d  to encrypt the message ATTACK AT DAWN we first

break the message up into blocks of four letters each ignoring the spaces 
between the words to obtain the plaintext ATTA CKAT DAWN. (This 
has the added advantage of disguising the lengths of each word, which 
makes breaking the code more difficult.) We then reorder the four letters 
in each block in the same way a reordered the integers 1, 2, 3, and 4. 
That is, the first letter is put in the third position, the second letter is put 
in the fourth position, the third letter is put in the second position, and 
the fourth letter is put in the first position. Doing this for each block we 
have ATAT TACK NWDA. Of course one decrypts a message encrypted 
by using a by using a21.

To enhance security one would use a permutation of long length n 
and blocks of length other than n so that anyone not authorized to  receive 
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the encrypted message would not know the permutation length. In cases 
where the number of message characters is not divisible by the block 
length the sender simply fills out the last block with nonsense letters. 
For example, for the message RETREAT AT DUSK with block length 4 
we could use RETR EATA TDUS KIUE. The recipient of the message 
will recognize the nonsense letters as padding needed to complete the 
last block.

Enigma machines were cipher devices used by the Germans in World 
War II (1939–1945). An Enigma machine had three to five wheels that 
would scramble the letters of a message. The machines were easy to use 
and offered a high degree of security when used properly. Although 
messages encoded with Enigma machines were difficult to break opera-
tor negligence and the capture of a number of Enigma machines and the 
tables of wheel settings by the Allied forces allowed Polish and British 
cryptologists to break the code. 

 Rubik’s Cube  

The Rubik’s Cube made from 48 cubes called “facets” is the quintessen-
tial example of a group theory puzzle. It was invented in 1974 by the 
Hungarian Erró́ Rubik. By 2009 more than 350 million Rubik’s Cubes 
had been sold. The current record time for solving it is under 7 seconds; 
under 31 seconds blindfolded. Although it was proved in 1995 that there 
was a starting configuration that required at least 20 moves to solve, it was 
not until 2010 that it was determined that every cube could be solved in at 
most 20 moves. This computer calculation utilized about 35 CPU-years 
donated by Google to complete. In early discussions about the minimum 
number of moves to solve the cube in the worst possible case, someone 
called it “God’s number,” and the name stuck. A history of the quest to 
find God’s number is given at the website at http://www.cube20.org/.

The set of all configuration of the Rubik’s Cube form a group of per-
mutations of order 43,252,003,274,489,856,00. This order can be com-
puted using GAP by labeling the faces of the cube as shown here.
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The group of permutations of the cube is generated by the following 
rotations of the six layers.

top 5 (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)
left 5 (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)
front 5 (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)
right 5 (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)
rear 5 (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)
bottom 5  (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39) 

(16,24,32,40)

A Check-Digit Scheme Based on D5

In Chapter 0, we presented several schemes for appending a check digit 
to an identification number. Among these schemes, only the Interna-
tional Standard Book Number method was capable of detecting all 
 single-digit errors and all transposition errors involving adjacent digits. 
However, recall that this success was achieved by introducing the alpha-
betical character X to handle the case where 10 was required to make 
the dot product 0 modulo 11.

In contrast, in 1969, J. Verhoeff [2] devised a method utilizing the 
dihedral group of order 10 that detects all single-digit errors and all 
transposition errors involving adjacent digits without the necessity of 
avoiding certain numbers or introducing a new character. To describe 
this method, consider the permutation s 5 (01589427)(36) and the di-
hedral group of order 10 as represented in Table 5.2. (Here we use 0 
through 4 for the rotations, 5 through 9 for the reflections, and p for the 
operation of D5.)

Table 5.2 Multiplication for D5

 * 0 1 2 3 4 5 6 7 8 9

 0 0 1 2 3 4 5 6 7 8 9
 1 1 2 3 4 0 6 7 8 9 5
 2 2 3 4 0 1 7 8 9 5 6
 3 3 4 0 1 2 8 9 5 6 7
 4 4 0 1 2 3 9 5 6 7 8
 5 5 9 8 7 6 0 4 3 2 1
 6 6 5 9 8 7 1 0 4 3 2
 7 7 6 5 9 8 2 1 0 4 3
 8 8 7 6 5 9 3 2 1 0 4
 9 9 8 7 6 5 4 3 2 1 0
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Verhoeff’s idea was to view the digits 0 through 9 as the elements of 
the group D5 and to replace ordinary addition with calculations done in 
D5. In particular, to any string of digits a1a2 . . . an21, we append the 
check digit an so that s(a1) p s2(a2) p ? ? ? p sn22(an22) p sn21(an21) p  
s n (an) 5 0. [Here s2(x) 5 s(s(x)), s3(x) 5 s(s2(x)), and so on.] 
Since s has the property that s i (a) 2 s i(b) if a 2 b, all single-digit 
 errors are detected. Also, because

 a p s(b) 2 b p s(a)    if a 2 b, (1)

as can be checked on a case-by-case basis (see Exercise 59), it follows 
that all transposition errors involving adjacent digits are detected [since 
Equation (1) implies that s i(a) p s i11(b) 2 si(b) p s i11(a) if a 2 b].

From 1990 until 2002, the German government used a minor modifi-
cation of Verhoeff’s check-digit scheme to append a check digit to the 
serial numbers on German banknotes. Table 5.3 gives the values of the 
functions s, s2, . . . , s10 needed for the computations. [The functional 
value si(j) appears in the row labeled with si and the column labeled j.] 
Since the serial numbers on the banknotes use 10 letters of the alphabet 
in addition to the 10 decimal digits, it is necessary to assign numerical 
values to the letters to compute the check digit. This assignment is 
shown in Table 5.4.

Table 5.3 Powers of s

  0 1 2 3 4 5 6 7 8 9

 s 1 5 7 6 2 8 3 0 9 4
 s2 5 8 0 3 7 9 6 1 4 2
 s3 8 9 1 6 0 4 3 5 2 7
 s4 9 4 5 3 1 2 6 8 7 0
 s5 4 2 8 6 5 7 3 9 0 1
 s6 2 7 9 3 8 0 6 4 1 5
 s7 7 0 4 6 9 1 3 2 5 8
 s8 0 1 2 3 4 5 6 7 8 9
 s9 1 5 7 6 2 8 3 0 9 4
 s10 5 8 0 3 7 9 6 1 4 2

Table 5.4 Letter Values

 A D G K L N S U Y Z

 0 1 2 3 4 5 6 7 8 9
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To any string of digits a1a2 . . . a10 corresponding to a banknote serial 
number, the check digit a11 is chosen such that s (a1) p s 2(a2) p ? ? ? p 

s9(a9) p s10(a10) p a11 5 0 [instead of s(a1) p s2(a2) p ? ? ? p s10(a10) p 
s11(a11) 5 0 as in the Verhoeff scheme].

To trace through a specific example, consider the banknote (featuring 
the mathematician Gauss) shown in Figure 5.3 with the number 
AG8536827U7. To verify that 7 is the appropriate check digit, we ob-
serve that s(0) p s2(2) p s3(8) p s 4(5) p s 5(3) p s 6(6) p s7(8) p 
s 8(2) p s9(7) p s10(7) p 7 5 1 p 0 p 2 p 2 p 6 p 6 p 5 p 2 p 0 p 1 p  
7 5 0, as it should be. [To illustrate how to use the multiplication table 
for D5, we compute 1 p 0 p 2 p 2 5 (1 p 0) p 2 p 2 5 1 p 2 p 2 5  
(1 p 2) p 2 5 3 p 2 5 0.]

 Figure 5.3 German banknote with serial number AG8536827U and check digit 7.

One shortcoming of the German banknote scheme is that it does not 
distinguish between a letter and its assigned numerical value. Thus, a 
substitution of 7 for U (or vice versa) and the transposition of 7 and U 
are not detected by the check digit. Moreover, the banknote scheme 
does not detect all transpositions of adjacent characters involving the 
check digit itself. For example, the transposition of D and 8 in positions 
10 and 11 is not detected. Both of these defects can be avoided by using 
the Verhoeff method with D18, the dihedral group of order 36, to assign 
every letter and digit a distinct value together with an appropriate func-
tion s [1]. Using this method to append a check character, all single-
position errors and all transposition errors involving adjacent digits will 
be detected.
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Exercises 

My mind rebels at stagnation. Give me problems, give me work, give me the 
most obtuse cryptogram, or the most intricate analysis, and I am in my own 
proper atmosphere. 

Sherlock Holmes, The Sign of Four

  1. Let

a 5 c1 2 3 4 5 6

2 1 3 5 4 6
d   and  b � c1 2 3 4 5 6

6 1 2 4 3 5
d .

  Compute each of the following.
 a. a21

 b. ba
 c. ab

  2. Let

 a 5 c1 2 3 4 5 6 7 8

2 3 4 5 1 7 8 6
d  and b 5 c1 2 3 4 5 6 7 8

1 3 8 7 6 5 2 4
d.

  Write a, b, and ab as
 a. products of disjoint cycles;
 b. products of 2-cycles.
  3. Write each of the following permutations as a product of disjoint 

cycles.
 a. (1235)(413)
 b. (13256)(23)(46512)
 c. (12)(13)(23)(142)
  4. Find the order of each of the following permutations.
 a. (14)
 b. (147)
 c. (14762)
 d. (a1a2 

. . . ak)
  5. What is the order of each of the following permutations?
 a. (124)(357)
 b. (124)(3567)
 c. (124)(35)
 d. (124)(357869)
 e. (1235)(24567)
 f. (345)(245)
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  6. What is the order of each of the following permutations?

 a. c1 2 3 4 5 6

2 1 5 4 6 3
d

 b. c1 2 3 4 5 6 7

7 6 1 2 3 4 5
d

  7. What is the order of the product of a pair of disjoint cycles of 
lengths 4 and 6?

  8. Determine whether the following permutations are even or odd.
 a. (135)
 b. (1356)
 c. (13567)
 d. (12)(134)(152)
 e. (1243)(3521)
  9. What are the possible orders for the elements of S6 and A6? What 

about A7? (This exercise is referred to in Chapter 25.)
 10. Show that A8 contains an element of order 15.
 11. Find an element in A12 of order 30.
 12. Show that a function from a finite set S to itself is one-to-one if and only 

if it is onto. Is this true when S is infinite? (This exercise is referred to 
in Chapter 6.)

 13. Suppose that a is a mapping from a set S to itself and a(a(x)) 5 x 
for all x in S. Prove that a is one-to-one and onto.

 14. Suppose that a is a 6-cycle and b is a 5-cycle. Determine whether 
a5b4a21b23a5 is even or odd. Show your reasoning.

 15. Let n be a positive integer. If n is odd, is an n-cycle an odd or an 
even permutation? If n is even, is an n-cycle an odd or an even per-
mutation?

 16. If a is even, prove that a21 is even. If a is odd, prove that a21 is odd.
 17. Prove Theorem 5.6.
 18. In Sn, let a be an r-cycle, b an s-cycle, and g a t-cycle. Complete 

the following statements: ab is even if and only if r 1 s is . . . ; abg 
is even if and only if r 1 s 1 t is . . . .

 19. Let a and b belong to Sn. Prove that ab is even if and only if a 
and b are both even or both odd.

 20. Associate an even permutation with the number 11 and an odd per-
mutation with the number 21. Draw an analogy between the result 
of multiplying two permutations and the result of multiplying their 
corresponding numbers 11 or 21.

1135 | Permutation Groups

57960_ch05_ptg01_093-119.indd   113 10/26/15   10:25 AM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 21. Complete the following statement: A product of disjoint cycles is 
even if and only if .

 22. What cycle is (a1a2 ? ? ? an)
21?

 23. Show that if H is a subgroup of Sn, then either every member of H is 
an even permutation or exactly half of the members are even. (This 
exercise is referred to in Chapter 25.)

 24. Suppose that H is a subgroup of Sn of odd order. Prove that H is a 
subgroup of An.

 25. Give two reasons why the set of odd permutations in Sn is not a sub-
group.

 26. Let a and b belong to Sn. Prove that a21b21ab is an even 
 permutation.

 27. How many elements are there of order 2 in A8 that have the disjoint 
cycle form (a1a2)(a3a4)(a5a6)(a7a8)?

 28. How many elements of order 5 are in S7?
 29. How many elements of order 4 does S6 have? How many elements 

of order 2 does S6 have?
 30. Prove that (1234) is not the product of 3-cycles. Generalize.
 31. Let b [ S7 and suppose b4 5 (2143567). Find b. What are the pos-

sibilities for b if b [ S9?
 32. Let b 5 (123)(145). Write b99 in disjoint cycle form.
 33. Let (a1a2a3a4) and (a5a6) be disjoint cycles in S10. Show that there is 

no element x in S10 such that x2 = (a1a2a3a4)(a5a6).
 34. If a and b are distinct 2-cycles, what are the possibilities for |ab|?
 35. Let G be a group of permutations on a set X. Let a [ X and define 

stab(a) 5 {a [ G | a(a) 5 a}. We call stab(a) the stabilizer of a in 
G (since it consists of all members of G that leave a fixed). Prove 
that stab(a) is a subgroup of G. (This subgroup was introduced by 
Galois in 1832.) This exercise is referred to in Chapter 7.

 36. Let b 5 (1,3,5,7,9,8,6)(2,4,10). What is the smallest positive inte-
ger n for which bn 5 b25?

 37. Let a 5 (1,3,5,7,9)(2,4,6)(8,10). If am is a 5-cycle, what can you 
say about m?

 38. Let H 5 {b [ S5 | b(1) 5 1 and b(3) 5 3}. Prove that H is a  sub- 
group of S5. How many elements are in H? Is your argument valid 
when S5 is replaced by Sn for n $ 3? How many elements are in H 
when S5 is replaced by An for n $ 4?

 39. In S4, find a cyclic subgroup of order 4 and a noncyclic subgroup of 
order 4.

 40. In S3, find elements a and b such that |a| 5 2, |b| 5 2, and |ab| 5 3.
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 41. Find group elements a and b in S5 such that |a| 5 3, |b| 5 3, and  
|ab| 5 5.

 42. Represent the symmetry group of an equilateral triangle as a group 
of permutations of its vertices (see Example 3).

 43. Prove that Sn is non-Abelian for all n $ 3.
 44. Prove that An is non-Abelian for all n $ 4.
 45. For n $ 3, let H 5 {b [ Sn | b(1) 5 1 or 2 and b(2) 5 1 or 2}. 

Prove that H is a subgroup of Sn. Determine |H|.
 46. Show that in S7, the equation x2 5 (1234) has no solutions but the 

equation x3 5 (1234) has at least two.
 47. If (ab) and (cd) are distinct 2-cycles in Sn, prove that (ab) and (cd) 

commute if and only if they are disjoint.
 48. Let a and b belong to Sn. Prove that bab21 and a are both even or 

both odd.
 49. Viewing the members of D4 as a group of permutations of a square 

labeled 1, 2, 3, 4 as described in Example 3, which geometric sym-
metries correspond to even permutations?

 50. Viewing the members of D5 as a group of permutations of a regular  
pentagon with consecutive vertices labeled 1, 2, 3, 4, 5, what geo-
metric symmetry corresponds to the permutation (14253)? Which 
symmetry corresponds to the permutation (25)(34)?

 51. Let n be an odd integer greater than 1. Viewing Dn as a group of 
permutations of a regular n-gon with consecutive vertices labeled 
1, 2, . . . , n, explain why the rotation subgroup of Dn is a sub-
group of An.

 52. Let a1, a2 and a3 be 2-cycles. Prove that a1a2a3 2 P. Generalize.
 53. Show that A5 has 24 elements of order 5, 20 elements of order 3, and 

15 elements of order 2. (This exercise is referred to in Chapter 25.)
 54. Find a cyclic subgroup of A8 that has order 4. Find a noncyclic sub-

group of A8 that has order 4.
 55. Show that a permutation with odd order must be an even permutation.
 56. Compute the order of each member of A4. What arithmetic relation-

ship do these orders have with the order of A4?
 57. Show that every element in An for n $ 3 can be expressed as a  

3-cycle or a product of 3-cycles.
 58. Show that for n $ 3, Z(Sn) 5 {e}.
 59. Verify the statement made in the discussion of the Verhoeff check digit 

scheme based on D5 that a * s(b) 2 b * s(a) for distinct a and b. Use 
this to prove that si(a) * si11(b) 2 si(b) * si11(a) for all i. Prove that 
this implies that all transposition errors involving adjacent digits are 
detected.
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 60. Use the Verhoeff check-digit scheme based on D5 to append a check 
digit to 45723.

 61. Prove that every element of Sn (n . 1)  can be written as a product 
of elements of the form (1k).

 62. (Indiana College Mathematics Competition) A card-shuffling ma-
chine always rearranges cards in the same way relative to the order 
in which they were given to it. All of the hearts arranged in order 
from ace to king were put into the machine, and then the shuffled 
cards were put into the machine again to be shuffled. If the cards 
emerged in the order 10, 9, Q, 8, K, 3, 4, A, 5, J, 6, 2, 7, in what 
order were the cards after the first shuffle?

 63. Determine integers n for which H � {a [ An | a
2 � e} is a sub-

group of An.
 64. Find five subgroups of S5 of order 24.
 65. Why does the fact that the orders of the elements of A4 are 1, 2, and 

3 imply that |Z(A4)| 5 1?
 66. Let a belong to Sn. Prove that |a| divides n!
 67. Encrypt the message ATTACK POSTPONED using the  permutation 

  a 5 c1 2 3 4 5

2 1 5 3 4
d .

 68. The message VAADENWCNHREDEYA was encrypted using the 

   permutation a 5 c1 2 3 4

2 4 1 3
d    . Decrypt it. 

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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Douglas E. Ensley, “Invariants Under Actions to Amaze Your Friends,” 
Mathematics Magazine, Dec. 1999: 383–387.

This article explains some card tricks that are based on permutation 
groups.

J. A. Gallian, “Error Detection Methods,” ACM Computing Surveys 28 
(1996): 504–517.

This article gives a comprehensive survey of error-detection methods 
that use check digits. This article can be downloaded at http://
www.d.umn.edu/~jgallian/detection.pdf

I. N. Herstein and I. Kaplansky, Matters Mathematical, New York: 
 Chelsea, 1978.

Chapter 3 of this book discusses several interesting applications of 
 permutations to games.

Douglas Hofstadter, “The Magic Cube’s Cubies Are Twiddled by Cubists 
and Solved by Cubemeisters,” Scientific American 244 (1981): 20–39.

This article, written by a Pulitzer Prize recipient, discusses the group 
theory involved in the solution of the Magic (Rubik’s) Cube. In 
 particular, permutation groups, subgroups, conjugates (elements of the 
form xyx21), commutators (elements of the form xyx21y21), and the 
“ always even or  always odd” theorem (Theorem 5.5) are prominently 
 mentioned. At one point, Hofstadter says, “It is this kind of marvelously 
concrete illustration of an abstract notion of group theory that makes 
the Magic Cube one of the most amazing things ever invented for 
 teaching mathematical ideas.”
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Augustin Cauchy

Augustin Louis Cauchy was born on 
 August 21, 1789, in Paris. By the time he 
was 11, both Laplace and Lagrange had rec-
ognized Cauchy’s extraordinary talent for 
mathematics. In school he won prizes for 
Greek, Latin, and the humanities. At the age 
of 21, he was given a commission in 
Napoleon’s army as a civil engineer. For the 
next few years, Cauchy attended to his engi-
neering duties while carrying out brilliant 
mathematical research on the side.

In 1815, at the age of 26, Cauchy was 
made Professor of Mathematics at the École 
Polytechnique and was recognized as the 
leading mathematician in France. Cauchy 
and his contemporary Gauss were among the 
last mathematicians to know the whole of 
mathematics as known at their time, and 

both made important contributions to nearly 
every branch, both pure and applied, as well 
as to physics and astronomy.

Cauchy introduced a new level of rigor into 
mathematical analysis. We owe our contempo-
rary notions of limit and continuity to him.  
He gave the first proof of the Fundamental 
Theorem of Calculus. Cauchy was the founder 
of complex function theory and a pioneer in 
the theory of permutation groups and determi-
nants. His total written output of mathematics 
fills 24 large volumes. He wrote more than 500 
research  papers  after the age  of 50. Cauchy 
died at the age of 67 on May 23, 1857.

For more information about Cauchy, visit:

http://www-groups.dcs.st-and 
.ac.uk/~history/ 

You see that little young man? Well! He 
will supplant all of us in so far as we are  
mathematicians.

Spoken by Lagrange  
to Laplace about the  

11-year-old Cauchy St
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On Time magazine’s list of the 100 most 
 influential people of the twentieth century  
was Alan Turing, a mathematician born in 
London on June 23, 1912. While a college 
student Turing developed ideas that would 
lay the foundation for theoretical computer 
science and artificial intelligence. After 
graduating from college Turing became a 
crucial member of a team of cryptologists 
working for the British government who 
successfully broke the Enigma codes.

Turing’s life took a tragic turn in 1952 
when he admitted that he had engaged in ho-
mosexual acts in his home, which was a fel-
ony in Britain at that time. As punishment, 
he was chemically castrated and subjected to 
estrogen treatments. Despondent by this 
treatment, he committed suicide two years 
later by eating an apple laced with cyanide at 
the age of 41.

Every time you use a phone, or a computer, 
you use the ideas that Alan Turin invented. 
Alan discovered intelligence in computers, 
and today he surrounds us. A true hero of 
mankind.

ERIC E. SCHMIDT, Executive Chairman, Google

Alan Turing

Today Turing is widely honored for his 
fundamental contributions to computer sci-
ence and his role in the defeat of Germany in 
World War II. Many rooms, lecture halls, and 
buildings at universities around the world     
have been named in honor of Turing. The 
 annual award for contributions to the com-
puting community, which is widely consider 
to be the equivalent to a Nobel Prize, is 
called the “Turing Award.”

In 2013, Queen Elizabeth II granted 
Turing a pardon and issued a statement say-
ing Turing’s treatment was unjust and 
“Turing was an exceptional man with a bril-
liant mind who deserves to be remembered 
and recognized for his fantastic contribution 
to the war effort and his legacy to science.”
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120

Motivation
Suppose an American and a German are asked to count a handful of ob-
jects. The American says, “One, two, three, four, five, . . . ,” whereas the 
German says, “Eins, zwei, drei, vier, fünf, . . . .” Are the two doing different 
things? No. They are both counting the objects, but they are using different 
terminology to do so. Similarly, when one person says, “Two plus three is 
five” and another says, “Zwei und drei ist fünf,” the two are in agreement 
on the concept they are describing, but they are using different terminology 
to describe the concept. An analogous situation often occurs with groups; 
the same group is described with different terminology. We have seen two 
examples of this so far. In Chapter 1, we described the symmetries of a 
square in geometric terms (e.g., R90), whereas in Chapter 5 we described 
the same group by way of permutations of the corners. In both cases, the 
underlying group was the symmetries of a square. In Chapter 4, we ob-
served that when we have a cyclic group of order n generated by a, the op-
eration turns out to be essentially that of addition modulo n, since aras 5 ak, 
where k 5 (r 1 s) mod n. For example, each of U(43) and U(49) is cyclic 
of order 42. So, each has the form kal, where aras 5 a (r 1 s)mod 42.

Definition and Examples
In this chapter, we give a formal method for determining whether two 
groups defined in different terms are really the same. When this is the case, 
we say that there is an isomorphism between the two groups. This notion 
was first introduced by Galois about 180 years ago. The term isomorphism 
is derived from the Greek words isos, meaning “same” or “equal,” and 

Isomorphisms

Mathematics is the art of giving the same name to different things.
Henri Poincaré (1854–1912)

The basis for poetry and scientific discovery is the ability to 
 comprehend the unlike in the like and the like in the unlike.

Jacob Bronowski
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morphe, meaning “form.” R. Allenby has colorfully  defined an algebraist 
as “a person who can’t tell the difference between isomorphic systems.”

Definition Group Isomorphism
An isomorphism f from a group G to a group G is a one-to-one mapping 
(or function) from G onto G that preserves the group operation. That is,

f(ab) 5 f(a)f(b)    for all a, b in G.

If there is an isomorphism from G onto G, we say that G and G are 
 isomorphic and write G < G.

The definition of isomorphism ensures that if f is an isomorphism from 
G to G then the operation table for G can be obtained from the opera-
tion table for G be replacing each entry in the table for G by f(x). See 
Figure 6.1. Thus the groups differ in notation only.

G 2 2 2 f(b) 2 2

2 2 2 2 2 2 2
2 2 2 2 2 2 2

f(a) 2 2 2 f(ab) 2 2
2 2 2 2 2 2 2

G 2 2 2 b 2 2

2 2 2 2 2 2 2
2 2 2 2 2 2 2
a 2 2 2 ab 2 2
2 2 2 2 2 2 2

Figure 6.1 

It is implicit in the definition of isomorphism that isomorphic  
groups have the same order. It is also implicit in the definition of  
isomorphism that the operation on the left side of the equal sign is that 
of G, whereas the operation on the right side is that of G. The four cases 
involving ? and 1 are shown in Table 6.1.

Table 6.1

G Operation G Operation Operation Preservation

 ? ? f(a ? b) 5 f(a) ? f(b)
 ? 1 f(a ? b) 5 f(a) 1 f(b)
 1 ? f(a 1 b) 5 f(a) ? f(b)
 1 1 f(a 1 b) 5 f(a) 1 f(b)  

There are four separate steps involved in proving that a group G is 
isomorphic to a group G.

Step 1 “Mapping.” Define a candidate for the isomorphism; that is, 
 define a function f from G to G.
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Step 2 “1–1.” Prove that f is one-to-one; that is, assume that f(a) 5 
f(b) and prove that a 5 b.

Step 3 “Onto.” Prove that f is onto; that is, for any element g in G, find 
an element g in G such that f(g) 5 g.

Step 4 “O.P.” Prove that f is operation-preserving; that is, show that 
f(ab) 5 f(a)f(b) for all a and b in G.

None of these steps is unfamiliar to you. The only one that may appear 
novel is the fourth one. It requires that one be able to obtain the same result 
by combining two elements and then mapping, or by mapping two ele-
ments and then combining them. Roughly speaking, this says that the two 
processes—operating and mapping—can be done in either order without 
affecting the result. This same concept arises in calculus when we say

lim
 xSa
1f 1x2 . g1x2 2 � lim

xSa
 f 1x2 lim

xSa
 g1x2

or

�
b

a

1f � g2 dx � �
b

a

f dx � �
b

a

g dx.

In linear algebra an invertible linear transformation from a vector 
space V to a vector space W is a group isomorphism from V to W. (Every 
vector space is an Abelian group under vector addition).

Before going any further, let’s consider some examples.

 EXAMPLE 1 Let G be the real numbers under addition and let G be the 
positive real numbers under multiplication. Then G and G are isomor-
phic under the mapping f(x) 5 2x. Certainly, f is a function from G 
to G. To prove that it is one-to-one, suppose that 2x 5 2y. Then log2 2

x 5  
log2 2

y, and therefore x 5 y. For “onto,” we must find for any positive 
real number y some real number x such that f(x) 5 y; that is, 2x 5 y. 
Well, solving for x gives log2 y. Finally,

f(x 1 y) 5 2x1y 5 2x ? 2y 5 f(x)f(y)

for all x and y in G, so that f is operation-preserving as well. 

 EXAMPLE 2 Any infinite cyclic group is isomorphic to Z. Indeed,  if a is a 
generator of the cyclic group, the mapping ak → k is an isomorphism. Any 
 finite cyclic group kal of order n is isomorphic to Zn under the mapping ak → k  
mod n. That these correspondences are functions and are one-to-one is the 
 essence of Theorem 4.1. Obviously, the mappings are onto. That the map-
pings are operation-preserving  follows from Exercise 9 in Chapter 0 in the 
finite case and from the  definitions in the infinite case. 
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 EXAMPLE 3 The mapping from R under addition to itself given by  
f(x) 5 x3 is not an isomorphism. Although f is one-to-one and onto, it 
is not operation-preserving, since it is not true that (x 1 y)3 5 x3 1 y3 for 
all x and y. 

 EXAMPLE 4 U(10) < Z4 and U(5) < Z4. To verify this, one need only 
observe that both U(10) and U(5) are cyclic of order 4. Then appeal to 
Example 2. 

 EXAMPLE 5 There is no isomorphism from Q, the group of rational 
numbers under addition, to Q*, the group of nonzero rational numbers 
under multiplication. If f were such a mapping, there would be a ra-
tional number a such that f(a) 5 21. But then

21 5 f(a) 5 f(1
2a 1 12a) 5 f(1

2a)f(1
2a) 5 [f(1

2a)]2.

However, no rational number squared is 21. 

 EXAMPLE 6 Let G 5 SL(2, R), the group of 2 3 2 real matrices with 
determinant 1. Let M be any 2 3 2 real matrix with determinant 1. 
Then we can define a mapping from G to G itself by fM(A) 5 MAM21 
for all A in G. To verify that fM is an isomorphism, we carry out the 
four steps.

Step 1 fM is a function from G to G. Here, we must show that fM(A) is 
indeed an element of G whenever A is. This follows from properties of 
determinants:

det (MAM21) 5 (det M)(det A)(det M)21 5 1 ? 1 ? 121 5 1.

Thus, MAM21 is in G.

Step 2 fM is one-to-one. Suppose that fM(A) 5 fM(B). Then MAM21 5 
MBM21 and, by left and right cancellation, A 5 B.

Step 3 fM is onto. Let B belong to G. We must find a matrix A in G 
such that fM(A) 5 B. How shall we do this? If such a matrix A is to 
 exist, it must have the property that MAM21 5 B. But this tells us ex-
actly what A must be! For we can solve for A to obtain A 5 M21BM and 
 verify that fM(A) 5 MAM21 5 M(M21BM)M21 5 B.

Step 4 fM is operation-preserving. Let A and B belong to G. Then,

 fM(AB) 5 M(AB)M21 5 MA(M21M)BM21

5 (MAM21)(MBM21) 5 fM(A)fM(B).

The mapping fM is called conjugation by M. 
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Cayley’s Theorem
Our first theorem is a classic result of Cayley. An important generaliza-
tion of it will be given in Chapter 25.

 Theorem 6.1 Cayley’s Theorem (1854)

Every group is isomorphic to a group of permutations.

PROOF To prove this, let G be any group. We must find a group G of per-
mutations that we believe is isomorphic to G. Since G is all we have to 
work with, we will have to use it to construct G. For any g in G,  define a 
function Tg from G to G by

Tg(x) 5 gx    for all x in G.

(In words, Tg is just multiplication by g on the left.) We leave it as an 
exercise (Exercise 35) to prove that Tg is a permutation on the set of 
 elements of G. Now, let G 5 {Tg | g [ G}. Then, G is a group under  
the operation of function composition. To verify this, we first observe 
that for any g and h in G we have TgTh(x) 5 Tg(Th(x)) 5 Tg(hx) 5 g(hx) 5 
(gh)x 5 Tgh(x), so that TgTh 5 Tgh. From this it follows that Te is the iden-
tity and (Tg)

21 5 Tg21 (see Exercise 9). Since function composition is 
associative, we have verified all the conditions for G to be a group.

The isomorphism f between G and G is now ready-made. For every 
g in G, define f(g) 5 Tg. If Tg 5 Th, then Tg(e) 5 Th(e) or ge 5 he. Thus, 
g 5 h and f is one-to-one. By the way G was constructed, we see that f 
is onto. The only condition that remains to be checked is that f is 
 operation-preserving. To this end, let a and b belong to G. Then

 f(ab) 5 Tab 5 TaTb 5 f(a)f(b). 

The group G constructed previously is called the left regular repre-
sentation of G.

 EXAMPLE 7 For concreteness, let us calculate the left regular repre-
sentation U1122 for U(12) 5 {1, 5, 7, 11}. Writing the permutations of 
U(12) in array form, we have (remember, Tx is just multiplication by x)

T1 � c1 5 7 11

1 5 7 11
d ,    T5 � c1 5 7 11

5 1 11 7
d ,

T7 � c1 5 7 11

7 11 1 5
d ,    T11 � c 1 5 7 11

11 7 5 1
d .
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It is instructive to compare the Cayley tables for U(12) and its left regu-
lar representation U1122.

U1122 T1 T5 T7 T11

 T1 T1 T5 T7 T11
 T5 T5 T1 T11 T7
 T7 T7 T11 T1 T5
 T11 T11 T7 T5 T1

U(12) 1 5 7 11

 1 1 5 7 11
 5 5 1 11 7
 7 7 11 1 5
 11 11 7 5 1

It should be abundantly clear from these tables that U(12) and U1122 are 
only notationally different. 

 EXAMPLE 8 Writing the left regular representations for the permuta-
tions TR270

 and TH from D4 in disjoint cycle form we have (see the 
Cayley table in Chapter 1)

TR270
� 1R0R2702 1R90R02 1HD2 1VD� 2

TH � 1R0H2 1R90D2 1R180V2 1R270D� 2
Cayley’s Theorem is important for two contrasting reasons. One is 

that it allows us to represent an abstract group in a concrete way. A sec-
ond is that it shows that the present-day set of axioms we have adopted 
for a group is the correct abstraction of its much earlier predecessor—a 
group of permutations. Indeed, Cayley’s Theorem tells us that abstract 
groups are not different from permutation groups. Rather, it is the view-
point that is different. It is this difference of viewpoint that has stimu-
lated the tremendous progress in group theory and many other branches 
of mathematics in the past 100 years.

It is sometimes very difficult to prove or disprove, whichever the case 
may be, that two particular groups are isomorphic. For example, it re-
quires somewhat sophisticated techniques to prove the surprising fact 
that the group of real numbers under addition is isomorphic to the group 
of complex numbers under addition. Likewise, it is not easy to prove the 
fact that the group of nonzero complex numbers under multiplication is 
isomorphic to the group of complex numbers with absolute value of 1 
under multiplication. In geometric terms, this says that, as groups, the 
punctured plane and the unit circle are isomorphic [1].  

Properties of Isomorphisms
Our next two theorems give a catalog of properties of isomorphisms and 
isomorphic groups.
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PROOF We will restrict ourselves to proving only properties 1, 2, and 4, but 
observe that property 5 follows from properties 1 and 2, property 6 fol-
lows from property 2, and property 7 follows from property 5. For conve-
nience, let us denote the identity in G by e and the identity in G by e. 
Then, since e 5 ee, we have

f(e) 5 f(ee) 5 f(e)f(e).

Also, because f(e) [ G, we have f(e) 5 ef (e), as well. Thus, by can-
cellation, e 5 f(e). This proves property 1.

For positive integers, property 2 follows from the definition of an 
isomorphism and mathematical induction. If n is negative, then 2n is 
positive, and we have from property 1 and the observation about the 
positive integer case that e 5 f(e) 5 f(gng2n) 5 f(gn)f(g2n) 5  
f(gn)(f(g))2n. Thus, multiplying both sides on the right by (f(g))n, we 
have (f(g))n 5 f(gn). Property 1 takes care of the case n 5 0.

To prove property 4, let G 5 kal and note that, by closure, kf(a)l # 
G. Because f is onto, for any element b in G, there is an element ak in 
G such that f(ak) 5 b. Thus, b 5 (f(a))k and so b [ kf(a)l. This 
proves that G 5 kf(a)l.

Now suppose that G 5 kf(a)l. Clearly, kal # G. For any element b in G, 
we have f(b) [ kf(a)l. So, for some integer k we have f(b) 5 (f(a))k 5 
f(ak). Because f is one-to-one, b 5 ak. This proves that kal 5 G. 

When the group operation is addition, property 2 of Theorem 6.2 is 
f(na) 5 nf(a); property 4 says that an isomorphism between two  
cyclic groups takes a generator to a generator.

 Theorem 6.2 Properties of Isomorphisms Acting on Elements

Suppose that f is an isomorphism from a group G onto a group G. 
Then

 1. f carries the identity of G to the identity of G.
 2.  For every integer n and for every group element a in G, f(an) 5 

[f(a)]n.
 3.  For any elements a and b in G, a and b commute if and only if 

f(a) and f(b) commute.
 4. G 5 kal if and only if  G 5 kf(a)l.
 5. |a| 5 |f(a)| for all a in G (isomorphisms preserve orders).
 6.  For a fixed integer k and a fixed group element b in G, the 

 equation xk 5 b has the same number of solutions in G as does 
the equation xk 5 f(b) in G.

 7.  If G is finite, then G and G have exactly the same number of 
 elements of every order.
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 Theorem 6.3 Properties of Isomorphisms Acting on Groups

Suppose that f is an isomorphism from a group G onto a group G. 
Then

 1. f21 is an isomorphism from G onto G.
 2. G is Abelian if and only if G is Abelian.
 3. G is cyclic if and only if G is cyclic.
 4.  If K is a subgroup of G, then f(K) 5 {f(k) | k [ K} is a 

 subgroup of G.
 5.  If K is a subgroup of G, then f21 (K) 5 {g [ G | f(g) [ K} is a 

subgroup of G.
 6. f(Z(G)) 5 Z(G).

PROOF Properties 1 and 4 are left as exercises (Exercises 33 and 34). 
Properties 2 and 6 are a direct consequence of property 3 of Theorem 6.2. 
Property 3 follows from property 4 of Theorem 6.2 and property 1 of 
Theorem 6.3. Property 5 follows from properties 1 and 4. 

Theorems 6.2 and 6.3 provide several convenient ways to prove that 
groups G and G are not isomorphic.

 1. Observe that 0G 0  ? 0G 0 .
 2. Observe that G or G is cyclic and the other is not.
 3. Observe that G or G is Abelian and the other is not.
 4. Show that largest order of any element in G is not the same as the 

largest order of any element in G.
 5. Show that the number of elements of some specific order in G (the 

smallest order greater than 1 is often the good choice) is not the same 
as the number of elements of that order in G.

 EXAMPLE 9 Consider these three groups of order 12: Z12, D6 and A4. 
A quick check shows that the largest order of any element in the three 
are 12, 6 and 3, respectively. So no two are isomorphic. Alternatively, 
the number of elements of order 2 in each is 1, 7, and 3.  

 EXAMPLE 10 The group Q of rational numbers under addition is not 
isomorphic to the group Q* of nonzero rational numbers under multipli-
cation because every non-identity element of Q has infinite order (be-
cause nx 5 0 if and only if n 5 0) or x 5 0 whereas in Q*, 0�1 0  5 2. 

Theorems 6.2 and 6.3 show that isomorphic groups have many prop-
erties in common. Actually, the definition is precisely formulated so 
that isomorphic groups have all group theoretic properties in common. 
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By this we mean that if two groups are isomorphic, then any property 
that can be expressed in the language of group theory is true for one if 
and only if it is true for the other. This is why algebraists speak of iso-
morphic groups as “equal” or “the same.” Admittedly, calling such 
groups equivalent, rather than the same, might be more appropriate, but 
we bow to long-standing tradition.

Automorphisms
Certain kinds of isomorphisms are referred to so often that they have 
been given special names.

Definition Automorphism
An isomorphism from a group G onto itself is called an automorphism 
of G.

The isomorphism in Example 6 is an automorphism of SL(2, R). Two 
more examples follow.

 EXAMPLE 11 The function f from C to C given by f(a 1 bi) 5  
a 2 bi is an automorphism of the group of complex numbers under 
 addition. The restriction of f to C* is also an automorphism of the 
group of nonzero complex numbers under multiplication. (See   
Exercise 37.) 

 EXAMPLE 12 Let R2 5 {(a, b) | a, b [ R}. Then f(a, b) 5 (b, a) is an 
automorphism of the group R2 under componentwise addition. Geo-
metrically, f reflects each point in the plane across the line y 5 x. More 
generally, any reflection across a line passing through the  origin or any 
rotation of the plane about the origin is an automorphism of R2. 

The isomorphism in Example 6 is a particular instance of an auto-
morphism that arises often enough to warrant a name and notation of its 
own.

Definition Inner Automorphism Induced by a
Let G be a group, and let a [ G. The function fa defined by fa(x) 5 
axa21 for all x in G is called the inner automorphism of G induced by a.

We leave it for the reader to show that fa is actually an automor-
phism of G. (Use Example 6 as a model.)

 EXAMPLE 13 The action of the inner automorphism of D4 induced by 
R90 is given in the following table.
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 x 
fR90→  R90 x R90

–1

 R0 → R90R0R90
–1 5 R0

 R90 → R90R90R90
21 5 R90

 R180 → R90R180R90
21 5 R180

 R270 → R90R270R90
21 5 R270

 H → R90HR90
21 5 V

 V → R90VR90
21 5 H

 D → R90DR90
21 5 D9

 D9 → R90D9R90
21 5 D 

When G is a group, we use Aut(G) to denote the set of all auto- 
morphisms of G and Inn(G) to denote the set of all inner automorphisms 
of G. The reason these sets are noteworthy is demonstrated by the next 
theorem.

 Theorem 6.4 Aut(G) and Inn(G) Are Groups†

The set of automorphisms of a group and the set of inner 
automorphisms of a group are both groups under the operation 
of function composition.

PROOF The proof of Theorem 6.4 is left as an exercise (Exercise 17).    
 

The determination of Inn(G) is routine. If G 5 {e, a, b, c. . . .}, then 
Inn(G) 5 {fe, fa, fb, fc, . . .}. This latter list may have duplications, 
however, since fa may be equal to fb even though a 2 b (see Exercise 
45). Thus, the only work involved in determining Inn(G) is deciding 
which distinct elements give the distinct automorphisms. On the other 
hand, the determination of Aut(G) is, in general, quite involved.

 EXAMPLE 14 Inn(D4)
To determine Inn(D4), we first observe that the complete list of inner auto-
morphisms is fR0

, fR90
, fR180

, fR270
, fH, fV, fD, and fD9. Our job is to de-

termine the repetitions in this list. Since R180 [ Z(D4), we have fR180
(x) 5  

R180xR180
21 5 x, so that fR180

 5 fR0
. Also, fR270

(x) 5 R270xR270
21 5 

R90R180xR180
21R90

21 5 R90xR90
21 5 fR90

(x). Similarly, since H 5 R180V 
and D9 5 R180D, we have fH 5 fV and fD 5 fD9. This proves that the 

†The group Aut(G) was first studied by O. Hölder in 1893 and, independently, by E. H. 
Moore in 1894.
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previous list can be pared down to fR0
, fR90

, fH, and fD. We leave it to the 
reader to show that these are distinct  (Exercise 15). 

 EXAMPLE 15 Aut(Z10)
To compute Aut(Z10), we try to discover enough information about an 
element a of Aut(Z10) to determine how a must be defined. Because Z10 
is so simple, this is not difficult to do. To begin with, observe that once 
we know a(1), we know a(k) for any k, because

 a(k) 5 a(1 1 1 1 ? ? ? 1 1)
 

k terms
 5 a(1) 1 a(1) 1 ? ? ? 1 a(1) 5 ka(1).

 
k terms

So, we need only determine the choices for a(1) that make a an 
 automorphism of Z10. Since property 5 of Theorem 6.2 tells us that 
|a(1)| 5 10, there are four candidates for a(1):

a(1) 5 1,    a(1) 5 3,    a(1) 5 7,    a(1) 5 9.

To distinguish among the four possibilities, we refine our notation by 
denoting the mapping that sends 1 to 1 by a1, 1 to 3 by a3, 1 to 7 by a7, 
and 1 to 9 by a9. So the only possibilities for Aut(Z10) are a1, a3, a7, 
and a9. But are all these automorphisms? Clearly, a1 is the identity. 
Let us check a3. Since x mod 10 5 y mod 10 implies 3x mod 10 5 3y 
mod 10, a3 is well defined. Moreover, because a3112 � 3 is a generator 
of Z10, it follows that a3 is onto (and, by Exercise 12 in Chapter 5, it is 
also one-to-one). Finally, since a3(a 1 b) 5 3(a 1 b) 5 3a 1 3b 5 
a3(a) 1 a3(b), we see that a3 is operation-preserving as well. Thus, 
a3 [ Aut(Z10). The same argument shows that a7 and a9 are also 
 automorphisms.

This gives us the elements of Aut(Z10) but not the structure. For 
 instance, what is a3a3? Well, (a3a3)(1) 5 a3(3) 5 3 ? 3 5 9 5 a9(1), so 
a3a3 5 a9. Similar calculations show that a3

3 5 a7 and a3
4 5 a1, so 

that |a3| 5 4. Thus, Aut(Z10) is cyclic. Actually, the following Cayley 
tables reveal that Aut(Z10) is isomorphic to U(10). 

U(10) 1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Aut(Z10) a1 a3 a7 a9

 a1 a1 a3 a7 a9
 a3 a3 a9 a1 a7
 a7 a7 a1 a9 a3
 a9 a9 a7 a3 a1

130 Groups

57960_ch06_ptg01_120-137.indd   130 10/26/15   3:08 PM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



With Example 15 as a guide, we are now ready to tackle the group 
Aut(Zn). The result is particularly nice, since it relates the two kinds of 
groups we have most frequently encountered thus far—the cyclic 
groups Zn and the U-groups U(n).

 Theorem 6.5 Aut(Zn) < U(n)

For every positive integer n, Aut(Zn) is isomorphic to U(n).

PROOF As in Example 15, any automorphism a is determined by the 
value of a(1), and a(1) [ U(n). Now consider the correspondence from 
Aut(Zn) to U(n) given by T: a → a(1). The fact that a(k) 5 ka(1) (see 
Example 13) implies that T is a one-to-one mapping. For if a and b be-
long to Aut(Zn) and a(1) 5 b(1), then a(k) 5 ka(1) 5 kb(1) 5 b(k) for 
all k in Zn, and therefore a 5 b.

To prove that T is onto, let r [ U(n) and consider the mapping a 
 from Zn to Zn defined by a(s) 5 sr (mod n) for all s in Zn. We leave it as  
an exercise to verify that a is an automorphism of Zn (see Exercise 29). 
Then, since T(a) 5 a(1) 5 r, T is onto U(n).

Finally, we establish the fact that T is operation-preserving. Let a,  
b [ Aut(Zn). We then have

T(ab) 5 (ab)(1) 5 a(b(1)) 5 a(1 1 1 1 ? ? ? 1 1)
 

 b(1)

 5 a(1) 1 a(1) 1 ? ? ? 1 a(1) 5 a(1)b(1)
 

 b(1)
 5 T(a)T(b).

This completes the proof.  

The next example shows how inner automorphisms of a group provide 
a convenient way to create multiple isomorphic subgroups of the group.

 EXAMPLE 16 Given the subgroup of S4

H � 5112, 112342, 1132 1242, 114322, 1122 1342, 1242, 1142 1232, 11326

we have the subgroups

1122H1212 � 5112, 113422, 1142 1232, 112342, 1122 1342, 1142,
1132 1242, 12326
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and

11232H13212 � 5112, 114232, 1122 1342, 113242, 1142 1232, 1342,
1132 1242, 11226

of S4 that are isomorphic to H. 

Exercises

Being a mathematician is a bit like being a manic depressive: you spend your 
life alternating between giddy elation and black despair.

Steven G. Krantz, A Primer of Mathematical Writing

  1. Find an isomorphism from the group of integers under addition to 
the group of even integers under addition.

  2. Find Aut(Z).
  3. Let R1 be the group of positive real numbers under multiplication. 

Show that the mapping f(x) 5 2x is an automorphism of R1.
  4. Show that U(8) is not isomorphic to U(10).
  5. Show that U(8) is isomorphic to U(12).
  6. Prove that isomorphism is an equivalence relation. That is, for any 

groups G, H, and K
  G < G;
  G < H implies H < G
  G < H and H < K implies G < K.
  7. Prove that S4 is not isomorphic to D12.
  8. Show that the mapping a → log10 a is an isomorphism from R+ 

 under multiplication to R under addition.
  9. In the notation of Theorem 6.1, prove that Te is the identity and  

that (Tg)
21 5 Tg21.

 10. Given that f is a isomorphism from a group G under addition to a 
group G under addition, convert property 2 of Theorem 6.2 to addi-
tive notation.

 11. Let G be a group under multiplication, G be a group under addition   
and f be an isomorphism from G to G. If f1a2 � a and f1b2 � b,  
find an expression for f1a3b�22 in terms of a and b.

 12. Let G be a group. Prove that the mapping a(g) 5 g21 for all g in G 
is an automorphism if and only if G is Abelian.

 13. If g and h are elements from a group, prove that fgfh 5 fgh.
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 14. Find two groups G and H such that G ] H, but Aut(G) < Aut(H).
 15. Prove the assertion in Example 14 that the inner automorphisms 

fR0
, fR90

, fH, and fD of D4 are distinct.
 16. Find Aut(Z6).
 17. If G is a group, prove that Aut(G) and Inn(G) are groups. (This  

exercise is referred to in this chapter.)
 18. If a group G is isomorphic to H, prove that Aut(G) is isomorphic to 

Aut(H).
 19. Suppose f belongs to Aut(Zn) and a is relatively prime to n.  

If f(a) 5 b, determine a formula for f(x).
 20. Let H be the subgroup of all rotations in Dn and let f be an automor-

phism of Dn. Prove that f(H) 5 H. (In words, an automor phism of 
Dn carries rotations to rotations.)

 21. Let H 5 {b [ S5 | b(1) 5 1} and K 5 {b [ S5 | b(2) 5 2}. Prove 
that H is isomorphic to K. Is the same true if S5 is replaced by Sn, 
where n $ 3?

 22. Show that Z has infinitely many subgroups isomorphic to Z.
 23. Let n be an even integer greater than 2 and let f be an automor-

phism of Dn. Determine f(R180).
 24. Let f be an automorphism of a group G. Prove that H 5 {x [ G | 

f(x) 5 x} is a subgroup of G.
 25. Give an example of a cyclic group of smallest order that contains 

both a subgroup isomorphic to Z12 and a subgroup isomorphic to 
Z20. No need to prove anything, but explain your reasoning.

 26. Suppose that f: Z20 S Z20 is an automorphism and f(5) 5 5. What 
are the possibilities for f(x)?

 27. Identify a group G that has subgroups isomorphic to Zn for all posi-
tive integers n.

 28. Prove that the mapping from U(16) to itself given by x → x3 is an 
automorphism. 

 29. Let r [ U(n). Prove that the mapping a: Zn → Zn defined by a(s) 5  
sr mod n for all s in Zn is an automorphism of Zn. (This exercise is 
 referred to in this chapter.)

 30. The group e c1 a

0 1
d ` a [ Z f  is isomorphic to what familiar group? 

What if Z is replaced by R?
 31.    If f and g are isomorphisms from the cyclic group kal to some 

group and f1a2 � g1a2, prove that f � g.
 32. Suppose that f: Z50S Z50 is an automorphism with f172 � 13. 

Determine a formula for f1x2.
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 33. Prove property 1 of Theorem 6.3.
 34. Prove property 4 of Theorem 6.3.
 35. Referring to Theorem 6.1, prove that Tg is indeed a permutation on 

the set G.
 36. Prove or disprove that U(20) and U(24) are isomorphic.
 37. Show that the mapping f(a 1 bi) 5 a 2 bi is an automorphism of 

the group of complex numbers under addition. Show that f pre-
serves complex multiplication as well—that is, f(xy) 5 f(x)f(y) 
for all x and y in C. (This exercise is referred to in Chapter 15.)

 38. Let

G 5 {a 1 b22 | a, b are rational}

  and

H 5 e ca 2b

b a
d ` a, b are rational f .

  Show that G and H are isomorphic under addition. Prove that G and 
H are closed under multiplication. Does your isomorphism preserve 
multiplication as well as addition? (G and H are examples of rings—
a topic we will take up in Part 3.)

 39. Prove that Z under addition is not isomorphic to Q under addition.
 40. Explain why S8 contains subgroups isomorphic to Z15, U(16), and D8.
 41. Let C be the complex numbers and

M 5  e ca �b

b a
d `  a, b [ R f .

  Prove that C and M are isomorphic under addition and that C* and 
M*, the nonzero elements of M, are isomorphic under multiplication.

 42. Let Rn 5 {(a1, a2, . . . , an) | ai [ R}. Show that the mapping f: (a1, 
a2, . . . , an) → (2a1, 2a2, . . . , 2an) is an automorphism of  
the group Rn under componentwise addition. This automorphism is 
called inversion. Describe the action of f geometrically.

 43. Consider the following statement: The order of a subgroup divides 
the order of the group. Suppose you could prove this for finite 
permuta tion groups. Would the statement then be true for all finite 
groups? Explain.

 44. Suppose that G is a finite Abelian group and G has no element of 
order 2. Show that the mapping g → g2 is an automorphism of G. 
Show, by example, that there is an infinite Abelian group for which 
the mapping g S g2 is one-to-one and operation-preserving but not 
an automorphism.
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 45. Let G be a group and let g [ G. If z [ Z(G), show that the inner 
 automorphism induced by g is the same as the inner automorphism 
induced by zg (that is, that the mappings fg and fzg are equal).

 46. Prove that R under addition is not isomorphic to R* under multipli-
cation.

 47. Suppose that g and h induce the same inner automorphism of a 
group G. Prove that h21g [ Z(G).

 48. Combine the results of Exercises 45 and 47 into a single “if and 
only if” theorem.

 49. If a and b are elements in Sn 1n � 32,prove that fa � fb implies  
that a � b. (Here, fa is the inner automorphism of Sn induces by a.)

 50. Prove or disprove that the mapping f from Q�, the positive rational 
numbers under multiplication, to itself given by f1x2 � x2 is an 
 automorphism. 

 51. Suppose the f and g are isomorphisms of some group G to the same 
group. Prove that H 5 {g [ G | f(g) 5 g(g)} is a subgroup of G.

 52. Let G be a group. Complete the following statement: 0 Inn1G2 0 � 1
if and only if _______________.

 53. Suppose that G is an Abelian group and f is an automorphism of G. 
Prove that H 5 {x [ G | f(x) 5 x21} is a subgroup of G.

 54. Let f be an automorphism of D8. What are the possibilities for 
f1R452?

 55. Let f be an automorphism of C*, the group of nonzero complex 
numbers under multiplcation. Determine f1�12. Determine the 
possibilities for f1i2.

 56. Let G 5 {0, 62, 64, 66, . . .} and H 5 {0, 63, 66, 69, . . .}. 
Prove that G and H are isomorphic groups under addition by defin-
ing a mapping that has the required properties. Does your isomor-
phism preserve multiplication? Generalize to the case when 
G � kml and H � knl, where m and n are integers.

 57. Give three examples of groups of order 120, no two of which are 
isomophic. Explain why they are not isomorphic.

 58. Let f be an automorphism of D4 such that f1H2 � D. Find f1V2.
 59. Suppose that f is an automorphism of D4 such that f1R902 � R270 

and f1V2 � V . Determine f1D2 and f1H2.
 60. In Aut(Z9), let ai denote the automorphism that sends 1 to i where 

gcd(i, 9) 5 1. Write a5 and a8 as permutations of {0, 1, . . . , 8} in 
disjoint cycle form. [For example, a2 5 (0)(124875)(36).]

 61. Write the permutation corresponding to R90 in the left regular repre-
sentation of D4 in cycle form.
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136 Groups

 62. Show that every automorphism f of the rational numbers Q under 
addition to itself has the form f(x) 5 xf(1).

 63. Prove that Q1, the group of positive rational numbers under multi-
plication, is isomorphic to a proper subgroup of itself.

 64. Prove that Q, the group of rational numbers under addition, is not 
 isomorphic to a proper subgroup of itself.

 65. Prove that every automorphism of R*, the group of nonzero real 
numbers under multiplication, maps positive numbers to positive 
numbers and negative numbers to negative numbers.

 66. Prove that Q*, the group of nonzero rational numbers under multi-
plication, is not isomorphic to Q, the group of rational numbers 
under addition. 

 67. Give a group theoretic proof that Q under addition is not isomorphic 
to R+ under  multiplication.

Reference

 1. J. R. Clay, “The Punctured Plane Is Isomorphic to the Unit Circle,” Journal 
of Number Theory 1 (1969): 500–501.

Computer Exercises

Software for the computer exercise in this chapter is available at the website:

http://www.d.umn.edu/~jgallian
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Arthur Cayley

Arthur Cayley was born on August 16, 
1821, in England. His genius showed itself at 
an early age. He published his first research 
paper while an  undergraduate of 20, and in 
the next year he published eight papers. 
While still in his early 20s, he originated the 
concept of n-dimensional geometry.

After graduating from Trinity College, 
Cambridge, Cayley stayed on for three 
years as a tutor. At the age of 25, he began 
a 14-year career as a lawyer. During this 
 period, he published approximately 200 
mathematical papers, many of which are 
now classics.

In 1863, Cayley accepted the newly es-
tablished Sadlerian professorship of mathe-
matics at Cambridge University. He spent 
the rest of his life in that position. One of his 
notable accomplishments was his role in the 

successful effort to have women admitted to 
Cambridge.

Among Cayley’s many innovations in 
mathematics were the notions of an abstract 
group and a group algebra, and the matrix 
concept. He made major contributions to  
geometry and linear algebra. Cayley and his 
lifelong friend and collaborator J. J. Sylvester 
were the founders of the theory of invariants, 
which was later to play an important role in 
the theory of relativity.

Cayley’s collected works comprise 13 vol-
umes, each about 600 pages in length. He 
died on January 26, 1895.

To find more information about Cayley, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

Cayley is forging the weapons for future gener-
ations of physicists.
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Cosets and Lagrange’s  
Theorem

It might be difficult , at this point , for students to see the extreme 
importance of this result [Lagrange’s Theorem]. As we penetrate 
the subject more deeply they will become more and more aware 
of its basic character.

I. N. Herstein, Topics in Algebra

Lagrange’s theorem is extremely important and justly famous in 
group theory. 

Norman J. Block, Abstract Algebra with Applications

7

Properties of Cosets
In this chapter, we will prove the single most important theorem in finite 
group theory—Lagrange’s Theorem. In his book on abstract algebra,  
I. N. Herstein likened it to the ABC’s for finite groups. But first we in-
troduce a new and powerful tool for analyzing a group—the notion of a 
coset. This notion was invented by Galois in 1830, although the term 
was coined by G. A. Miller in 1910.

Definition Coset of H in G
Let G be a group and let H be a nonempty subset of G. For any a [ G, 
the set {ah | h [ H} is denoted by aH. Analogously, Ha 5 {ha | h [ H} 
and aHa21 5 {aha21 | h [ H}. When H is a subgroup of G, the set aH is 
called the left coset of H in G containing a, whereas Ha is called the right 
coset of H in G containing a. In this case, the element a is called the coset 
 representative of aH (or Ha). We use |aH| to denote the number of ele-
ments in the set aH, and |Ha| to denote the number of elements in Ha.

 EXAMPLE 1 Let G 5 S3 and H 5 {(1), (13)}. Then the left cosets of 
H in G are
 (1)H 5 H,

(12)H 5 {(12), (12)(13)} 5 {(12), (132)} 5 (132)H,
 (13)H 5 {(13), (1)} 5 H,
 (23)H 5 {(23), (23)(13)} 5 {(23), (123)} 5 (123)H. 138
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 EXAMPLE 2 Let _ 5 {R0, R180} in D4, the dihedral group of order 8. 
Then,

 R0_ 5 _,
 R90_ 5 {R90, R270} 5 R270_,
 R180_ 5 {R180, R0} 5 _,
 V_ 5 {V, H} 5 H_,
 D_ 5 {D, D9} 5 D9_. 

 EXAMPLE 3 Let H 5 {0, 3, 6} in Z9 under addition. In the case that the 
group operation is addition, we use the notation a 1 H instead of aH. 
Then the cosets of H in Z9 are

0 1 H 5 {0, 3, 6} 5 3 1 H 5 6 1 H,
1 1 H 5 {1, 4, 7} 5 4 1 H 5 7 1 H,

 2 1 H 5 {2, 5, 8} 5 5 1 H 5 8 1 H. 

The three preceding examples illustrate a few facts about cosets that 
are worthy of our attention. First, cosets are usually not  subgroups. Sec-
ond, aH may be the same as bH, even though a is not the same as b. 
Third, since in Example 1 (12)H 5 {(12), (132)} whereas H(12) 5 
{(12), (123)}, aH need not be the same as Ha.

These examples and observations raise many questions. When does  
aH 5 bH? Do aH and bH have any elements in common? When does  
aH 5 Ha? Which cosets are subgroups? Why are cosets important? The 
next lemma and theorem answer these questions. (Analogous results 
hold for right cosets.)

 Lemma Properties of Cosets

Let H be a subgroup of G, and let a and b belong to G. Then,

 1. a [ aH.
 2. aH 5 H if and only if a [ H.
 3. (ab)H 5 a(bH) and H(ab) 5 (Ha)b.
 4. aH 5 bH if and only if a [ bH.
 5. aH 5 bH or aH > bH 5 [.
 6. aH 5 bH if and only if a21b [ H.
 7. |aH| 5 |bH|.
 8. aH 5 Ha if and only if H 5 aHa21.
 9. aH is a subgroup of G if and only if a [ H.

PROOF

1. a 5 ae [ aH.
2.  To verify property 2, we first suppose that aH 5 H. Then a 5  

ae [ aH 5 H. Next, we assume that a [ H and show that aH # H 

1397 | Cosets and Lagrange’s Theorem
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and H # aH. The first inclusion follows directly from the closure of H. 
To show that H # aH, let h [ H. Then, since a [ H and h [ H, we 
know that a21h [ H. Thus, h 5 eh 5 (aa21)h 5 a(a21h) [ aH.

3.  This follows directly from (ab)h 5 a(bh) and h(ab) 5 (ha)b.
4.  If aH 5 bH, then a 5 ae [ aH 5 bH. Conversely, if a [ bH we have  

a 5 bh where h [ H, and therefore aH 5 (bh)H 5 b(hH) 5 bH.
5.  Property 5 follows directly from property 4, for if there is an ele-

ment c in aH y bH, then cH 5 aH and cH 5 bH.
6.  Observe that aH 5 bH if and only if H 5 a21bH. The result now 

follows from property 2.
7.  To prove that |aH| 5 |bH|, it suffices to define a one-to-one map-

ping from aH onto bH. Obviously, the correspondence ah → bh  
maps aH onto bH. That it is one-to-one follows directly from the 
cancellation property.

8.  Note that aH 5 Ha if and only if (aH)a21 5 (Ha)a21 5 H(aa–1) 5 
H—that is, if and only if aHa21 5 H.

9.  If aH is a subgroup, then it contains the identity e. Thus, aH >  
eH 2 [; and, by property 5, we have aH 5 eH 5 H. Thus, from 
 property 2, we have a [ H. Conversely, if a [ H, then, again by 
property 2, aH 5 H. 

Although most mathematical theorems are written in symbolic form, 
one should also know what they say in words. In the preceding lemma, 
property 1 says simply that the left coset of H containing a does contain 
a. Property 2 says that the H “absorbs” an element if and only if the ele-
ment belongs to H. Property 3 says that the left coset of H created by 
multiplying H on the left by ab is the same as the one created by multi-
plying H on the left by b then multiplying the resulting coset bH on the 
left by a (and analogously for multiplication on the right by ab). Property 
4 shows that a left coset of H is uniquely determined by any one of its 
elements. In particular, any element of a left coset can be used to repre-
sent the coset. Property 5 says—and this is very important—that two 
left cosets of H are either identical or disjoint. Thus, a left coset of H is 
uniquely determined by any one of its elements. In particular, any ele-
ment of a left coset can be used to represent the coset. Property 6 shows 
how we may transfer a question about equality of left cosets of H to a 
question about H itself and vice versa. Property 7 says that all left cosets 
of H have the same size. Property 8 is analogous to property 6 in that it 
shows how a question about the equality of the left and right cosets of H 
containing a is equivalent to a question about the equality of two sub-
groups of G. The last property of the lemma says that H itself is the only 
coset of H that is a subgroup of G.
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Note that properties 1, 5, and 7 of the lemma guarantee that the 
left cosets of a subgroup H of G partition G into blocks of equal size. 
 Indeed, we may view the cosets of H as a partitioning of G into 
equivalence classes under the equivalence relation defined by a , b 
if aH 5 bH (see Theorem 0.7).

In practice, the subgroup H is often chosen so that the cosets parti-
tion the group in some highly desirable fashion. For example, if G is   
3-space R3 and H is a plane through the origin, then the coset (a, b, c) 1 
H (addition is done componentwise) is the plane passing through the 
point (a, b, c) and parallel to H. Thus, the cosets of H constitute a parti-
tion of 3-space into planes parallel to H. If G 5 GL(2, R) and  
H 5 SL(2, R), then for any matrix A in G, the coset AH is the set of all 
2 3 2 matrices with the same determinant as A. Thus,

c2 0

0 1
d  H  is the set of all 2 3 2 matrices of determinant 2

and

c1 2

2 1
d  H  is the set of all 2 3 2 matrices of determinant 23.

Similarly, it follows from Example 15 of Chapter 2 and  
Property 7 of complex numbers in Chapter 0 that if a � bi �

2a2 � b2 1cos u � i sin u2 the set of n nth-roots of a 1 bi is the coset 

of
 
kcos 360�

n � i sin 360�
n l that contains 2

n
a2 � b2 (cos un � i sin un).

Property 5 of the lemma is useful for actually finding the distinct co-
sets of a subgroup. We illustrate this in the next example.

 EXAMPLE 4 To find the cosets of H 5 {1, 15} in G 5 U(32) 5  
{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}, we begin with  
H 5 {1, 15}. We can find a second coset by choosing any element not in 
H, say 3, as a coset representative. This gives the coset 3H 5 {3, 13}. We 
find our next coset by choosing a representative not already appearing in 
the two previously chosen cosets, say 5. This gives us the coset 5H 5  
{5, 11}. We continue to form cosets by picking elements from U(32) that 
have not yet appeared in the previous cosets as representatives of the 
cosets until we have accounted for every element of U(32). We then have 
the complete list of all distinct cosets of H. 

kcos 360�
n � i sin 360�

n l
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Lagrange’s Theorem and Consequences
We are now ready to prove a theorem that has been around for more 
than 200 years—longer than group theory itself! (This theorem was not 
originally stated in group theoretic terms.) At this stage, it should come 
as no surprise.

 Theorem 7.1 Lagrange’s Theorem†: |H| Divides |G|

If G is a finite group and H is a subgroup of G, then |H| divides |G|. 
Moreover, the number of distinct left (right) cosets of H in G is |G| / |H|.

PROOF Let a1H, a2H, . . . , arH denote the distinct left cosets of H in G. 
Then, for each a in G, we have aH 5 aiH for some i. Also, by property 1 
of the lemma, a [ aH. Thus, each member of G belongs to one of the 
cosets aiH. In symbols,

G 5 a1H < ? ? ? < arH.

Now, property 5 of the lemma shows that this union is disjoint, so that

|G| 5 |a1H| 1 |a2H| 1 ? ? ? 1 |arH|.

Finally, since |aiH| 5 |H| for each i, we have |G| 5 r|H|. 

We pause to emphasize that Lagrange’s Theorem is a subgroup candi-
date criterion; that is, it provides a list of candidates for the orders of the 
subgroups of a group. Thus, a group of order 12 may have subgroups of 
order 12, 6, 4, 3, 2, 1, but no others. Warning! The converse of  Lagrange’s 
Theorem is false. For example, a group of order 12 need not have a sub-
group of order 6. We prove this in Example 5.

A special name and notation have been adopted for the number of 
left (or right) cosets of a subgroup in a group. The index of a subgroup 
H in G is the number of distinct left cosets of H in G. This number  
is denoted by |G:H|. As an immediate consequence of the proof of 
 Lagrange’s Theorem, we have the following useful formula for the 
number of distinct left (or right) cosets of H in G.

†Lagrange stated his version of this theorem in 1770, but the first complete proof was 
given by Pietro Abbati some 30 years later.
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 Corollary 1 |G:H | 5 |G|/|H |

If G is a finite group and H is a subgroup of G, then |G:H| 5 |G|/|H|.

 Corollary 2 |a | Divides |G |

In a finite group, the order of each element of the group divides the 
order of the group.

PROOF Recall that the order of an element is the order of the  subgroup 
generated by that element. 

 Corollary 3 Groups of Prime Order Are Cyclic

A group of prime order is cyclic.

PROOF Suppose that G has prime order. Let a [ G and a 2 e. Then, |kal| 
divides |G| and |kal| 2 1. Thus, |kal| 5 |G| and the corollary  follows. 

 Corollary 4 a|G | 5 e

Let G be a finite group, and let a [ G. Then, a|G| 5 e.

PROOF By Corollary 2, |G| 5 |a|k for some positive integer k. Thus, 
a|G| 5 a|a|k 5 ek 5 e. 

 Corollary 5 Fermat’s Little Theorem

For every integer a and every prime p, ap mod p 5 a mod p.

PROOF By the division algorithm, a 5 pm 1 r, where 0 # r , p. Thus, a 
mod p 5 r, and it suffices to prove that rp mod p 5 r. If r 5 0, the result is 
trivial, so we may assume that r [ U(p). [Recall that U(p) 5 {1, 2, . . . , p 
2 1} under multiplication modulo p.] Then, by the preceding corollary, 
rp21 mod p 5 1 and, therefore, rp mod p 5 r. 

Fermat’s Little Theorem has been used in conjunction with computers 
to test for primality of certain numbers. One case concerned the number 
p 5 2257 2 1. If p is prime, then we know from Fermat’s Little Theorem 
that 10 p mod p 5 10 mod p and, therefore, 10 p11 mod p 5 100 mod p. 
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Using multiple precision and a simple loop, a computer was able to cal-
culate 10p11 mod p 5 102257 mod p in a few seconds. The result was not 
100, and so p is not prime.

 EXAMPLE 5 The Converse of Lagrange’s Theorem Is False.† The group A4 
of order 12 has no subgroups of order 6. To verify this, recall that A4 has 
eight elements of order 3 (a5 through a12, in the notation of Table 5.1) and 
suppose that H is a subgroup of order 6. Let a be any element of order 3 
in  A4. If a is not in H, then A4 5 H c aH. But then a2 is in H or a2 is in aH. 
If a2 is in H then so is (a2)2 5 a4 5 a, so this case is ruled out. If a2 is in 
aH, then a2 5 ah for some h in H, but this also implies that a is in H. This 
argument shows that any subgroup of A4 of order 6 must contain all eight 
elements of A4 of order 3, which is absurd. 

Lagrange’s Theorem demonstrates that the finiteness of a group im-
poses severe restrictions on the possible orders of subgroups. The next 
theorem is a counting technique that also places severe limits on the 
existence of certain subgroups in finite groups.

 Theorem 7.2 |HK | 5 |H||K|I |H y K|

For two finite subgroups H and K of a group, define the set  
HK 5 {hk | h [ H, k [ K}. Then |HK| 5 |H||K|/|H y K|.

PROOF Although the set HK has |H||K| products, not all of these products 
need represent distinct group elements. That is, we may have hk 5 h9k9 
where h ? h9 and k ? k9. To determine |HK|, we must find the extent to 
which this happens. For every t in H y K, the product hk 5 (ht)(t21k), so 
each group element in HK is represented by at least |H y K| products in 
HK. But hk 5 h9k9 implies t 5 h21h9 5 kk921 [ H y K, so that h9 5 ht 
and k9 5 t21k. Thus, each element in HK is represented by exactly  
|H y K| products. So, |HK| 5 |H||K|/|H y K|. 

 EXAMPLE 6 A group of order 75 can have at most one subgroup of 
order 25. (It is shown in Chapter 24 that every group of order 75 has a 
subgroup of order 25). To see that a group of order 75 cannot have two 
subgroups of order 25, suppose H and K are two such subgroups. Since 
|H y K| divides |H| 5 25 and |H y K| 5 1 or 5 results in |HK| 5 
|H||K|/| H y K| 5 25 ? 25/|H y K| 5 625 or 125 elements, we have that 
|H y K| 5 25 and therefore H 5 K. 

†The first counterexample to the converse of Lagrange’s Theorem was given by Paolo 
Ruffini in 1799.
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For any prime p . 2, we know that Z2p and Dp are nonisomorphic 
groups of order 2p. This naturally raises the question of whether there 
could be other possible groups of these orders. Remarkably, with just 
the simple machinery available to us at this point, we can answer this 
question.

 Theorem 7.3 Classification of Groups of Order 2p

Let G be a group of order 2p, where p is a prime greater than 2. Then 
G is isomorphic to Z2p or Dp.

PROOF We assume that G does not have an element of order 2p and show 
that G < Dp. We begin by first showing that G must have an  
element of order p. By our assumption and Lagrange’s Theorem, any 
nonidentity element of G must have order 2 or p. Thus, to verify our as- 
sertion, we may assume that every nonidentity element of G has order 2.  
In this case, we have for all a and b in the group ab 5 (ab)21 5 b21a21 5 ba, 
so that G is Abelian. Then, for any nonidentity elements a, b [ G with  
a 2 b, the set {e, a, b, ab} is closed and therefore is a subgroup of G of 
order 4. Since this contradicts Lagrange’s Theorem, we have proved that 
G must have an element of order p; call it a.

Now let b be any element not in kal. Then by Lagrange’s Theorem and 
our assumption that G does not have an element of order 2p, we have 
that |b| 5 2 or p. Because |kal y kbl| divides |kal| 5 p and kal ? kbl we 
have that |kal y kbl| 5 1. But then |b| 5 2, for otherwise, by Theorem 7.2 
|kalkbl|5|kal||kbl| 5 p2 . 2p 5 |G|, which is impossible. So, any ele-
ment of G not in kal has order 2.

Next consider ab. Since ab o  kal, our argument above shows that  
|ab| 5 2. Then ab 5 (ab)21 5 b21a21 5 ba21. Moreover, this relation 
completely determines the multiplication table for G. [For example, 
a3(ba4) 5 a2(ab)a4 5 a2(ba21)a4 5 a(ab)a3 5 a(ba21)a3 5 (ab)a2 5 
(ba21)a2 5 ba.] Since the multiplication table for all noncyclic groups of 
order 2p is uniquely determined by the relation ab 5 ba21, all  noncyclic 
groups of order 2p must be isomorphic to each other. But of course, Dp, 
the dihedral group of order 2p, is one such group. 

As an immediate corollary, we have that the non-Abelian groups S3, 
the symmetric group of degree 3, and GL(2, Z2), the group of 2 3 2 
matrices with nonzero determinants with entries from Z2 (see Example 18 
and Exercise 49 in Chapter 2) are isomorphic to D3.
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An Application of Cosets  
to Permutation Groups

Lagrange’s Theorem and its corollaries dramatically demonstrate the 
fruitfulness of the coset concept. We next consider an application of co-
sets to permutation groups.

Definition Stabilizer of a Point
Let G be a group of permutations of a set S. For each i in S, let stabG(i) 5 
{f [ G | f(i) 5 i}. We call stabG(i) the stabilizer of i in G. 

The student should verify that stabG(i) is a subgroup of G. (See 
 Exercise 35 in Chapter 5.)

Definition Orbit of a Point
Let G be a group of permutations of a set S. For each i in S, let orbG(i) 5 
{f(i) | f [ G}. The set orbG(i) is a subset of S called the orbit of i  under 
G. We use |orbG(i)| to denote the number of elements in orbG(i).

Example 7 should clarify these two definitions.

 EXAMPLE 7 Let G be the following subgroup of S8

{(1), (132)(465)(78), (132)(465), (123)(456),

 (123)(456)(78), (78)}.

Then,

orbG(1) 5 {1, 3, 2},    stabG(1) 5 {(1), (78)},
orbG(2) 5 {2, 1, 3},    stabG(2) 5 {(1), (78)},
orbG(4) 5 {4, 6, 5},    stabG(4) 5 {(1), (78)},
orbG(7) 5 {7, 8},      stabG(7) 5 {(1), (132)(465), (123)(456)}. 

 EXAMPLE 8 We may view D4 as a group of permutations of a  
square region. Figure 7.1(a) illustrates the orbit of the point p under D4, 
and Figure 7.1(b) illustrates the orbit of the point q under D4. Observe 
that stabD

4
( p) 5 {R0, D}, whereas stabD

4
(q) 5 {R0}. 

p

(a)       

q

(b)

Figure 7.1

The preceding two examples also illustrate the following theorem.
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†“People who don’t count won’t count” (Anatole France).

 Theorem 7.4 Orbit-Stabilizer Theorem

Let G be a finite group of permutations of a set S. Then, for  
any i from S, |G| 5 |orbG(i)| |stabG(i)|.

PROOF By Lagrange’s Theorem, |G|/|stabG(i)| is the number of distinct 
left cosets of stabG(i) in G. Thus, it suffices to establish a one- 
to-one correspondence between the left cosets of stabG(i) and the  
elements in the orbit of i. To do this, we define a correspondence T 
by mapping the coset fstabG(i) to f(i) under T. To show that T is a well-
defined function, we must show that astabG(i) 5 bstabG(i) implies a(i) 5 
b(i). But astabG(i) 5 bstabG(i) implies a21b [ stabG(i), so that  
(a21b) (i) 5 i and, therefore, b(i) 5 a(i). Reversing the argument from the 
last step to the first step shows that T is also one-to-one. We conclude the 
proof by showing that T is onto orbG(i). Let j [ orbG(i). Then a(i) 5 j for 
some a [ G and clearly T(astabG(i)) 5 a(i) 5 j, so that T is onto. 

 We leave as an exercise the proof of the important fact that the orbits 
of the elements of a set S under a group partition S (Exercise 43).

The Rotation Group of a Cube 
and a Soccer Ball

It cannot be overemphasized that Theorem 7.4 and Lagrange’s Theorem 
(Theorem 7.1) are counting theorems.† They enable us to determine the 
numbers of elements in various sets. To see how Theorem 7.4 works, we 
will determine the order of the rotation group of a cube and a soccer ball. 
That is, we wish to find the number of essentially different ways in  
which we can take a cube or a soccer ball in a certain location in space, 
physically rotate it, and then have it still occupy its original location.

 EXAMPLE 9 Let G be the rotation group of a cube. Label the six faces 
of the cube 1 through 6. Since any rotation of the cube must carry each 
face of the cube to exactly one other face of the cube and different rota-
tions induce different permutations of the faces, G can be viewed as a 
group of permutations on the set {1, 2, 3, 4, 5, 6}. Clearly, there is some 
rotation about a central horizontal or vertical axis that carries face num-
ber 1 to any other face, so that |orbG(1)| 5 6. Next, we consider stabG(1). 
Here, we are asking for all rotations of a cube that leave face number 1 
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where it is. Surely, there are only four such motions— rotations of 0°, 
90°, 180°, and 270°—about the line perpendicular to the face and pass-
ing through its center (see Figure 7.2). Thus, by Theorem 7.4, |G| 5 
|orbG(1)| |stabG(1)| 5 6 ? 4 5 24. 

Figure 7.2 Axis of rotation of a cube.

Now that we know how many rotations a cube has, it is simple to de-
termine the actual structure of the rotation group of a cube. Recall that 
S4 is the symmetric group of degree 4.

 Theorem 7.5 The Rotation Group of a Cube

The group of rotations of a cube is isomorphic to S4.

PROOF Since the group of rotations of a cube has the same order as S4, 
we need only prove that the group of rotations is isomorphic to a sub-
group of S4. To this end, observe that a cube has four diagonals and that 
the rotation group induces a group of permutations on the four diago-
nals. But we must be careful not to assume that different rotations cor-
respond to different permutations. To see that this is so, all we need do 
is show that all 24 permutations of the diagonals arise from rotations. 
Labeling the consecutive diagonals 1, 2, 3, and 4, it is obvious that there 
is a 90° rotation that yields the permutation a 5 (1234); another 90° 
rotation about an axis perpendicular to our first axis yields the permuta-
tion b 5 (1423). See Figure 7.3. So, the group of permutations induced 
by the rotations contains the eight-element subgroup {e, a, a2, a3, b2, 
b2a, b2a2, b2a3} (see Exercise 63) and ab, which has order 3. Clearly, 
then, the rotations yield all 24 permutations, since the order of the rota-
tion group must be divisible by both 8 and 3. 

 EXAMPLE 10 A traditional soccer ball has 20 faces that are regular hexa-
gons and 12 faces that are regular pentagons. (The technical term  
for this solid is truncated icosahedron.) To determine the number of ro- 
tational symmetries of a soccer ball using Theorem 7.4, we may choose our 
set S to be the 20 hexagons or the 12 pentagons. Let us say that S is the 
set of 12 pentagons. Since any pentagon can be carried to any other
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2

2

3

1

3

1

4

4

= (1234)α  

2

2

3

1

3

1

4

4

= (1423)β

Figure 7.3

pentagon by some rotation, the orbit of any pentagon is S. Also, there 
are five rotations that fix (stabilize) any particular pentagon. Thus, by 
the Orbit-Stabilizer Theorem, there are 12 ? 5 5 60 rotational symme-
tries. (In case you are interested, the rotation group of a soccer ball is 
isomorphic to A5.) 

In 1985, chemists Robert Curl, Richard Smalley, and Harold Kroto 
caused tremendous excitement in the scientific community when they 
created a new form of carbon by using a laser beam to vaporize graphite. 
The structure of the new molecule was composed of 60 carbon atoms  
arranged in the shape of a soccer ball! Because the shape of the new mol-
ecule reminded them of the dome structures built by the architect  
R. Buckminster Fuller, Curl, Smalley, and Kroto named their discovery 
“buckyballs.” Buckyballs are the roundest, most symmetric large mole-
cules known. Group theory has been particularly useful in illuminating 
the properties of buckyballs, since the absorption spectrum of a molecule 
depends on its symmetries and chemists classify various molecular states 
according to their symmetry properties. The buckyball discovery spurred 
a revolution in carbon chemistry. In 1996, Curl, Smalley, and Kroto 
 received the Nobel Prize in chemistry for their discovery.
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An Application of Cosets  
to the Rubik’s Cube

Recall from Chapter 5 that in 2010 it was proved via a computer compu-
tation, which took 35 CPU-years to complete, that every Rubik’s cube 
could be solved in at most 20 moves. To carry out this effort, the re-
search team of Morley Davidson, John Dethridge, Herbert Kociemba, 
and Tomas Rokicki applied a program of Rokicki, which built on early 
work of Kociemba, that checked the elements of the cosets of a sub-
group H of order (8! · 8! · 4!)/2 5 19,508,428,800 to see if each cube in 
a position corresponding to the elements in a coset could be solved 
within 20 moves. In the rare cases where Rokicki’s program did not 
work, an alternate method was employed. Using symmetry consider-
ations, they were able to reduce the approximately 2 billion cosets of H 
to about 56 million cosets for testing. Cosets played a role in this effort 
because Rokicki’s program could handle the 19.51 billion elements in 
the same coset in about 20 seconds.

Exercises

I don’t know, Marge. Trying is the first step towards failure.
Homer Simpson

 1. Let H 5 {0, 63, 66, 69, . . .}. Find all the left cosets of H in Z.
 2. Rewrite the condition a21b [ H given in property 6 of the lemma on 

page 139 in additive notation. Assume that the group is Abelian.
 3. Let H be as in Exercise 1. Use Exercise 2 to decide whether or not 

the following cosets of H are the same.
 a. 11 1 H and 17 1 H
 b. 21 1 H and 5 1 H
 c. 7 1 H and 23 1 H
 4. Let n be a positive integer. Let H 5 {0, 6n, 62n, 63n, . . .}. Find 

all left cosets of H in Z. How many are there?
 5. Find all of the left cosets of {1, 11} in U(30).
 6. Suppose that a has order 15. Find all of the left cosets of ka5l in kal.
 7. Let |a| 5 30. How many left cosets of ka4l in kal are there? List them.
 8. Give an example of a group G and subgroups H and K such that  

HK 5 {h [ H, k [ K} is not a subgroup of G.
 9. Let H 5 {(1), (12)(34), (13)(24), (14)(23)}. Find the left cosets of 

H in A4 (see Table 5.1 on page 105). How many left cosets of H in 
S4 are there? (Determine this without listing them.)
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 10. Let a and b be elements of a group G and H and K be subgroups of 
G. If aH 5 bK, prove that H 5 K.

 11. If H and K are subgroups of G and g belongs to G, show that  
g(H y K) 5 gH y gK.

 12. Let a and b be nonidentity elements of different orders in a group G 
of order 155. Prove that the only subgroup of G that contains  
a and b is G itself.

 13. Let H be a subgroup of R*, the group of nonzero real numbers un-
der multiplication. If R+ # H # R*, prove that H 5 R+ or H 5 R*.

 14. Let C* be the group of nonzero complex numbers under multiplica-
tion and let H 5 {a + bi [ C* | a2 + b2 5 1}. Give a geometric de-
scription of the coset (3 + 4i)H. Give a geometric description of the 
coset (c + di)H.

 15. Let G be a group of order 60. What are the possible orders for the 
 subgroups of G?

 16. Suppose that K is a proper subgroup of H and H is a proper sub-
group of G. If |K| 5 42 and |G| 5 420, what are the possible  orders 
of H?

 17. Let G be a group with |G| 5 pq, where p and q are prime. Prove 
that every proper subgroup of G is cyclic.

 18. Recall that, for any integer n greater than 1, f(n) denotes the num-
ber of positive integers less than n and relatively prime to n. Prove 
that if a is any integer relatively prime to n, then af(n) mod n 5 1.

 19. Compute 515 mod 7 and 713 mod 11.
 20. Use Corollary 2 of Lagrange’s Theorem (Theorem 7.1) to prove 

that the order of U(n) is even when n . 2.
 21. Suppose G is a finite group of order n and m is relatively prime to n. 

If g [ G and gm 5 e, prove that g 5 e.
 22. Suppose H and K are subgroups of a group G. If |H| 5 12 and  

|K| 5 35, find |H > K|. Generalize.
 23. For any integer n $ 3, prove that Dn has a subgroup of order 4 if and 

only if n is even.
 24. Let p be a prime and k a positive integer such that ak mod p 5  

a mod p for all integers a. Prove that p – 1 divides k – 1.
 25. Suppose that G is an Abelian group with an odd number of elements. 

Show that the product of all of the elements of G is the identity.
 26. Suppose that G is a group with more than one element and G has no 

proper, nontrivial subgroups. Prove that |G| is prime. (Do not 
a ssume at the outset that G is finite.)
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 27. Let |G| 5 15. If G has only one subgroup of order 3 and only one of 
order 5, prove that G is cyclic. Generalize to |G| 5 pq, where p and 
q are prime.

 28. Let G be a group of order 25. Prove that G is cyclic or g5 5 e for  
all g in G. Generalize to any group of order p2 where p is prime. 
Does your proof work for this generalization?

 29. Let |G| 5 33. What are the possible orders for the elements of G? 
Show that G must have an element of order 3.

 30. Let |G| 5 8. Show that G must have an element of order 2.
 31. Can a group of order 55 have exactly 20 elements of order 11? Give 

a reason for your answer.
 32. Determine all finite subgroups of C*, the group of nonzero complex 

numbers under multiplication.
 33. Let H and K be subgroups of a finite group G with H # K # G. 

Prove that |G:H| 5 |G:K| |K:H|.
 34. Suppose that a group contains elements of orders 1 through 10. 

What is the minimum possible order of the group?
 35. Give an example of the dihedral group of smallest order that con-

tains a subgroup isomorphic to Z12 and a subgroup isomorphic to 
Z20. No need to prove anything, but explain your reasoning.

 36. Let G be a group and |G| 5 21. If g [ G and g14 5 e, what are the 
possibilities for |g|?

 37. Suppose that a finite Abelian group G has at least three elements of 
order 3. Prove that 9 divides |G|.

 38. Prove that if G is a finite group, the index of Z(G) cannot be prime.
 39. Suppose that H and K are subgroups of a group with |H| 5 24,  

|K| 5 20. Prove that H > K Abelian.
 40. Prove that a group of order 63 must have an element of order 3.
 41. Let G be a group of order 100 that has a subgroup H of order 25. 

Prove that every element of G of order 5 is in H.
 42. Let G be a group of order n and k be any integer relatively prime to 

n. Show that the mapping from G to G given by g S gk is one-to-
one. If G is also Abelian, show that the mapping given by  
g S gk is an automorphism of G.

 43. Let G be a group of permutations of a set S. Prove that the orbits of 
the members of S constitute a partition of S. (This exercise is re-
ferred to in this chapter and in Chapter 29.)

 44. Prove that every subgroup of Dn of odd order is cyclic.
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 45. Let G 5 {(1), (12)(34), (1234)(56), (13)(24), (1432)(56), (56)(13), 
(14)(23), (24)(56)}.

 a. Find the stabilizer of 1 and the orbit of 1.
 b. Find the stabilizer of 3 and the orbit of 3.
 c. Find the stabilizer of 5 and the orbit of 5.
 46. Prove that a group of order 12 must have an element of order 2.
 47. Show that in a group G of odd order, the equation x2 5 a has a 

unique solution for all a in G.
 48. Let G be a group of order pqr, where p, q, and r are distinct primes. 

If H and K are subgroups of G with |H| 5 pq and |K| 5 qr, prove 
that |H > K| 5 q.

 49. Prove that a group that has more than one subgroup of order 5 must 
have order at least 25.

 50. Prove that A5 has a subgroup of order 12.
 51. Prove that A5 has no subgroup of order 30.
 52. Prove that A5 has no subgroup of order 15 to 20.
 53. Suppose that a is an element from a permutation group G and one 

of its cycles in disjoint cycle form is (a1a2 
. . . ak). Show that {a1,  

a2, . . . , ak} # orbG(ai) for i 5 1, 2, . . . , k.
 54. Suppose that G is a group of order 105 with the property that G has 

exactly one subgroup for each divisor of 105. Prove that G is cyclic.
 55. Prove that A5 is the only subgroup of S5 of order 60.
 56. Why does the fact that A4 has no subgroup of order 6 imply that 

|Z(A4)| 5 1?
 57. Let G 5 GL(2, R) and H 5 SL(2, R). Let A [ G and suppose that 

det A 5 2. Prove that AH is the set of all 2 3 2 matrices in G that 
have determinant 2.

 58. Let G be the group of rotations of a plane about a point P in  
the plane. Thinking of G as a group of permutations of the plane, 
describe the orbit of a point Q in the plane. (This is the motivation 
for the name “orbit.”)

 59. Let G be the rotation group of a cube. Label the faces of the cube  
1 through 6, and let H be the subgroup of elements of G that carry 
face 1 to itself. If s is a rotation that carries face 2 to face 1, give a 
physical description of the coset Hs.

 60. The group D4 acts as a group of permutations of the square regions 
shown below. (The axes of symmetry are drawn for reference pur-
poses.) For each square region, locate the points in the orbit of the 
indicated point under D4. In each case, determine the stabilizer of 
the indicated point.
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 61. Let G 5 GL(2, R), the group of 2 3 2 matrices over R with nonzero 
determinant. Let H be the subgroup of matrices of determinant 61. 
If a, b [ G and aH 5 bH, what can be said about det (a) and det (b)? 
Prove or disprove the converse. [Determinants have the property 
that det (xy) 5 det (x)det (y).]

 62. Calculate the orders of the following (refer to Figure 27.5 for  
illustrations).

 a.  The group of rotations of a regular tetrahedron (a solid with four 
congruent equilateral triangles as faces)

 b.  The group of rotations of a regular octahedron (a solid with eight 
congruent equilateral triangles as faces)

 c.  The group of rotations of a regular dodecahedron (a solid with 
12 congruent regular pentagons as faces)

 d.  The group of rotations of a regular icosahedron (a solid with  
20 congruent equilateral triangles as faces)

 63. Prove that the eight-element set in the proof of Theorem 7.5 is a 
group.

 64. A soccer ball has 20 faces that are regular hexagons and 12 faces 
that are regular pentagons. Use Theorem 7.4 to explain why a soc-
cer ball cannot have a 60° rotational symmetry about a line through 
the centers of two opposite hexagonal faces.

 65. If G is a finite group with fewer than 100 elements and G has sub-
groups of orders 10 and 25, what is the order of G?

Computer Exercises

A computer exercise for this chapter is available at the website:

http://www.d.umn.edu/~jgallian
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Joseph Louis Lagrange was born in Italy of 
French ancestry on January 25, 1736. He be-
came captivated by mathematics at an early 
age when he read an essay by Halley on 
Newton’s calculus. At the age of 19, he be-
came a professor of mathematics at the Royal 
Artillery School in Turin. Lagrange made sig-
nificant contributions to many branches of 
mathematics and physics, among them the 
theory of numbers, the theory of equations, 
ordinary and partial differential equations, 
the calculus of variations, analytic geometry, 
fluid dynamics, and celestial mechanics. His 
methods for solving third- and fourth-degree 
polynomial equations by radicals laid the 
groundwork for the group theoretic approach 
to solving polynomials taken by Galois. 
Lagrange was a very careful writer with a 
clear and elegant style.

At the age of 40, Lagrange was appointed 
head of the Berlin Academy, succeeding 

Lagrange is the Lofty Pyramid of the 
Mathematical Sciences.

napoleon bonaparte

Euler. In offering this appointment, Frederick 
the Great proclaimed that the “greatest king 
in Europe” ought to have the “greatest math-
ematician in Europe” at his court. In 1787, 
Lagrange was invited to Paris by Louis XVI 
and became a good friend of the king and his 
wife, Marie Antoinette. In 1793, Lagrange 
headed a commission, which included 
Laplace and Lavoisier, to devise a new system 
of weights and measures. Out of this came 
the metric system. Late in his life he was 
made a count by Napoleon. Lagrange died on 
April 10, 1813.

To find more information about Lagrange, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

Joseph Lagrange
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8 External Direct Products

The universe is an enormous direct product of representations of  
symmetry groups.

Steven Weinberg†

In many areas of mathematics, there are ways of “building things 
up” and “breaking things down”

Norman J. Block, Abstract Algebra with Applications

Definition and Examples
In this chapter, we show how to piece together groups to make larger 
groups. In Chapter 9, we will show that we can often start with one large 
group and decompose it into a product of smaller groups in much the 
same way as a composite positive integer can be broken down into a 
product of primes. These methods will later be used to give us a simple 
way to construct all finite Abelian groups.

Definition External Direct Product
Let G1, G2, . . . , Gn be a finite collection of groups. The external direct 
product of G1, G2, . . . , Gn, written as G1 % G2 % ? ? ? % Gn, is the set  
of all n-tuples for which the ith component is an element of Gi and the 
operation is componentwise.

In symbols,

G1 % G2 % ? ? ? % Gn 5 {(g1, g2, . . . , gn) | gi [ Gi},

where (g1, g2, . . . , gn)(g19, g29, . . . , gn9) is defined to be (g1g19,   
g2g29, . . . , gngn9). It is understood that each product gigi9 is performed 
with the operation of Gi. Note that in the case that each Gi is finite, we 
have by properties of sets that |G1 % G2 % … % Gn | 5 |G1||G2| … |Gn|. 
We leave it to the reader to show that the external direct product of 
groups is itself a group (Exercise 1).

†Weinberg received the 1979 Nobel Prize in physics with Sheldon Glashow and Abdus 
Salam for their construction of a single theory incorporating weak and electromagnetic 
interactions.156
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This construction is not new to students who have had linear algebra or 
physics. Indeed, R2 5 R % R and R3 5 R % R % R—the operation being 
componentwise addition. Of course, there is also scalar multiplication, but 
we ignore this for the time being, since we are interested only in the group 
structure at this point.

 EXAMPLE 1

 U(8) %  U(10) 5 {(1, 1), (1, 3), (1, 7), (1, 9), (3, 1), (3, 3),  
                 (3, 7), (3, 9), (5, 1), (5, 3), (5, 7), (5, 9),  

                     (7, 1), (7, 3), (7, 7), (7, 9)}.

The product (3, 7)(7, 9) 5 (5, 3), since the first components are com-
bined by multiplication modulo 8, whereas the second components are 
combined by multiplication modulo 10. 

 EXAMPLE 2

Z2 % Z3 5 {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

Clearly, this is an Abelian group of order 6. Is this group related to an-
other Abelian group of order 6 that we know, namely, Z6? Consider the 
subgroup of Z2 % Z3 generated by (1, 1). Since the operation in each com-
ponent is addition, we have (1, 1) 5 (1, 1), 2(1, 1) 5 (0, 2), 3(1, 1) 5  
(1, 0), 4(1, 1) 5 (0, 1), 5(1, 1) 5 (1, 2), and 6(1, 1) 5 (0, 0). Hence  
Z2 % Z3 is cyclic. It follows that Z2 % Z3 is isomorphic to Z6. 

In Theorem 7.3 we classified the groups of order 2p where p is an 
odd prime. Now that we have defined Z2 % Z2, it is easy to classify the 
groups of order 4.

 EXAMPLE 3 Classification of Groups of Order 4 
A group of order 4 is isomorphic to Z4 or Z2 % Z2. To verify this it suf-
fices to show that for any non-cyclic group G of order 4 there is only one 
way to create an operation table for G. By Lagrange’s Theorem the ele-
ments of G have order 1 or 2. Let a and b be distinct non-identity ele-
ments of G. By cancellation, ab Z a and ab Z b. Moreover, ab Z e, for 
otherwise a 5 b–1 5 b. Thus G 5 {e, a, b, ab}. That the operation table 
is uniquely determined follows from the observation that ab 5 (ab)–1 5 
b–1 a–1 5 ba. 

We see from Examples 2 and 3 that in some cases Zm % Zn is isomor-
phic to Zmn and in some cases it is not. Theorem 8.2 provides a simple 
characterization for when the isomorphism holds.
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Properties of External Direct Products
Our first theorem gives a simple method for computing the order of an 
 element in a direct product in terms of the orders of the component pieces.

 Theorem 8.1 Order of an Element in a Direct Product

The order of an element in a direct product of a finite number of 
finite groups is the least common multiple of the orders of the 
components of the element. In symbols,

|(g1, g2, . . . , gn)| 5 lcm(|g1|, |g2|, . . . , |gn|).

PROOF Denote the identity of Gi by ei. Let s 5 lcm(|g1|, |g2|, . . . , |gn|) and  
t 5|(g1, g2, . . . , gn)|. Because the fact that s is a multiple of each |gi| implies 
that (g1, g2, . . . , gn)

s 5 (gs
1, gs

2, . . . , gs
n) 5 (e1, e2, . . . , en), we know  

that t # s. On the other hand, from (gt
1, g

t
2, . . . , g

t
n) 5 (g1, g2, . . . , gn)

t  
5 (e1, e2, . . . , en) we see that t is a common multiple of |g1|, |g2|, . . . , |gn|. 
Thus, s # t. 

The next three examples are applications of Theorem 8.1.

 EXAMPLE 4 Examples of groups of order 100 include Z100; Z25 { Z2 { 

Z2; Z5 { Z5 { Z4; Z5 { Z5 { Z2 { Z2; D50; D10 { Z5; D5 { Z10; and D5 { D5. 
That these are not isomorphic is an easy consequence of Theorem 8.1.

 EXAMPLE 5 We determine the number of elements of order 5 in  
Z25 % Z5. By Theorem 8.1, we may count the number of elements  
(a, b) in Z25 % Z5 with the property that 5 5 |(a, b)| 5 lcm(|a|, |b|). 
Clearly this requires that either |a| 5 5 and |b| 5 1 or 5, or |b| 5 5 and 
|a| 5 1 or 5. We consider two mutually exclusive cases.

Case 1 |a| 5 5 and |b| 5 1 or 5. Here there are four choices for a 
(namely, 5, 10, 15, and 20) and five choices for b. This gives 20 ele-
ments of order 5.

Case 2 |a| 5 1 and |b| 5 5. This time there is one choice for a and four 
choices for b, so we obtain four more elements of order 5.

Thus, Z25 % Z5 has 24 elements of order 5. 

 EXAMPLE 6 We determine the number of cyclic subgroups of order 10 
in Z100 % Z25. We begin by counting the number of elements (a, b) of 
order 10.

Case 1 |a| 5 10 and |b| 5 1 or 5. Since Z100 has a unique cyclic sub-
group of order 10 and any cyclic group of order 10 has four generators 
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(Theorem 4.4), there are four choices for a. Similarly, there are five 
choices for b. This gives 20 possibilities for (a, b).

Case 2 |a| 5 2 and |b| 5 5. Since any finite cyclic group of even  order 
has a unique subgroup of order 2 (Theorem 4.4), there is only one 
choice for a. Obviously, there are four choices for b. So, this case yields 
four more possibilities for (a, b).

Thus, Z100 % Z25 has 24 elements of order 10. Because each cyclic 
subgroup of order 10 has four elements of order 10 and no two of the 
cyclic subgroups can have an element of order 10 in common, there 
must be 24/4 5 6 cyclic subgroups of order 10. (This method is analo-
gous to determining the number of sheep in a flock by counting legs and 
dividing by 4.) 

The direct product notation is convenient for specifying certain sub-
groups of a direct product.

 EXAMPLE 7 For each divisor r of m and s of n, the group Zm % Zn has a 
subgroup isomorphic to Zr % Zs (see Exercise 19). To find a subgroup of, 
say, Z30 % Z12 isomorphic to Z6 % Z4, we observe that k5l is a subgroup 
of Z30 of order 6 and k3l is a subgroup of Z12 of order 4, so k5l % k3l is 
the desired subgroup. 

The next theorem and its first corollary characterize those direct 
products of cyclic groups that are themselves cyclic.

 Theorem 8.2 Criterion for G % H to be Cyclic

Let G and H be finite cyclic groups. Then G % H is cyclic if and only 
if |G| and |H| are relatively prime.

PROOF Let |G| 5 m and |H| 5 n, so that |G % H| 5 mn. To prove the first 
half of the theorem, we assume G % H is cyclic and show that  
m and n are relatively prime. Suppose that gcd(m, n) 5 d and (g, h) is a 
generator of G % H. Since (g, h)mn/d 5 ((gm)n/d, (hn)m/d) 5 (e, e), we have 
mn 5 |(g, h)| # mn/d. Thus, d 5 1.

To prove the other half of the theorem, let G 5 kgl and H 5 khl and sup-
pose gcd(m, n) 5 1. Then, |(g, h)| 5 lcm(m, n) 5 mn 5 |G % H|, so that 
(g, h) is a generator of G % H. 

As a consequence of Theorem 8.2 and an induction argument, we 
obtain the following extension of Theorem 8.2.
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 Corollary 1 Criterion for G1 % G2 % ? ? ? % Gn to Be Cyclic

An external direct product G1 % G2 % ? ? ? % Gn of a finite number  
of finite cyclic groups is cyclic if and only if |Gi| and |Gj| are relatively 
prime when i 2 j.

 Corollary 2 Criterion for Zn1n2 . . . nk
 < Zn1

 % Zn2
 % . . . % Znk

Let m 5 n1n2 ? ? ? nk. Then Zm is isomorphic to Zn1
 % Zn2 

% ? ? ? % Znk 
if and only if ni and nj are relatively prime when i 2 j.

By using the results above in an iterative fashion, one can express the 
same group (up to isomorphism) in many different forms. For example, 
we have

Z2 % Z2 % Z3 % Z5 < Z2 % Z6 % Z5 < Z2 % Z30.

Similarly,

 Z2 % Z2 % Z3 % Z5 < Z2 % Z6 % Z5 

 < Z2 % Z3 % Z2 % Z5 < Z6 % Z10.

Thus, Z2 % Z30 < Z6 % Z10. Note, however, that Z2 % Z30 ] Z60.

The Group of Units Modulo n as  
an External Direct Product

The U-groups provide a convenient way to illustrate the preceding 
ideas. We first introduce some notation. If k is a divisor of n, let

Uk(n) 5 {x [ U(n) | x mod k 5 1}.

For example, U7(105) 5 {1, 8, 22, 29, 43, 64, 71, 92}. It can be readily 
shown that Uk(n) is indeed a subgroup of U(n). (See Exercise 17 in 
Chapter 3.)

 Theorem 8.3 U(n) as an External Direct Product

Suppose s and t are relatively prime. Then U(st) is isomorphic to the 
external direct product of U(s) and U(t). In short,

U(st) < U(s) % U(t).

Moreover, Us(st) is isomorphic to U(t) and Ut(st) is isomorphic to U(s).
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PROOF An isomorphism from U(st) to U(s) % U(t) is x S (x mod s, x mod t); 
an isomorphism from Us(st) to U(t) is x S x mod t; an isomorphism from 
Ut(st) to U(s) is x S x mod s. We leave the verification that these mappings 
are operation-preserving, one-to-one, and onto to the reader. (See Exer-
cises 9, 17, and 19 in Chapter 0; see also [1].) 

As a consequence of Theorem 8.3, we have the following result.

Corollary

Let m 5 n1n2 ? ? ? nk , where gcd(ni , nj ) 5 1 for i 2 j. Then,

U(m) < U(n1) % U(n2) % ? ? ? % U(nk).

To see how these results work, let’s apply them to U(105). We  obtain

 U(105) < U(7) % U(15),
 U(105) < U(21) % U(5),

U(105) < U(3) % U(5) % U(7).

Moreover,

 U(7) < U15(105) 5 {1, 16, 31, 46, 61, 76},
 U(15) < U7(105) 5 {1, 8, 22, 29, 43, 64, 71, 92},
U(21) < U5(105) 5 {1, 11, 16, 26, 31, 41, 46, 61, 71, 76, 86, 101},
 U(5) < U21(105) 5 {1, 22, 43, 64},
 U(3) < U35(105) 5 {1, 71}.

Since |U(20)| 5 8 and |U(10) % U(2)| 5 4 we see that the condition 
that gcd(s, t) 5 1 in Theorem 8.3 is necessary.

Among all groups, surely the cyclic groups Zn have the simplest 
structures and, at the same time, are the easiest groups with which to 
compute. Direct products of groups of the form Zn are only slightly 
more complicated in structure and computability. Because of this, alge-
braists endeavor to describe a finite Abelian group as such a direct prod-
uct. Indeed, we shall soon see that every finite Abelian group can be so 
represented. With this goal in mind, let us reexamine the  U-groups. 
 Using the corollary to Theorem 8.3 and the facts (see [2, p. 93]), first 
proved by Carl Gauss in 1801, that

U(2) < {0},    U(4) < Z2,    U(2n) < Z2n22 % Z2    for n $ 3,

and

U( pn) < Zpn2pn21    for p an odd prime,
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we now can write any U-group as an external direct product of cyclic 
groups. For example,

U(105) 5 U(3 ? 5 ? 7) < U(3) % U(5) % U(7)

      < Z2 % Z4 % Z6

and

U(144) 5 U(16) % U(9) 

    < Z4 % Z2 % Z6.

What is the advantage of expressing the group U(n) as an external direct 
product of groups of the form Zm? Well, for one thing, we immediately 
see that |U(105)| 5 2 ? 4 ? 6 5 48 and that U(105) and U(144) are 
 isomorphic. Another is that from Theorem 8.1 we know that the orders 
of the elements in U(105) are 1, 2, 3, 4, 6 and 12. Moreover, arguing as 
in Examples 5 and 6, we can determine that U(105) has exactly 16 ele-
ments of order 12, say.

These calculations tell us more. Since Aut(Z105) is isomorphic to 
U(105), we also know that there are 16 automorphisms of Z105 of  order 
12. Imagine trying to deduce this information directly from U(105) or, 
worse yet, from Aut(Z105)! These results beautifully illustrate the advan-
tage of being able to represent a finite Abelian group as a direct product 
of cyclic groups. They also show the value of our theorems about Aut(Zn) 
and U(n). After all, theorems are laborsaving devices. If you want to con-
vince yourself of this, try to prove directly from the definitions that 
Aut(Z105) has exactly 16 elements of or     der 12.

Applications
We conclude this chapter with five applications of the material pre-
sented here—three to cryptography, the science of sending and deci-
phering secret messages, one to genetics, and one to electric circuits.

Data Security

Because computers are built from two-state electronic components, it 
is natural to represent information as strings of 0s and 1s called  binary 
strings. A binary string of length n can naturally be thought of as an 
element of Z2 % Z2 % ? ? ? % Z2 (n copies) where the parentheses and 
the commas have been deleted. Thus the binary string 11000110 cor-
responds to the element (1, 1, 0, 0, 0, 1, 1, 0) in Z2 % Z2 % Z2 % Z2 % Z2 
% Z2 % Z2 % Z2. Similarly, two binary strings a1a2 ? ? ? an and b1b2 ? ? ?  bn 
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are added componentwise modulo 2 just as their  corresponding ele-
ments in Z2 % Z2 % ? ? ? % Z2 are. For  example,

 11000111 1 01110110 5 10110001

and

 10011100 1 10011100 5 00000000.

The fact that the sum of two binary sequences a1a2 ? ? ? an 1 b1b2 ? ? ?  
bn 5 00 ? ? ? 0 if and only if the sequences are identical is the basis for a 
data security system used to protect Internet transactions.

Suppose that you want to purchase a compact disc from http://www 
.amazon.com. Need you be concerned that a hacker will intercept  
your credit-card number during the transaction? As you might expect, 
your credit-card number is sent to Amazon in a way that protects the 
data. We explain one way to send credit-card numbers over the Web 
securely. When you place an order with Amazon, the company sends 
your computer a randomly generated string of 0’s and 1’s called a key. 
This key has the same length as the binary string corresponding to 
your credit-card number and the two strings are added (think of this 
process as “locking” the data). The resulting sum is then transmitted to 
Amazon. Amazon in turn adds the same key to the received string, 
which then produces the original string corresponding to your credit-
card number (adding the key a second time “unlocks” the data).

To illustrate the idea, say you want to send an eight-digit binary string 
such as s 5 10101100 to Amazon (actual credit-card numbers have very 
long strings) and Amazon sends your computer the key k 5 00111101. 
Your computer returns the string s 1 k 5 10101100 1 00111101 5 
10010001 to Amazon, and Amazon adds k to this string to get 10010001 1 
00111101 5 10101100, which is the string representing your credit-card 
number. If someone intercepts the number s 1 k 5 10010001 during 
transmission it is no value without knowing k.

The method is secure because the key sent by Amazon is randomly 
generated and used only one time. 

Public Key Cryptography

Unlike auctions such as those on eBay, where each bid is known by 
everyone, a silent auction is one in which each bid is secret. Suppose 
that you wanted to use your Twitter account to run a silent auction. 
How could a scheme be devised so that users could post their bids in 
such a way that the amounts are intelligible only to the account holder? 
In the mid-1970s, Ronald Rivest, Adi Shamir, and Leonard Adleman 
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devised an ingenious method that permits each person who is to receive 
a secret message to tell publicly how to scramble messages sent to him 
or her. And even though the method used to scramble the message is 
known publicly, only the person for whom it is intended will be able to 
 unscramble the message. The idea is based on the fact that there exist 
efficient methods for finding very large prime numbers (say about  
100 digits long) and for multiplying large numbers, but no one knows an 
efficient algorithm for factoring large integers (say about 200 digits 
long). The person who is to receive the message chooses a pair of large 
primes p and q and chooses an integer e (called the encryption exponent) 
with 1 , e , m, where m 5 lcm (p 2 1, q 2 1), such that e  
is relatively prime to m (any such e will do). This person calculates  
n 5 pq (n is called the key) and announces that a message M is to be sent 
to him or her publicly as Me mod n. Although e, n, and Me are available 
to everyone, only the person who knows how to factor n as pq will be 
able to decipher the message.

To present a simple example that nevertheless illustrates the principal 
features of the method, say we wish to send the messages “YES.” We 
convert the message into a string of digits by replacing A by 01, B by  
02, . . . , Z by 26, and a blank by 00. So, the message YES becomes 
250519. To keep the numbers involved from becoming too unwieldy, we 
send the message in blocks of four digits and fill in with blanks when 
needed. Thus, the messages YES is represented by the two blocks 2505 
and 1900. The person to whom the message is to be sent has picked two 
primes p and q, say p 5 37 and q 5 73, and a number e that has no 
prime divisors in common with lcm (p 21, q 21) 5 72, say e 5 5, and 
has published n 5 37 ? 73 5 2701 and e 5 5 in  a public forum. We will 
send the “scrambled” numbers (2505)5 mod 2701 and (1900)5 mod 2701 
rather than 2505 and 1900, and the receiver will unscramble them. We 
show the work involved for us and the receiver only for the block 2505. 
We determine (2505)5 mod 2701 5 2415 by using a modular arithmetic 
calculator such as the one at http://users.wpi.edu/~martin/mod.html.†

Thus, the number 2415 is sent to the receiver. Now the receiver must 
take this number and convert it back to 2505. To do so, the receiver takes 
the two factors of 2701, p 5 37 and q 5 73, and calculates the least com-
mon multiple of p 2 1 5 36 and q 2 1 5 72, which is 72. (This is where 
the knowledge of p and q is necessary.) Next, the receiver must find 

†Provided that the numbers are not too large, the Google search engine at http://www 
.google.com will do modular arithmetic. For example, entering 2505^2 mod 2701 in the 
search box yields 602. Be careful, however: Entering 2505^5 mod 2701 does not return 
a value, because 25055 is too large. Instead, we can use Google to compute smaller pow-
ers such as 2505^2 mod 2701 and 2505^3 mod 2701 (which yields 852) and then enter 
(852 3 602) mod 2701.
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e21 5 d (called the decryption exponent) in U(72)—that is, solve the 
equation 5 ? d 5 1 mod 72. This number is 29. See http://www.d.umn 
.edu/~jgallian/msproject06/chap8.html#chap8ex5 or use a Google 
search box to compute 5k for each divisor k of |U(72)| 5 f(9)? f(8) 5 24 
starting with 2 until we reach 5k mod 72 5 1. Doing so, we obtain 56 mod 
72 5 1, which implies that 55 mod 72 5 29 is 521 in U(72).

Then the receiver takes the number received, 2415, and calculates 
(2415)29 mod 2701 5 2505, the encoded number. Thus, the receiver cor-
rectly determines the code for “YE.” On the other hand, without knowing 
how pq factors, one cannot find the modulus (in our case, 72) that is 
needed to determine the decryption exponent d.

The procedure just described is called the RSA public key encryption 
scheme in honor of the three people (Rivest, Shamir, and Adleman) who 
discovered the method. It is widely used in conjunction with web servers 
and browsers, e-mail programs, remote login sessions, and electronic fi- 
nancial transactions. The algorithm is summarized below.

Receiver
1.  Pick very large primes p and q and compute n 5 pq.
2.  Compute the least common multiple of p – 1 and q – 1; let us call it m.
3.  Pick e relatively prime to m.
4.  Find d such that ed mod m 5 1.
5.  Publicly announce n and e.

Sender
1.  Convert the message to a string of digits.
2.  Break up the message into uniform blocks of digits; call them M1, 

M2,…, Mk. (The integer value of each Mi must be less than n. 
Inpractice, n is so large that this is not a concern).

3.  Check to see that the greatest common divisor of each Mi and n is 1. 
If not, n can be factored and our code is broken. (In practice, the 
primes p and q are so large that they exceed all Mi, so this step may 
be omitted.)

4.  Calculate and send Ri 5 Mi
e mod n.

Receiver
1.  For each received message Ri, calculate Ri

d mod n.
2.  Convert the string of digits back to a string of characters.

Why does this method work? Well, we know that U(n) < U(p) % 
U(q) < Zp21 % Zq21. Thus, an element of the form xm in U(n) corre-
sponds under an isomorphism to one of the form (mx1, mx2) in Zp21 % 
Zq21. Since m is the least common multiple of p 2 1 and q 2 1, we may 
write m 5 s(p 2 1) and m 5 t(q 2 1) for some integers s and t. Then 
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(mx1, mx2) 5 (s(p 2 1)x1, t(q 2 1)x2) 5 (0, 0) in Zp21 % Zq21, and it fol-
lows that xm 5 1 for all x in U(n). So, because each message Mi is an 
element of U(n) and e was chosen so that ed 5 1 1 km for some k, we 
have, modulo n,

Ri
d 5 (Mi

e)d 5 Mi
ed 5 Mi 

11km 5 Mi(Mi
m)k 5 Mi1

k 5 Mi.

In 2002, Ronald Rivest, Adi Shamir, and Leonard Adleman received 
the Association for Computing Machinery A. M. Turing Award, which 
is considered the “Nobel Prize of computing,” for their contribution to 
public key cryptography.

An RSA calculator that does all the calculations is provided at http://
www.d.umn.edu/~jgallian/msproject06/chap8.html#chap8ex5. A list 
of primes can be found by searching the Web for “list of primes.”

Digital Signatures

With so many financial transactions now taking place electronically, the 
problem of authenticity is paramount. How is a stockbroker to know that 
an electronic message she receives that tells her to sell one stock and buy 
another actually came from her client? The technique used in public key 
cryptography allows for digital signatures as well. Let us say that person 
A wants to send a secret message to person  B in such a way that only B 
can decode the message and B will know that only A could have sent it. 
Abstractly, let EA and DA denote the algorithms that A uses for encryp-
tion and decryption, respectively, and let EB and DB denote the algo-
rithms that B uses for encryption and decryption, respectively. Here 
we assume that EA and EB are available to the public, whereas DA is 
known only to A and DB is known only to B, and that DBEB and EADA 
applied to any message leaves the message unchanged. Then A sends a 
message M to B as EB (DA(M)) and B decodes the received message by 
applying the function EADB to it to obtain

(EADB) (EB(DA(M)) 5 EA(DBEB)(DA(M)) 5 EA(DA(M)) 5 M.

Notice that only A can execute the first step (i.e., create DA(M)) and only 
B can implement the last step (i.e., apply EADB to the received message).

Transactions using digital signatures became legally binding in the 
United States in October 2000.

Genetics†

The genetic code can be conveniently modeled using elements of Z4 % 

Z4 % ? ? ? % Z4, where we omit the parentheses and the commas and 

†This discussion is adapted from [3].
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just use strings of 0’s, 1’s, 2’s, and 3’s and add componentwise modulo 
4. A DNA molecule is composed of two long strands in the form of a 
double helix. Each strand is made up of strings of the four nitrogen 
bases adenine (A), thymine (T), guanine (G), and cytosine (C). Each 
base on one strand binds to a complementary base on the other strand. 
Adenine always is bound to thymine, and guanine always is bound to 
cytosine. To model this process, we identify A with 0, T with 2, G with 1, 
and C with 3. Thus, the DNA segment ACGTAACAGGA and its com-
plement segment TGCATTGTCCT are denoted by 03120030110 and 
21302212332. Noting that in Z4, 0 1 2 5 2, 2 1 2 5 0, 1 1 2 5 3, and 
3 1 2 5 1, we see that adding 2 to elements of Z4 interchanges 0 and 2 
and 1 and 3. So, for any DNA segment a1a2 ? ? ? an represented by ele-
ments of Z4 % Z4 % ? ? ? % Z4, we see that its complementary segment 
is represented by a1a2 ? ? ? an 1 22 ? ? ? 2.

Electric Circuits

Many homes have light fixtures that are operated by a pair of switches. 
They are wired so that when either switch is thrown, the light changes 
its status (from on to off or vice versa). Suppose the wiring is done so 
that the light is on when both switches are in the up position. We can 
conveniently think of the states of the two switches as being matched 
with the elements of Z2 % Z2, with the two switches in the up position 
corresponding to (0, 0) and the two switches in the down position cor-
responding to (1, 1). Each time a switch is thrown, we add 1 to the 
 corresponding component in the group Z2 % Z2. We then see that the 
lights are on when the switches correspond to the elements of the sub-
group k(1, 1)l and are off when the switches correspond to the elements 
in the coset (1, 0) 1 k(1, 1)l. A similar analysis applies in the case of 
three switches, with the subgroup {(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1)} 
corresponding to the lights-on situation.

Exercises

What’s the most difficult aspect of your life as a mathematician, Diane 
Maclagan, an assistant professor at Rutgers, was asked. “Trying to prove 
 theorems,” she said. And the most fun? “Trying to prove theorems.”

  1. Prove that the external direct product of any finite number of groups 
is a group. (This exercise is referred to in this chapter.)

  2. Prove that (1,1) is an element of largest order in Zn1
 % Zn2

. State the 
general case. 
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  3. Let G be a group with identity eG and let H be a group with iden - 
tity eH. Prove that G is isomorphic to G % {eH} and that H is iso-
morphic to {eG} % H.

  4. Show that G % H is Abelian if and only if G and H are Abelian. 
State the general case.

  5. Prove that Z % Z is not cyclic. Does your proof work for Z % G 
where G is any group with more than one element?

  6. Prove, by comparing orders of elements, that Z8 % Z2 is not isomor-
phic to Z4 % Z4.

  7. Prove that G1 % G2 is isomorphic to G2 % G1. State the general case.
  8. Is Z3 % Z9 isomorphic to Z27? Why?
  9. Give an example of a group of order 12 that has more than one sub-

group of order 6.
 10. How many elements of order 9 does Z3 % Z9 have? (Do not do this 

exercise by brute force.)
 11. How many elements of order 4 does Z4 % Z4 have? (Do not do this 

by examining each element.) Explain why Z4 % Z4 has the same 
number of elements of order 4 as does Z8000000 % Z400000. Generalize 
to the case Zm % Zn.

 12. Give examples of four groups of order 12, no two of which are iso-
morphic. Give reasons why no two are isomorphic.

 13. For each integer n . 1, give examples of two nonisomorphic groups 
of order n2.

 14. The dihedral group Dn of order 2n (n $ 3) has a subgroup of n rota-
tions and a subgroup of order 2. Explain why Dn cannot be isomor-
phic to the external direct product of two such groups.

 15. Prove that the group of complex numbers under addition is isomor-
phic to R % R.

 16. Suppose that G1 < G2 and H1 < H2. Prove that G1 % H1 < G2 % H2. 
State the general case.

 17. If G % H is cyclic, prove that G and H are cyclic. State the  general 
case.

 18. Find a cyclic subgroup of Z40 % Z30 of order 12 and a non-cyclic 
subgroup of Z40 % Z30 of order 12.

 19. If r is a divisor of m and s is a divisor of n, find a subgroup of Zm % 
Zn that is isomorphic to Zr % Zs.

 20. Find a subgroup of Z12 % Z18 that is isomorphic to Z9 % Z4.
 21. Let G and H be finite groups and (g, h) [ G % H. State a necessary 

and sufficient condition for k(g, h)l 5 kgl % khl.
 22. Determine the number of elements of order 15 and the number of 

cyclic subgroups of order 15 in Z30 % Z20.
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 23. How many subgroups of order 3 are there in Z3 % Z3? What about 
Z3 % Z3 % Z3? What about Z3 % Z3 % … % Z3  (n copies)?

 24. Let m . 2 be an even integer and let n . 2 be an odd integer. Find 
a formula for the number of elements of order 2 in Dm % Dn.

 25. Let M be the group of all real 2 3 2 matrices under addition. Let  
N 5 R % R % R % R under componentwise addition. Prove that M 
and N are isomorphic. What is the corresponding theorem for the 
group of m 3 n matrices under addition?

 26. The group S3 % Z2 is isomorphic to one of the following groups: 
Z12, Z6 % Z2, A4, D6. Determine which one by elimination.

 27. Let G be a group, and let H 5 {(g, g) | g [ G}. Show that H is a  
subgroup of G % G. (This subgroup is called the diagonal of  
G % G.) When G is the set of real numbers under addition,  
describe G % G and H geometrically.

 28. List six examples of non-Abelian groups of order 24. 
 29. Find all subgroups of order 3 in Z9 % Z3.
 30. Find all subgroups of order 4 in Z4 % Z4.
 31. What is the order of the largest cyclic subgroup of Z6 % Z10 % Z15? What 

is the order of the largest cyclic subgroup of Zn1
 % Zn2

 % … % Znk
?

 32. How many elements of order 2 are in Z2000000 % Z4000000? Generalize.
 33. Find a subgroup of Z800 % Z200 that is isomorphic to Z2 % Z4.
 34. Find a subgroup of Z12 % Z4 % Z15 that has order 9.
 35. Prove that R* % R* is not isomorphic to C*. (Compare this with 

Exercise 15.)
 36. Let

 H � • £
1 a b

0 1 0

0 0 1

§ †  a, b [ Z3¶ .

  (See Exercise 46 in Chapter 2 for the definition of multiplication.) 
Show that H is an Abelian group of order 9. Is H isomorphic to Z9 
or to Z3 % Z3?

 37. Let G 5 {3m6n | m, n [ Z} under multiplication. Prove that G is isomor-
phic to Z % Z. Does your proof remain valid if G 5 {3m9n | m, n [ Z}?

 38. Let (a1, a2, . . . , an) [ G1 % G2 % ? ? ? % Gn. Give a necessary and 
sufficient condition for |(a1, a2, . . . , an)| 5 `.

 39. Compare the number of elements of each order in D6 with the num-
ber for each order in D3 % Z2. 

 40. Determine the number of cyclic subgroups of order 15 in Z90 % Z36.
Provide a generator for each of the subgroups of order 15.
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 41. List the elements in the groups U5(35) and U7(35).
 42. Prove or disprove that U(40) % Z6 is isomorphic to U(72) % Z4.
 43. Prove or disprove that C* has a subgroup isomorphic to Z2 % Z2.
 44. Let G be a group isomorphic to Zn1

 % Zn2
 % . . . % Znk

. Let x be the 
product of all elements in G. Describe all possibilities for x.

 45. If a group has exactly 24 elements of order 6, how many cyclic sub-
groups of order 6 does it have?

 46. Give an example of an infinite group that has both a subgroup iso-
morphic to D4 and a subgroup isomorphic to A4.

 47. Express Aut(U(25)) in the form Zm % Zn.
 48. Determine Aut(Z2 % Z2).
 49. Suppose that n1, n2, . . . , nk are positive even integers. How many 

 elements of order 2 does Zn1
 % Zn2

 % . . . % Znk
 have ? How many are 

there if we drop the requirement that n1, n2, . . . , nk must be even?
 50. Is Z10 % Z12 % Z6 ^ Z60 % Z6 % Z2? Is Z10 % Z12 % Z6 ^ Z15 % Z4 

% Z12?
 51. a. How many isomorphisms are there from Z18 to Z2 % Z9?  

b. How many isomorphisms are there from Z18 to Z2 % Z3 % Z3?
 52. Suppose that f is an isomorphism from Z3 % Z5 to Z15 and  

f(2, 3) 5 2. Find the element in Z3 % Z5 that maps to 1.
 53. If f is an isomorphism from Z4 % Z3 to Z12, what is f(2, 0)? What 

are the possibilities for f(1, 0)? Give reasons for your answer.
 54. Find a subgroup of U(140) isomorphic to Z4 % Z6.
 55. Let (a, b) belong to Zm % Zn. Prove that |(a, b)| divides lcm(m, n).
 56. Let G 5 {ax2 1 bx 1 c | a, b, c [ Z3}. Add elements of G as you 

would polynomials with integer coefficients, except use modulo 3 
addition. Prove that G is isomorphic to Z3 % Z3 % Z3. Generalize.

 57. Determine all cyclic groups that have exactly two generators.
 58. Explain a way that a string of length n of the four nitrogen bases A, 

T, G, and C could be modeled with the external direct product of n 
copies of Z2 % Z2.

 59. Let p be a prime. Prove that Zp % Zp has exactly p 1 1 subgroups of 
order p.

 60. Give an example of an infinite non-Abelian group that has exactly 
six elements of finite order.

 61. Give an example to show that there exists a group with elements a 
and b such that |a| 5 `, |b| 5 `, and |ab| 5 2.

 62. Express U(165) as an external direct product of cyclic groups of the 
form Zn.
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 63. Express U(165) as an external direct product of U-groups in four 
different ways.

 64. If n is an integer at least 3, determine the number of elements of 
order 2 in U(2n).

 65. Without doing any calculations in Aut(Z105), determine how many 
elements of Aut(Z105) have order 6.

 66. Without doing any calculations in U(27), decide how many sub-
groups U(27) has.

 67. What is the largest order of any element in U(900)?
 68. Let p and q be odd primes and let m and n be positive integers. 

Explain why U( pm) % U(qn) is not cyclic.
 69. Use the results presented in this chapter to prove that U(55) is 

 isomorphic to U(75).
 70. Use the results presented in this chapter to prove that U(144) is 

 isomorphic to U(140).
 71. Find a subgroup of order 4 in U(1000).
 72. Find an integer n such that U(n) is isomorphic to Z2 % Z4 % Z9.
 73. What is the smallest positive integer k such that xk 5 e for all x in 

U(7 ? 17)? Generalize to U(pq) where p and q are distinct primes.
 74. Prove that U50(200) is not isomorphic to U(4). Why does this not 

contradict Theorem 8.3?
 75. Prove or disprove: U(200) ^ U(50) % U(4).
 76. Find the smallest positive integer n such that xn 5 1 for all x in 

U(100). Show your reasoning.
 77. Which of the following groups are cyclic?

 a. U(35)
 b. U5(40)
 c. U8(40)

 78. Let p1, p2,…, pk be distinct odd primes and n1, n2,…, nk be  
positive integers. Determine the number of elements of order 2 in 
U(p1

n1 p2
n2… pk

nk). How many are there in U(2np1
n1 p2

n2… pk
nk) where n 

is at least 3?
 79. Using the RSA scheme with p 5 37, q 5 73, e 5 5, and replacing  

the letters A, B,…, Z by 01, 02, … , 26, what number would be sent 
for the messsage “RL”?

 80. Assuming that a message has been sent via the RSA scheme with  
p 5 37, q 5 73, and e 5 5, decode the received message “34.”

 81. Explain why the message YES cannot be sent using RSA scheme 
with p 5 31 and q 5 73 using blocks of length 4.
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Computer Exercises

Computer exercises in this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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Normal Subgroups  
and Factor Groups

It is tribute to the genius of Galois that he recognized that those 
subgroups for which the left and right cosets coincide are distin-
guished ones. Very often in mathematics the crucial problem is to 
recognize and to discover what are the relevant concepts; once 
this is accomplished the job may be more than half done.

I. N. Herstein, Topics in Algebra

[On the concept of ’group‘:] … what a wealth, what a grandeur of 
thought may spring from what slight beginnings.

H. F. Baker

Normal Subgroups
As we saw in Chapter 7, if G is a group and H is a subgroup of G, it is 
not always true that aH 5 Ha for all a in G. There are certain situations 
where this does hold, however, and these cases turn out to be of critical 
importance in the theory of groups. It was Galois, about 185 years ago, 
who first recognized that such subgroups were worthy of special 
 attention.

Definition Normal Subgroup
A subgroup H of a group G is called a normal subgroup of G if aH 5 
Ha for all a in G. We denote this by H v G.

You should think of a normal subgroup in this way: You can switch 
the order of a product of an element a from the group and an element h 
from the normal subgroup H, but you must “fudge” a bit on the element 
from the normal subgroup H by using some h9 from H rather than h. 
That is, there is an element h9 in H such that ah 5 h9a. Likewise, there 
is some h0 in H such that ha 5 ah0. (It is possible that h9 5 h or h0 5 h, 
but we may not assume this.)

9
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There are several equivalent formulations of the definition of normal-
ity. We have chosen the one that is the easiest to use in applications. 
However, to verify that a subgroup is normal, it is usually better to use 
Theorem 9.1, which is a weaker version of property 8 of the lemma in 
Chapter 7. It allows us to substitute a condition about two subgroups of 
G for a condition about two cosets of G.

 Theorem 9.1 Normal Subgroup Test

A subgroup H of G is normal in G if and only if xHx21 # H  
for all x in G.

PROOF If H is normal in G, then for any x [ G and h [ H there is an h9 in 
H such that xh 5 h9x. Thus, xhx21 5 h9, and therefore xHx21 # H.

Conversely, if xHx21 # H for all x, then, letting x 5 a, we have 
aHa21 # H or aH # Ha. On the other hand, letting x 5 a21, we have 
a21H(a21)21 5 a21Ha # H or Ha # aH. 

 EXAMPLE 1 Every subgroup of an Abelian group is normal. (In this 
case, ah 5 ha for a in the group and h in the subgroup.) 

 EXAMPLE 2 The center Z(G) of a group is always normal. [Again, ah 
5 ha for any a [ G and any h [ Z(G).] 

 EXAMPLE 3 The alternating group An of even permutations is a nor-
mal subgroup of Sn. [Note, for example, that for (12) [ Sn and (123) 
[ An, we have (12)(123) 2 (123)(12) but (12)(123) 5 (132)(12) and  
(132) [ An.] 

 EXAMPLE 4 Every subgroup of Dn consisting solely of rotations is nor-
mal in Dn. (For any rotation R and any reflection F, we have FR 5 R21F 
and any two rotations commute.) 

The next example illustrates a way to use a normal subgroup to create 
new subgroups from existing ones.

 EXAMPLE 5 Let H be a normal subgroup of a group G and K be any 
subgroup of G. Then HK 5 {hk | h [ H, k [ K} is a subgroup of G.  
To verify this, note that e 5 ee is in HK. Then for any a 5 h1k1 and  
b 5 h2k2, where h1, h2 are in H and k1, k2 are in K, there is an element h9 
in H such that ab21 5 h1k1k2

21h2
21 5 h1(k1k2

21)h2
21 5 (h1h9)(k1k2

21). 
So, ab21 is in HK. 
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Be careful not to assume that for any subgroups H and K of a group 
G, the set HK is a subgroup of G. See Exercise 57.

Combining Examples 4 and 5, we form a non-Abelian subgroup of 
D8 of order 8.

 EXAMPLE  6 In D8, let H 5 {R0, R90, R180, R270} and K 5 {R0, F}, where 
F is any reflection. Then HK 5 {R0, R90, R180, R270, R0F, R90F, R180F, 
R270F} is a subgroup of D8. 

 EXAMPLE   7 If a group G has a unique subgroup H of some finite  order, 
then H is normal in G. To see that this is so, observe that for any g [ G, 
gHg21 is a subgroup of G and |gHg21| 5 |H|. 

 EXAMPLE   8 The group SL(2, R) of 2 3 2 matrices with determinant 1 is 
a normal subgroup of GL(2, R), the group of 2 3 2 matrices with nonzero 
determinant. To verify this, we use the Normal Subgroup Test given in 
Theorem 9.1. Let x [ GL(2, R) 5 G, h [ SL(2, R) 5 H, and note that 
det xhx21 5 (det x)(det h)(det x)21 5 (det x)(det x)21 5 1. So, xhx21 [ 
H, and, therefore, xHx21 # H. 

 EXAMPLE 9 Referring to the group table for A4 given in Table 5.1 
on page 105, we may observe that H 5 {a1, a2, a3, a4} is a normal 
subgroup of A4, whereas K 5 {a1, a5, a9} is not a normal subgroup 
of A4. To see that H is normal, simply note that for any b in A4, bHb21 
is a subgroup of order 4 and H is the only subgroup of A4 of order 4  
(see Table 5.1). Thus, bHb21 5 H. In contrast, a2a5a 2

21 5 a7, so that 
a2Ka2

21 s K. 

Factor Groups
We have yet to explain why normal subgroups are of special significance. 
The reason is simple. When the subgroup H of G is normal, then the set of 
left (or right) cosets of H in G is itself a group—called the factor group of 
G by H (or the quotient group of G by H). Quite often, one can obtain in-
formation about a group by studying one of its factor groups. This method 
will be illustrated in the next section of this chapter.

 Theorem 9.2 Factor Groups (O. Hölder, 1889)

Let G be a group and let H be a normal subgroup of G. The set  
G/H 5 {aH | a [ G} is a group under the operation (aH)(bH) 5 abH.†

 

†The notation G/H was first used by C. Jordan. 
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PROOF Our first task is to show that the operation is well-defined; that is, 
we must show that the correspondence defined above from G/H 3 G/H 
into G/H is actually a function. To do this, we assume that for some ele-
ments a, a9, b, and b9 from G, we have aH 5 a9H and bH 5 b9H, and 
verify that aHbH 5 a9Hb9H. That is, verify that abH 5 a9b9H. (This 
shows that the definition of multiplication depends on only the cosets 
and not on the coset representatives.) From aH 5 a9H and bH 5 b9H, we 
have a9 5 ah1 and b9 5 bh2 for some h1, h2 in H, and therefore a9b9H 5 
ah1bh2H 5 ah1bH 5 ah1Hb 5 aHb 5 abH. Here we have made multiple 
use of associativity, property 2 of the lemma in Chapter 7, and the fact 
that H v G. The rest is easy: eH 5 H is the identity; a21H is the inverse 
of aH; and (aHbH)cH 5 (ab)HcH 5 (ab)cH 5 a(bc)H 5 aH(bc)H 5 
aH(bHcH). This proves that G/H is a group. 

Notice that the normality of H in G assures that the product of two 
left cosets aH and bH is a left coset of H is G, and since aHbH contains 
ab, the product is abH.

Although it is merely a curiosity, we point out that the converse of 
Theorem 9.2 is also true; that is, if the correspondence aHbH 5 abH 
 defines a group operation on the set of left cosets of H in G, then H is 
normal in G. See Exercises 39 and 40.

The next few examples illustrate the factor group concept.

 EXAMPLE 10 Let 4Z 5 {0, 64, 68, . . .}. To construct Z/4Z, we first 
must determine the left cosets of 4Z in Z. Consider the following four 
cosets:

0 1 4Z 5 4Z 5 {0, 64, 68, . . .},
1 1 4Z 5 {1, 5, 9, . . . ; 23, 27, 211, . . .},
2 1 4Z 5 {2, 6, 10, . . . ; 22, 26, 210, . . .},
3 1 4Z 5 {3, 7, 11, . . . ; 21, 25, 29, . . .}.

We claim that there are no others. For if k [ Z, then k 5 4q 1 r, where 
0 # r , 4; and, therefore, k 1 4Z 5 r 1 4q 1 4Z 5 r 1 4Z. Now that 
we know the elements of the factor group, our next job is to determine 
the structure of Z/4Z. Its Cayley table is

 0 1 4Z 1 1 4Z 2 1 4Z 3 1 4Z

 0 1 4Z 0 1 4Z 1 1 4Z 2 1 4Z 3 1 4Z
 1 1 4Z 1 1 4Z 2 1 4Z 3 1 4Z 0 1 4Z
 2 1 4Z 2 1 4Z 3 1 4Z 0 1 4Z 1 1 4Z
 3 1 4Z 3 1 4Z 0 1 4Z 1 1 4Z 2 1 4Z

Clearly, then, Z/4Z L Z4. More generally, if for any n . 0 we let nZ 5 
{0, 6n, 62n, 63n, . . .}, then Z/nZ is isomorphic to Zn. 
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 EXAMPLE 11 Let G 5 Z18 and let H 5 k6l 5 {0, 6, 12}. Then G/H 5 
{0 1 H, 1 1 H, 2 1 H, 3 1 H, 4 1 H, 5 1 H}. To illustrate how 
the group elements are combined, consider (5 1 H) 1 (4 1 H). This  
should be one of the six elements listed in the set G/H. Well, (5 1 H) 1 
(4 1 H) 5 5 1 4 1 H 5 9 1 H 5 3 1 6 1 H 5 3 1 H, since H absorbs 
all multiples of 6. 

A few words of caution about notation are warranted here. When H is 
a normal subgroup of G, the expression |aH| has two possible interpre-
tations. One could be thinking of aH as a set of elements and |aH| as the 
size of the set; or, as is more often the case, one could be thinking of aH 
as a group element of the factor group G/H and |aH| as the order of the 
element aH  in G /H .  In Example 11,  for instance,  the set  
3 1 H has size 3, since 3 1 H 5 {3, 9, 15}. But the group element  
3 1 H has order 2, since (3 1 H) 1 (3 1 H) 5 6 1 H 5 0 1 H. As is 
usually the case when one notation has more than one meaning, the ap-
propriate interpretation will be clear from the context.

 EXAMPLE 12 Let _ 5 {R0, R180}, and consider the factor group of the 
dihedral group D4 (see the back inside cover for the multiplication table 
for D4)

D4/_ 5 {_, R90_, H_, D_}.

The multiplication table for D4/_ is given in Table 9.1. (Notice that 
even though R90H 5 D9, we have used D_ in Table 9.1 for R90_H_ be-
cause D9_ 5 D_.)

Table 9.1

  _ R90_ H_ D_

 _ _ R90_ H_ D_
 R90_ R90_ _ D_ H_
 H_ H_ D_ _ R90_
 D_ D_ H_ R90_ _

D4/_ provides a good opportunity to demonstrate how a factor  
group of G is related to G itself. Suppose we arrange the heading of the 
Cayley table for D4 in such a way that elements from the same coset of 
_ are in adjacent columns (Table 9.2). Then, the multiplication table for 
D4 can be blocked off into boxes that are cosets of _, and the substitu-
tion that replaces a box containing the element x with the coset x_ 
yields the Cayley table for D4/_.
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For example, when we pass from D4 to D4/_, the box

H V

V H

in Table 9.2 becomes the element H_ in Table 9.1. Similarly, the box

D D9

D9 D

becomes the element D_, and so on. 

Table 9.2

  R0 R180 R90 R270 H V D D9

 R0 R0 R180 R90 R270 H V D D9
 R180 R180 R0 R270 R90 V H D9 D

 R90 R90 R270 R180 R0 D9 D H V
 R270 R270 R90 R0 R180 D D9 V H

 H H V D D9 R0 R180 R90 R270
 V V H D9 D R180 R0 R270 R90

 D D D9 V H R270 R90 R0 R180
 D9 D9 D H V R90 R270 R180 R0

In this way, one can see that the formation of a factor group G/H 
causes a systematic collapse of the elements of G. In particular, all the 
elements in the coset of H containing a collapse to the single group el-
ement aH in G/H.

In Chapter 11, we will prove that every finite Abelian group is 
isomorphic to a direct product of cyclic groups. In particular, an  
Abelian group of order 8 is isomorphic to one of Z8, Z4 % Z2, or Z2 % Z2 
% Z2. In the next two examples, we examine Abelian factor groups of 
order 8 and determine the isomorphism type of each.

 EXAMPLE 13 Let G 5 U(32) 5 {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 
25, 27, 29, 31} and H 5 U16(32) 5 {1, 17}. Then G/H is an Abelian group 
of order 16/2 5 8. Which of the three Abelian groups of order 8 is it—Z8, 
Z4 % Z2, or Z2 % Z2 % Z2? To answer this question, we need only deter-
mine the elements of G/H and their orders. Observe that the eight cosets

 1H 5 {1, 17},  3H 5 {3, 19},   5H 5 {5, 21}, 7H 5 {7, 23},
9H 5 {9, 25}, 11H 5 {11, 27}, 13H 5 {13, 29},  15H 5 {15, 31}
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are all distinct, so that they form the factor group G/H. Clearly, 
(3H)2 5 9H 2 H, and so 3H has order at least 4. Thus, G/H is not  
Z2 % Z2 % Z2. On the other hand, direct computations show that both 
7H and 9H have order 2, so that G/H cannot be Z8 either, since a cyclic 
group of even order has exactly one element of order 2 (Theorem 4.4). 
This proves that U(32)/U16(32) L Z4 % Z2, which (not so incidentally!) 
is isomorphic to U(16 ). 

 EXAMPLE 14 Let G 5 Z8 % Z4 and let H 5 k(2, 2)l of G. Given that 
G/H is isomorphic to one of Z8, Z4 % Z2, Z2 % Z2 % Z2, we can determine 
which one by elimination. First note that H 5 h(0, 0), (2, 2)(4, 0), (6,  
2)j. Thus for any (a, b) 1 H we have ((a, b) 1 H)4 5 (4a, 4b) 1 H) 5  
(4, 0) 1 H if a is odd and (0, 0) 1 H if a is even. Since H contains both 
(0,0) and (4,0) we have that ((a, b) 1 H)4 5 (4a, 4b) 1 H) 5 H. Thus the 
maximum order of any element in G/H is 4. Since ((1, 0) 1 H)2 5 (2, 0) 
1 H Z H we know that u(1, 0) 1 Hu 5 4. Thus we have eliminated both 
Z8 and Z2 % Z2 % Z2. 

It is crucial to understand that when we factor out by a normal sub-
group H, what we are essentially doing is defining every element in H to 
be the identity. Thus, in Example 12, we are making R180_ 5 _ the 
identity. Likewise, R270_ 5 R90R180_ 5 R90_. Similarly, in Example 10, 
we are declaring any multiple of 4 to be 0 in the factor group Z/4Z. This 
is why 5 1 4Z 5 1 1 4 1 4Z 5 1 1 4Z, and so on. In Example 13, we 
have 3H 5 19H, since 19 5 3 ? 17 in U(32) and going to the factor 
group makes 17 the identity. Algebraists often refer to the process of 
creating the factor group G/H as “killing” H.

Applications of Factor Groups
The next three theorems illustrate how knowledge of a factor group of G 
reveals information about G itself.

A natural consequence of the fact that the operation for a factor group 
G/H is inherited from the operation in G is that many properties of G are 
inherited by G/H and many properties of G can be deduced from proper-
ties of G/H. The importance of factor groups is that the structure of G/H 
is usually less complicated than that of G and yet G/H simulates G in 
many ways. Indeed, we may think of G/H as a less complicated ap-
proximation of G (similar to using the rational number 3.14 as an ap-
proximation of the irrational number p.) A number of the relationships 
between a group and its factor groups are given in the exercises.
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 Theorem 9.3 G/Z Theorem

Let G be a group and let Z(G) be the center of G. If G/Z(G) is cyclic, 
then G is Abelian.

 

PROOF Since G is Abelian is equivalent to Z(G) 5 G, it suffices to show 
that the only element of G/Z(G) is the identity coset Z(G). To this end, let 
G/Z(G) 5 kgZ(G)l and let a [ G. Then there exists an integer i such that 
aZ(G) 5 (gZ(G)) i 5 giZ(G). Thus, a 5 giz for some z in Z(G). Since both 
gi and z belong to C(g), so does a. Because a is an arbitrary element of G  
this means that every element of G commutes with g so g [ Z(G). Thus, 
gZ(G) 5 Z(G) is the only element of G/Z(G). 

A few remarks about Theorem 9.3 are in order. First, our proof shows 
that a better result is possible: If G/H is cyclic, where H is a subgroup of 
Z(G), then G is Abelian. Second, in practice, it is the contrapositive of 
the theorem that is most often used—that is, if G is non-Abelian, then 
G/Z(G) is not cyclic. For example, it follows immediately from this 
statement and Lagrange’s Theorem that a non-Abelian group of order 
pq, where p and q are primes, must have a trivial center. Third, if G/Z(G) 
is cyclic, it must be trivial.

The next example demonstrates how one can find a subgroup of a 
group G by “pulling back” a subgroup of a factor group of G.

 EXAMPLE 15 Let H be a normal subgroup of a group G and let K be a 
subgroup of the factor group G/H. Then the set K consisting of the union 
of all elements in the cosets of H in K is a subgroup of G. To verify that 
K is a subgroup of G let a and b belong to K (K is nonempty because it 
contains H). Since a and b are in K the cosets aH and bH are in K and 
aH(bH)–1 5 aHb–1 H = ab–1 H is also a coset in K. Thus, ab–1 belongs  
to K. Note that when G is finite |K| 5 |K| |H|. 

 Theorem 9.4 G/Z(G) < Inn(G)

For any group G, G/Z(G) is isomorphic to Inn(G).
 

PROOF Consider the correspondence from G/Z(G) to Inn(G) given by  
T : gZ(G) → fg [where, recall, fg(x) 5 gxg21 for all x in G]. First, we 
show that  T  is  well  defined.  To do this,  we assume that  
gZ1G2 � hZ1G2 and verify that fg � fh. (This shows that the image  
of a coset of Z1G2 depends only on the coset itself and not on the element 
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representing the coset.) From gZ1G2 � hZ1G2 , we have that h�1g  
belongs to Z(G). Then, for all x in G, h21gx 5 xh21g. Thus,  
gxg21 5 hxh21 for all x in G, and, therefore, fg 5 fh. Reversing this ar-
gument shows that T is one-to-one, as well. Clearly, T is onto.

That T is operation-preserving follows directly from the fact that 
fgfh 5 fgh for all g and h in G. 

As an application of Theorems 9.3 and 9.4, we may easily determine 
Inn(D6) without looking at Inn(D6)!

 EXAMPLE 16 We know from Example 14 in Chapter 3 that  
|Z(D6)| 5 2. Thus, |D6 /Z (D6)| 5 6. So, by our classification of groups 
of order 6 (Theorem 7.3), we know that Inn(D6) is isomorphic to D3 or 
Z6. Now, if Inn(D6) were cyclic, then, by Theorem 9.4, D6/Z(D6) would 
be also. But then, Theorem 9.3 would tell us that D6 is Abelian. So, 
Inn(D6) is isomorphic to D3. 

The next theorem demonstrates one of the most powerful proof tech-
niques available in the theory of finite groups—the combined use of 
factor groups and induction.

 Theorem 9.5 Cauchy’s Theorem for Abelian Groups

Let G be a finite Abelian group and let p be a prime that divides the 
order of G. Then G has an element of order p.

 

PROOF Clearly, this statement is true for the case in which G has  order 2. 
We prove the theorem by using the Second Principle of Mathematical In-
duction on |G|. That is, we assume that the statement is true for all Abe-
lian groups with fewer elements than G and use this assumption to show 
that the statement is true for G as well. Certainly, G has elements of prime 
order, for if |x| 5 m and m 5 qn, where q is prime, then |xn| 5 q. So let x 
be an element of G of some prime order q, say. If q 5 p, we are finished; 
so assume that q 2 p. Since every subgroup of an Abelian group is nor-
mal, we may construct the factor group G 5 G/kxl. Then G is Abelian 
and p divides |G|, since |G| 5 |G|/q. By  induction, then, G has an  
element—call it ykxl—of order p. 

Then, (ykxl) p = y pkxl = kxl and therefore y p [ kxl. If y p = e, we are 
done. If not, then yp has order q and yq has order p. 
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Internal Direct Products
As we have seen, the external direct product provides a method of put-
ting groups together to get a larger group in such a way that we can de-
termine many properties of the larger group from the properties of the 
component pieces. For example: If G 5 H % K, then |G| 5 |H||K|; 
every element of G has the form (h, k) where h [ H and k [ K; if |h| and 
|k| are finite, then |(h, k)| 5 lcm(|h|, |k|); if H and K are Abelian, then G 
is Abelian; if H and K are cyclic and |H| and |K| are relatively prime, 
then H % K is cyclic. It would be quite useful to be able to reverse this 
process—that is, to be able to start with a large group G and break it 
down into a product of subgroups in such a way that we could glean 
many properties of G from properties of the component pieces. It is oc-
casionally possible to do this.

Definition Internal Direct Product of H and K
We say that G is the internal direct product of H and K and write  
G 5 H 3 K if H and K are normal subgroups of G and

G 5 HK  and  H > K 5 {e}.

The wording of the phrase “internal direct product” is easy to justify. 
We want to call G the internal direct product of H and K if H and K are 
subgroups of G, and if G is naturally isomorphic to the external direct 
product of H and K. One forms the internal direct product by starting 
with a group G and then proceeding to find two subgroups H and K 
within G such that G is isomorphic to the external direct product of H 
and K. (The definition ensures that this is the case—see Theorem 9.6.) 
On the other hand, one forms an external direct product by starting with 
any two groups H and K, related or not, and proceeding to produce the 
larger group H % K. The difference between the two products is that the 
internal direct product can be formed within G itself, using subgroups  
of G and the operation of G, whereas the external direct product can be 
formed with totally unrelated groups by creating a new set and a new 
operation. (See Figures 9.1 and 9.2.)

G

eH K

  Figure 9.1 For the internal direct product,  
H and K must be subgroups of the same group.
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H K

Figure 9.2 For the external 
direct product, H and K can 
be any groups.

Perhaps the following analogy with integers will be useful in clari-
fying the distinction between the two products of groups discussed in 
the preceding paragraph. Just as we may take any (finite) collection 
of integers and form their product, we may also take any collection of 
groups and form their external direct product. Conversely, just as we 
may start with a particular integer and express it as a product of cer-
tain of its divisors, we may be able to start with a particular group 
and factor it as an internal direct product of certain of its subgroups.

The next example recasts Theorem 8.3.

 EXAMPLE 17 If s and t are relatively prime positive integers then 
U(st) 5 Us(st) 3 Ut(st). 

 EXAMPLE 18 In D6, the dihedral group of order 12, let F denote some 
reflection and let Rk denote a rotation of k degrees. Then,

 D6 5 {R0, R120, R240, F, R120F, R240F} 3 {R0, R180}. 

Students should be cautioned about the necessity of having all condi-
tions of the definition of internal direct product satisfied to ensure that 
HK L H % K. For example, if we take

G 5 S3,    H 5 k(123)l,    and    K 5 k(12)l,

then G 5 HK, and H > K 5 {(1)}. But G is not isomorphic to H % K, 
since, by Theorem 8.2, H % K is cyclic, whereas S3 is not. Note that K is 
not normal.

A group G can also be the internal direct product of a collection of 
subgroups.

Definition Internal Direct Product H1 3 H2 3 ? ? ? 3 Hn
Let H1, H2, . . . , Hn be a finite collection of normal subgroups of G. We 
say that G is the internal direct product of H1, H2, . . . , Hn and write 
G 5 H1 3 H2 3 ? ? ? 3 Hn, if

 1. G 5 H1H2 ? ? ? Hn 5 {h1h2 ? ? ? hn | hi [ Hi},
 2. (H1H2 ? ? ? Hi) > Hi11 5 {e} for i 5 1, 2, . . . , n 2 1.
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This definition is somewhat more complicated than the one given for 
two subgroups. The student may wonder about the motivation for it—
that is, why should we want the subgroups to be normal and why is it 
desirable for each subgroup to be disjoint from the product of all previ-
ous ones? The reason is quite simple. We want the internal direct prod-
uct to be isomorphic to the external direct product. As the next theorem 
shows, the conditions in the definition of internal direct product were 
chosen to ensure that the two products are isomorphic.

 Theorem 9.6 H1 3 H2 3 … 3 Hn ^ H1 % H2 % … % Hn

If a group G is the internal direct product of a finite number of 
subgroups H1, H2, . . . , Hn, then G is isomorphic to the external 
direct product of H1, H2, . . . , Hn.

 

PROOF We first show that the normality of the H’s together with the sec-
ond condition of the definition guarantees that h’s from different Hi’s 
commute. For if hi [ Hi and hj [ Hj with i 2 j, then

(hihjhi
21)hj

21 [ Hjhj
21 5 Hj

and

hi(hjhi
21hj

21) [ hiHi 5 Hi.

Thus, hihjhi
21hj

21 [ Hi > Hj 5 {e} (see Exercise 5), and, therefore,  
hihj 5 hjhi. We next claim that each member of G can be expressed 
uniquely in the form h1h2 ? ? ? hn, where hi [ Hi. That there is at least one 
such representation is the content of condition 1 of the definition. To 
prove uniqueness, suppose that g 5 h1h2 ? ? ? hn and g 5 h19 h29 ? ? ? hn9, 
where hi and hi9 belong to Hi for i 5 1, . . . , n. Then, using the fact that the 
h’s from different Hi’s commute, we can solve the equation

    h1h2 ? ? ? hn 5 h19 h29 ? ? ? hn9 (1)

for hn9 hn
21 to obtain

hn9 hn
21 5 (h91)

21h1(h29)
21h2 ? ? ? (h9n21)

21hn21.

But then

hn9 hn
21 [ H1H2 ? ? ? Hn21 > Hn 5 {e},
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so that hn9 hn
21 5 e and, therefore, hn9 5 hn. At this point, we can cancel hn 

and hn9 from opposite sides of the equal sign in Equation (1) and repeat 
the preceding argument to obtain hn21 5 h9n21. Continuing in this fashion, 
we eventually have hi 5 hi9 for i 5 1, . . . , n. With our claim established, 
we may now define a function f from G to H1 % H2 % ? ? ? % Hn by 
f(h1h2 ? ? ? hn) 5 (h1, h2, . . . , hn). We leave to the reader the easy ver-
ification that f is an isomorphism. 

When we have a group G 5 H 3 K the essence of Theorem 9.6 is that 
in H % K the product (h1, k1) (h2, k2) 5 (h1 h2, k1 k2) is the same as h1h2k1k2 
in H 3 K. So, the operation in H % K can be done inside HK by ignoring 
the parentheses and commas to separate the members of H and K. 

The next theorem provides an important application of Theorem 9.6.

 Theorem 9.7 Classification of Groups of Order p2 

Every group of order p2, where p is a prime, is isomorphic to Zp2 or 
Zp % Zp. 

PROOF Let G be a group of order p2, where p is a prime. If G has an 
 element of order p2, then G is isomorphic to Zp2. So, by Corollary 2 of 
Lagrange’s Theorem, we may assume that every nonidentity  element of 
G has order p. First we show that for any element a, the subgroup kal is 
normal in G. If this is not the case, then there is an element b in G such 
that bab�1 is not in kal. Then kal and kbab�1l are distinct subgroups of 
order p. Since kal >

 kbab�1l is a subgroup of both kal and kbab�1l,  
we have that kal >

 kbab�1l � {e}. From this it follows that the distinct 
left  cosets of kbab�1l  are kbab�1l ,  akbab�1l ,  a2kbab�1l ,  .  .  .  ,  
ap�1kbab�1l. Since b�1 must lie in one of these cosets, we may write  
b�1 in the form b�1 � ai1bab�12j � aibajb�1 for some i and j. Cancel-
ing the b�1 terms, we obtain e � aibaj and therefore b � a�i� j [ kal. 
This  contradiction verifies our assertion that every subgroup of the form 
kal is normal in G. To complete the proof, let x be any  nonidentity ele-
ment in G and y be any element of G not in kxl. Then, by comparing or-
ders and using Theorem 9.6, we see that G � kxl � kyl � Zp % Zp. 

As an immediate corollary of Theorem 9.7, we have the following 
important fact.
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 Corollary 

If G is a group of order p2, where p is a prime, then G is Abelian. 

We mention in passing that if G 5 H1 % H2 % ? ? ? % Hn, then G can 
be expressed as the internal direct product of subgroups isomorphic to 
H1, H2, . . . , Hn. For example, if G 5 H1 % H2, then G 5 H1 3 H2, 
where H1 5 H1 % {e} and H2 5 {e} % H2.

The topic of direct products is one in which notation and terminology 
vary widely. Many authors use H 3 K to denote both the internal direct 
product and the external direct product of H and K, making no nota-
tional distinction between the two products. A few authors define only 
the external direct product. Many people reserve the notation  
H % K for the situation where H and K are Abelian groups under addi-
tion and call it the direct sum of H and K. In fact, we will adopt this ter-
minology in the section on rings (Part 3), since rings are always Abelian 
groups under addition.

The U-groups provide a convenient way to illustrate the preceding 
ideas and to clarify the distinction between internal and external direct 
products. It follows directly from Theorem 8.3, its corollary, and  
Theorem 9.6 that if m 5 n1n2 ? ? ? nk, where gcd(ni, nj) 5 1 for i 2 j, then

 U(m) 5 Um/n1
(m) 3 Um/n2

(m) 3 ? ? ? 3 Um/nk
(m)

 L U(n1) % U(n2) % ? ? ? % U(nk).

Let us return to the examples given following Theorem 8.3.

U(105) 5 U(15 ? 7) 5 U15(105) 3 U7(105)
 5 {1, 16, 31, 46, 61, 76} 3 {1, 8, 22, 29, 43, 64, 71, 92}
 L U(7) % U(15),

U(105) 5 U(5 ? 21) 5 U5(105) 3 U21(105)
 5  {1, 11, 16, 26, 31, 41, 46, 61, 71, 76, 86, 101}
 3 {1, 22, 43, 64} L U(21) % U(5),

U(105) 5 U(3 ? 5 ? 7) 5 U35(105) 3 U21(105) 3 U15(105)
 5 {1, 71} 3 {1, 22, 43, 64} 3 {1, 16, 31, 46, 61, 76}
 L U(3) % U(5) % U(7).

Exercises

The heart of mathematics is its problems.
Paul Halmos

  1. Let H 5 {(1), (12)}. Is H normal in S3?
  2. Prove that An is normal in Sn.
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  3. In D4, let K 5 {R0, R90, R180, R270}. Write HR90 in the form xH, 
where x [ K. Write DR270 in the form xD, where x [ K. Write R90V 
in the form Vx, where x [ K.

  4. Write (12)(13)(14) in the form a(12), where a [ A4. Write (1234)
(12)(23), in the form a(1234), where a [ A4.

  5. Show that if G is the internal direct product of H1, H2, . . . , Hn and 
i 2 j with 1 # i # n, 1 # j # n, then Hi > Hj 5 {e}. (This exercise 
is referred to in this chapter.)

  6. Let H � e ca    b

0    d
d ` a, b, d  [  R, ad ? 0 f . Is H a normal sub-

  group of GL(2, R)?
  7. Let G 5 GL(2, R) and let K be a subgroup of R*. Prove that H 5  

{A [ G | det A [ K} is a normal subgroup of G.
  8. Viewing k3l and k12l as subgroups of Z, prove that k3l/k12l is iso-

morphic to Z4. Similarly, prove that k8l/k48l is isomorphic to Z6. 
Generalize to arbitrary integers k and n.

  9. Prove that if H has index 2 in G, then H is normal in G. (This exer-
cise is referred to in Chapters 24 and 25 and this chapter.)

 10. Let H 5 {(1), (12)(34)} in A4.
  a. Show that H is not normal in A4.
  b.  Referring to the multiplication table for A4 in Table 5.1 on page 

105, show that, although a6H 5 a7H and a9H 5 a11H, it is not 
true that a6a9H 5 a7a11H. Explain why this proves that the left 
cosets of H do not form a group under coset multiplication.

 11. Prove that a factor group of a cyclic group is cyclic.
 12. Prove that a factor group of an Abelian group is Abelian.
 13. Let H be a normal subgroup of a finite group G and let a be an ele-

ment of G. Complete the following statement: The order of the ele-
ment aH in the factor group G/H is the smallest positive integer n 
such that an is .

 14. What is the order of the element 14 1 k8l in the factor group  
Z24/k8l?

 15. What is the order of the element 4U5(105) in the factor group 
U(105)/U5(105)?

 16. Recall that Z(D6) 5 {R0, R180}. What is the order of the element 
R60Z(D6) in the factor group D6/Z(D6)?

 17. Let G 5 Z/k20l and H 5 k4l/k20l. List the elements of H and G/H.
 18. What is the order of the factor group Z60/k15l?
 19. Determine all normal subgroups of Dn of order 2.
 20. List the elements of U(20)/U5(20).
 21. Prove that an Abelian group of order 33 is cyclic. Does your proof 

hold when 33 is replaced by pq where p and q are distinct primes?
 22. Determine the order of (Z % Z)/k(2, 2)l. Is the group cyclic?
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 23. Let G1 and G2 be finite groups. If H1 is a normal subgroup of G1 and 
H2 is a normal subgroup of G2 give a formula for |G1/H1 % G2/H2| 
in terms of |G1|, |G2|, |H1| and |H2|.

 24. The group (Z4 % Z12)/k(2, 2)l is isomorphic to one of Z8, Z4 % Z2, or 
Z2 % Z2 % Z2. Determine which one by elimination.

 25. Let G 5 U(32) and H 5 {1, 15}. The group G/H is isomorphic to 
one of Z8, Z4 % Z2, or Z2 % Z2 % Z2. Determine which one by 
elimination.

 26. Let H 5 h1, 17, 41, 49, 73, 89, 97, 113j under multiplication mod-
ulo 120. Write H as a external direct product of groups of the form 
Z2k. Write H as an internal direct product of nontrivial subgroups.

 27. Let G 5 U(16), H 5 {1, 15}, and K 5 {1, 9}. Are H and K isomor-
phic? Are G/H and G/K isomorphic?

 28. Let G 5 Z4 % Z4, H 5 {(0, 0), (2, 0), (0, 2), (2, 2)}, and K 5 k(1, 2)l. 
Is G/H isomorphic to Z4 or Z2 % Z2? Is G/K isomorphic to Z4 or  
Z2 % Z2?

 29. Explain why a non-Abelian group of order 8 cannot be the internal 
direct product of proper subgroups.

 30. Express U(165) as an internal direct product of proper subgroups in 
four different ways.

 31. Let R* denote the group of all nonzero real numbers under multi-
plication. Let R1 denote the group of positive real numbers under 
multiplication. Prove that R* is the internal direct product of R1 
and the subgroup {1, 21}.

 32. If N is a normal subgroup of G and |G/N| 5 m, show that xm [ N for 
all x in G.

 33. Let H and K be subgroups of a group G. If G 5 HK and g 5 hk, 
where h [ H and k [ K, is there any relationship among |g|, |h|, 
and |k|? What if G 5 H 3 K?

 34. In Z, let H 5 k5l and K 5 k7l. Prove that Z 5 HK. Does Z 5 H 3 K?
 35. Let G 5 {3a6b10 c | a, b, c [ Z} under multiplication and H 5 

{3a6b12c | a, b, c [ Z} under multiplication. Prove that G 5 k3l 3 
k6l 3 k10l, whereas H 2 k3l 3 k6l 3 k12l.

 36. Determine all subgroups of R* (nonzero reals under multiplication) 
of index 2.

 37. Let G be a finite group and let H be a normal subgroup of G. Prove 
that the order of the element gH in G/H must divide the order  
of g in G.

 38. Prove that for every positive integer n, Q/Z has an element of order n.
 39.  Let H be a subgroup of a group G with the property that for all a and 

b in G, aHbH 5 abH. Prove that H is a normal subgroup of G.
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 40. Let in S3 let H 5 {(1), (12)}. Show that (13)H(23)H 2 (13)(23)H. 
(This proves that when H is not a normal subgroup of a group G, the 
product of two left cosets of H in G need not be a left coset of H in G.) 

 41. Show that Q, the group of rational numbers under addition, has no 
proper subgroup of finite index.

 42. An element is called a square if it can be expressed in the form b2 
for some b. Suppose that G is an Abelian group and H is a subgroup 
of G. If every element of H is a square and every element of G/H is 
a square, prove that every element of G is a square. Does your proof 
remain valid when “square” is replaced by “nth power,” where n is 
any integer?

 43. Show, by example, that in a factor group G/H it can happen that 
aH 5 bH but |a| 2 |b|.

 44. Verify that the mapping defined at the end of the proof of Theorem 9.6 
is an isomorphism.

 45. Let p be a prime. Show that if H is a subgroup of a group of order 2p 
that is not normal, then H has order 2.

 46. Show that D13 is isomorphic to Inn(D13).
 47. Let H and K be subgroups of a group G. If |H| 5 63 and |K| 5 45, 

prove that H > K is Abelian.
 48. If G is a group and |G: Z(G)| 5 4, prove that G/Z(G) < Z2 % Z2.
 49. Suppose that G is a non-Abelian group of order p3, where p is a 

prime, and Z(G) 2 {e}. Prove that |Z(G)| 5 p.
 50. If |G| 5 pq, where p and q are primes that are not necessarily dis-

tinct, prove that |Z(G)| 5 1 or pq.
 51. Let H be a normal subgroup of G and K a subgroup of G that contains 

H. Prove that K is normal in G if and only if K/H is normal in G/H.
 52. Let G be an Abelian group and let H be the subgroup consisting of 

all elements of G that have finite order. Prove that every nonidentity 
element in G/H has infinite order.

 53. Determine all subgroups of R* that have finite index.
 54. Let G 5 {61, 6i, 6j, 6k}, where i2 5 j2 5 k2 5 21, 2i 5 (21)i, 

12 5 (21)2 5 1, ij 5 2ji 5 k, jk 5 2kj 5 i, and ki 5 2ik 5 j.
  a. Show that H 5 {1, 21} v G.
  b.  Construct the Cayley table for G/H. Is G/H isomorphic to Z4 or 

Z2 % Z2?
  (The rules involving i, j, and k can be remembered by using the cir-

cle below.

k j

i
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  Going clockwise, the product of two consecutive elements is the third 
one. The same is true for going counterclockwise, except that we ob-
tain the negative of the third element. This group is called the quater-
nions. It was invented by William Hamilton in 1843. The quaternions 
are used to describe rotations in three-dimensional space, and they are 
used in physics. The quaternions can be used to extend the complex 
numbers in a natural way).

 55. In D4, let K 5 {R0, D} and let L 5 {R0, D, D9, R180}. Show that K v 
L v D4, but that K is not normal in D4. (Normality is not transitive.)

 56. Show that the intersection of two normal subgroups of G is a nor-
mal subgroup of G. Generalize.

 57. Give an example of subgroups H and K of a group G such that HK 
is not a subgroup of G.

 58. If N and M are normal subgroups of G, prove that NM is also a nor-
mal subgroup of G.

 59. Let N be a normal subgroup of a group G. If N is cyclic, prove that 
every subgroup of N is also normal in G. (This exercise is referred 
to in Chapter 24.)

 60. Without looking at inner automorphisms of Dn, determine the num-
ber of such automorphisms.

 61. Let H be a normal subgroup of a finite group G and let x [ G. If 
gcd(|x|, |G/H|) 5 1, show that x [ H. (This exercise is referred to in 
Chapter 25.)

 62. Let G be a group and let G9 be the subgroup of G generated by the 
set S 5 {x21y21xy | x, y [ G}. 

  a. Prove that G9 is normal in G.
  b. Prove that G/G9 is Abelian.
  c. If G/N is Abelian, prove that G9 # N.
  d.  Prove that if H is a subgroup of G and G9 # H, then H is normal 

in G.
 63. Prove that the group C*/R* has infinite order.
 64. Suppose that a group G has a subgroup of order n. Prove that the 

intersection of all subgroups of G of order n is a normal subgroup of G.
 65. If G is non-Abelian, show that Aut(G) is not cyclic.
 66. Let |G| 5 pnm, where p is prime and gcd( p, m) 5 1. Suppose that H 

is a normal subgroup of G of order pn. If K is a subgroup of G of 
order pk, show that K # H.

 67. Suppose that H is a normal subgroup of a finite group G. If G/H has 
an element of order n, show that G has an element of order n. Show, 
by example, that the assumption that G is finite is necessary. 

 68. Prove that A4 is the only subgroup of S4 of order 12.
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 69. If |G| 5 30 and |Z(G)| 5 5, what is the structure of G/Z(G)?
  What is the structure of G/Z(G) if |Z(G)| = 3? Generalize to the case 

that |G| 5 2pq where p and q are distinct odd primes.
 70. If H is a normal subgroup of G and |H| 5 2, prove that H is con-

tained in the center of G.
 71. Prove that A5 cannot have a normal subgroup of order 2.
 72. Let G be a group and H an odd-order subgroup of G of index 2. 

Show that H contains every element of G of odd order.

Suggested Readings

Tony Rothman, “Genius and Biographers: The Fictionalization of Évariste 
Galois,” The American Mathematical Monthly 89 (1982): 84–106. 

The author argues that many popular accounts of Galois’s life have 
been greatly embroidered.

Paul F. Zweifel, “Generalized Diatonic and Pentatonic Scales: A Group-
theoretic Approach,” Perspectives of New Music 34 (1996): 140–161.

The author discusses how group theoretic notions such as subgroups, 
cosets, factor groups, and isomorphisms of Z12 and Z20 relate to musical 
scales, tuning, temperament, and structure.
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Évariste Galois (pronounced gal-WAH) 
was born on October 25, 1811, near Paris. 
Although he had mastered the works of 
Legendre and Lagrange at age 15, Galois 
twice failed his entrance examination to the 
École Polytechnique. He did not know 
some basic mathematics, and he did mathe-
matics almost entirely in his head, to the 
annoyance of the examiner.

At 18, Galois wrote his important  research 
on the theory of equations and submitted it 
to the French Academy of Sciences for pub-
lication. The paper was given to Cauchy for 
refereeing. Cauchy, impressed by the paper, 
agreed to present it to the academy, but he 
never did. At the age of 19, Galois entered a 
paper of the highest quality in the competi-
tion for the Grand Prize in Mathematics, 
given by the French Academy of Sciences. 
The paper was given to Fourier, who died 
shortly thereafter. Galois’s paper was never 
seen again.

Galois spent most of the last year and a 
half of his life in prison for revolutionary po-
litical offenses. While in prison, he attempted 

Galois at seventeen was making discover-
ies of epochal significance in the theory of 
equations, discoveries whose conse-
quences are not yet exhausted after more 
than a century.

e. t. bell, Men of Mathematics

suicide and prophesied that he would die in a 
duel. On May 30, 1832, Galois was shot in a 
duel; he died the next day at the age of 20.

Among the many concepts introduced by 
Galois are normal subgroups, isomorphisms, 
simple groups, finite fields, and Galois theory. 
His work provided a method for  disposing 
of  several famous constructability problems, 
such as trisecting an arbitrary angle and dou-
bling a cube. In his book Love and Math 
Edward Frenkel wrote “His [Galois’s] bril-
liant insight has forever changed the way peo-
ple think about numbers and equations.” 
Galois’s entire works fill only 60 pages.

To find more information about Galois, visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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194

Definition and Examples
In this chapter, we consider one of the most fundamental ideas of 
 algebra—homomorphisms. The term homomorphism comes from the 
Greek words homo, “like,” and morphe, “form.” We will see that a homo-
morphism is a natural generalization of an isomorphism and that there is 
an intimate connection between factor groups of a group and homomor-
phisms of a group. The concept of group homomorphisms was introduced 
by Camille Jordan in 1870, in his influential book Traité des substitutions.

Definition Group Homomorphism
A homomorphism f from a group G to a group G is a mapping  
from G into G that preserves the group operation; that is, f(ab) 5  
f(a)f(b) for all a, b in G.

Before giving examples and stating numerous properties of 
homomorphisms, it is convenient to introduce an important subgroup 
that is intimately related to the image of a homomorphism. (See prop-
erty 4 of Theorem 10.1.)

Definition Kernel of a Homomorphism
The kernel of a homomorphism f from a group G to a group with iden-
tity e is the set {x [ G | f(x) 5 e}. The kernel of f is denoted by Ker f.

Group Homomorphisms
When it comes to laws, there is absolutely no doubt that symmetry 
and group theory are extremely useful concepts. Without the intro-
duction of symmetry and the language of groups into particle physics 
the description of the elementary particles and their interactions 
would have been an intricate nightmare. Groups truly flesh out order 
and identify patterns like no other mathematical machinery.

Mario Livio, The Equation That Couldn't be Solved

In a certain sense the subject of group theory is built up out of three 
basic concepts: that of a homomorphism, that of a normal subgroup, 
and that of the factor group of a group by a normal subgroup.

I. N. Herstein, Abstract Algebra, 3rd ed.
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 EXAMPLE 1 Any isomorphism is a homomorphism that is also onto and 
one-to-one. The kernel of an isomorphism is the trivial subgroup. 

 EXAMPLE 2 Let R* be the group of nonzero real numbers under mul-
tiplication. Then the determinant mapping A → det A is a 
homomorphism from GL(2, R) to R*. The kernel of the determinant 
mapping is SL(2, R). 

 EXAMPLE 3 The mapping f from R* to R*, defined by f(x) 5 |x|, is a 
homomorphism with Ker f 5 {1, 21}. 

 EXAMPLE 4 Let R[x] denote the group of all polynomials with real 
coefficients under addition. For any f in R[x], let f 9 denote the derivative 
of f. Then the mapping f S f 9 is a homomorphism from R[x] to itself. 
The kernel of the derivative mapping is the set of all constant  
polynomials. 

 EXAMPLE 5 The mapping f from Z to Zn, defined by f(m) 5 m mod n, 
is a homomorphism (see Exercise 9 in Chapter 0). The kernel of this 
mapping is knl. 

 EXAMPLE 6 The mapping f(x) 5 x2 from R*, the nonzero real num-
bers under multiplication, to itself is a homomorphism, since  
f(ab) 5 (ab)2 5 a2b2 5 f(a)f(b) for all a and b in R*. (See Exercise 5.)  
The  kernel is {1, –1}. 

 EXAMPLE 7 The mapping f(x) 5 x2 from R, the real numbers under 
addition, to itself is not a homomorphism, since f(a 1 b) 5  
(a 1 b)2 5 a2 1 2ab 1 b2, whereas f(a) 1 f(b) 5 a2 1 b2. 

When defining a homomorphism from a group in which there are 
several ways to represent the elements, caution must be exercised to 
ensure that the correspondence is a function. (The term well-defined is 
often used in this context.) For example, since 3(x 1 y) 5 3x 1 3y in Z6, 
one might believe that the correspondence x 1 k3l S 3x from Z/k3l to Z6 
is a homomorphism. But it is not a function, since 0 1 k3l 5 3 1 k3l in 
Z/k3l but 3 ? 0 2 3 ? 3 in Z6.

For students who have had linear algebra, we remark that every  linear 
transformation is a group homomorphism and the null-space is the same 
as the kernel. An invertible linear transformation is a group isomorphism.
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Properties of Homomorphisms
 Theorem 10.1 Properties of Elements Under Homomorphisms

Let f be a homomorphism from a group G to a group G and let g be 
an element of G. Then

 1. f carries the identity of G to the identity of G.
 2. f(gn) 5 (f(g))n for all n in Z.
 3. If |g| is finite, then |f(g)| divides |g|.
 4. Ker f is a subgroup of G.
 5. f(a) 5 f(b) if and only if aKer f 5 bKer f.
 6.  If f(g) 5 g9, then f21(g9) 5 {x [ G | f(x) 5 g9} 5 gKer f.

PROOF The proofs of properties 1 and 2 are identical to the proofs of 
properties 1 and 2 of isomorphisms in Theorem 6.2. To prove property 3, 
notice that properties 1 and 2 together with gn 5 e imply that e 5  
f(e) 5 f(gn) 5 (f(g))n. So, by Corollary 2 to Theorem 4.1, we have 
|f(g)| divides n.

By property 1 we know that Ker f is not empty. So, to prove prop-
erty 4, we assume that a, b [ Ker f and show that ab21 [ Ker f. 
Since f(a) 5 e and f(b) 5 e, we have f(ab21) 5 f(a)f(b21) 5  
f(a)(f(b))21 5 ee21 5 e. So, ab21 [ Ker f.

To prove property 5, first assume that f(a) 5 f(b). Then  
e 5 (f(b))21f(a) 5 f(b21)f(a) 5 f(b21a), so that b21a[ Ker f.  
It now follows from property 6 of the lemma in Chapter 7 that  
bKer f 5 aKer f. Reversing this argument completes the proof.

To prove property 6, we must show that f21(g9) # gKer f and that 
gKer f # f21(g9). For the first inclusion, let x [ f21(g9), so that  
f(x) 5 g9. Then f(g) 5 f(x) and by property 5 we have gKer f 5 
xKer f and therefore x [ gKer f. This completes the proof that  
f21(g9) # gKer f. To prove that gKer f # f21(g9), suppose that k [ 
Ker f. Then f(gk) 5 f(g)f(k) 5 g9e 5 g9. Thus, by definition, gk [ 
f21(g9). 

Since homomorphisms preserve the group operation, it should not be 
a surprise that they preserve many group properties.
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 Theorem 10.2 Properties of Subgroups Under Homomorphisms

Let f be a homomorphism from a group G to a group G and let H be 
a subgroup of G. Then

 1. f(H) 5 {f(h) | h [ H} is a subgroup of G.
 2. If H is cyclic, then f(H) is cyclic.
 3. If H is Abelian, then f(H) is Abelian.
 4. If H is normal in G, then f(H) is normal in f(G).
 5. If |Ker f| 5 n, then f is an n-to-1 mapping from G onto f(G).
 6. If |H| 5 n, then |f(H)| divides n.
 7.  If K is a subgroup of G, then f21(K) 5 {k [ G | f(k) [ K}  

is a subgroup of G.
 8.  If K is a normal subgroup of G, then f21(K) 5 {k [ G |  

f(k) [ K} is a normal subgroup of G.
 9.  If f is onto and Ker f 5 {e}, then f is an isomorphism  

from G to G.

PROOF First note that the proofs of properties 1, 2, and 3 are identical 
to the proofs of properties 4, 3, and 2, respectively, of Theorem 6.3, 
since those proofs use only the fact that an isomorphism is an 
 operation-preserving mapping.

To prove property 4, let f(h) [ f(H) and f(g) [ f(G). Then  
f(g)f(h)f(g)21 5 f(ghg21) [ f(H), since H is normal in G.

Property 5 follows directly from property 6 of Theorem 10.1 and the 
fact that all cosets of Ker f 5 f21(e) have the same number of elements.

To prove property 6, let fH denote the restriction of f to the  
elements of H. Then fH is a homomorphism from H onto f(H).  
Suppose |Ker fH| 5 t. Then, by property 5, fH is a t-to-1 mapping. So, 
|f(H)|t 5 |H|.

To prove property 7, we use the One-Step Subgroup Test. Clearly,  
e [ f21(K), so that f21(K) is not empty. Let k1, k2 [ f21(K). Then, by the 
definition of f21(K), we know that f(k1), f(k2) [ K. Thus, f(k2)

21 [ K  
as well and f(k1k2

21) 5 f(k1)f(k2)
21 [ K. So, by the defi nition of f21(K),  

we have k1k2
21 [ f21(K).

To prove property 8, we use the normality test given in Theorem 9.1. Note 
that every element in xf21(K)x21 has the form xkx21, where f(k) [ K.  
Thus, since K  is normal in G, f(xkx21) 5 f(x)f(k)(f(x))21 [ K ,  
and, therefore, xkx21 [ f21(K).

Finally, property 9 follows directly from property 5. 
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A few remarks about Theorems 10.1 and 10.2 are in order. Students 
should remember the various properties of these theorems in words. For 
example, properties 2 and 3 of Theorem 10.2 say that the homomorphic 
image of a cyclic group is cyclic and the homomorphic image of an 
Abelian group is Abelian. Property 4 of Theorem 10.2 says that the ho- 
momorphic image of a normal subgroup of G is normal in the image of 
G. Property 5 of Theorem 10.2 says that if f is a homomorphism from 
G to G, then every element of G that gets “hit” by f gets hit the same 
number of times as does the identity. The set f21(g9) defined in property 
6 of Theorem 10.1 is called the inverse image of g9 (or the pullback of 
g9). Note that the inverse image of an element is a coset of the kernel and 
that every element in that coset has the same image. Similarly, the set 
f21(K) defined in property 7 of Theorem 10.2 is called the inverse 
image of K (or the pullback of K).

Property 6 of Theorem 10.1 is reminiscent of something from linear 
algebra and differential equations. Recall that if x is a particular solution 
to a system of linear equations and S is the entire solution set of the cor-
responding homogeneous system of linear equations, then x 1 S is the 
entire solution set of the nonhomogeneous system. In reality, this state-
ment is just a special case of property 6. Properties 1 and 6 of 
Theorem 10.1 and property 5 of Theorem 10.2 are pictorially repre-
sented in Figure 10.1.

The special case of property 8 of Theorem 10.2, where K 5 {e}, is of 
such importance that we single it out.

 Corollary Kernels Are Normal

Let f be a group homomorphism from G to G. Then Ker f is a normal 
subgroup of G.

The next two examples illustrate several properties of Theorems 10.1 
and 10.2.

 EXAMPLE 8 Consider the mapping f from C* to C* given by  
f(x) 5 x4. Since (xy)4 5 x4y4, f is a homomorphism. Clearly,  
Ker f 5 {x | x4 5 1} 5 {1, 21, i, 2i}. So, by property 5 of Theo-
rem 10.2, we know that f is a 4-to-1 mapping. Now let’s find all ele-
ments that map to, say, 2. Certainly, f( 422 ) 5 2. Then, by property 6 
of Theorem 10.1, the set of all elements that map to 2 is 422 Ker f 5  
{ 422 , 2 422 , 422 i, 2 422 i}.
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Finally, we verify a specific instance of property 3 of Theorem 10.1 
and of properties 2 and 6 of Theorem 10.2. Let H 5 kcos 30° 1 i sin 
30°l. It follows from DeMoivre’s Theorem (Example 12 in Chap ter 0) 
that |H| 5 12, f(H) 5 kcos 120° 1 i sin 120°l, and |f(H)| 5 3. 

 EXAMPLE 9 Define f: Z12 → Z12 by f(x) 5 3x. To verify that f is a ho-
momorphism, we observe that in Z12, 3(a 1 b) 5 3a 1 3b (since the group 
operation is addition modulo 12). Direct calculations show that Ker f 5 
{0, 4, 8}. Thus, we know from property 5 of Theorem 10.2 that f is a 3-to-1 
mapping. Since f(2) 5 6, we have by property 6 of Theorem 10.1 that 
f21(6) 5 2 1 Ker f 5 {2, 6, 10}. Notice also that k2l is cyclic and f(k2l) 
5 {0, 6} is cyclic. Moreover, |2| 5 6 and |f(2)| 5 |6| 5 2, so |f(2)| di-
vides |2| in agreement with property 3 of Theorem 10.1. Letting K5 {0, 
6}, we see that the subgroup f21(K) 5 {0, 2, 4, 6, 8, 10}. This verifies 
property 7 of Theorem 10.2 in this particular case. 

The next example illustrates how one can easily determine all homo-
morphisms from a cyclic group to a cyclic group.

 EXAMPLE 10 We determine all homomorphisms from Z12 to Z30. By 
property 2 of Theorem 10.1, such a homomorphism is completely speci-
fied by the image of 1. That is, if 1 maps to a, then x maps to xa. La-
grange’s Theorem and property 3 of Theorem 10.1 require that |a| di- 
vide both 12 and 30. So, |a| 5 1, 2, 3, or 6. Thus, a 5 0, 15, 10, 20,  
5, or 25. This gives us a list of candidates for the homomorphisms. That 
each of these six possibilities yields an operation-preserving, well- 
defined function can now be verified by direct calculations. [Note that 
gcd(12, 30) 5 6. This is not a coincidence!] 

φ

φ

φ φ

(g) = g9

G

G

(G)

e

φ φKer 21(e)= φ φgKer 21(g9)=

 e = g1, g2,..., gn  g, gg2,..., ggn

Figure 10.1
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 EXAMPLE 11 The mapping from Sn to Z2 that takes an even permutation 
to 0 and an odd permutation to 1 is a homomorphism. Figure 10.2 illus-
trates the telescoping nature of the mapping. 

(1
2)

(1
2)

(1
2)

(2
3)

(1
3)

(1
3)

(1
3)

(1
3)

(1
2)

(2
3)

(1
)

(1
)

(1
)

(1
)

(1
23)

(1
32)

(1
23)

(1
32)

(1
23)

(1
23)

(1
32)

(1
32)

(1
)

(1
32)

(1
)

(1
23)

(1
2)

(1
3)

(2
3)

(1
3)

(2
3)

(1
2)

(2
3)

(2
3)

(1
3)

(2
3)

(1
2)

(2
3)

(1
2)

(1
3)

(1
32)

(1
23)

(1
23)

(1
23)

(1
32)

(1
32)

(1
)

(1
)

1

1
1

1

O
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Figure 10.2 Homomorphism from S3 to Z2   . 

The First Isomorphism Theorem
In Chapter 9, we showed that for a group G and a normal subgroup H, 
we could arrange the Cayley table of G into boxes that represented the 
cosets of H in G, and that these boxes then became a Cayley table for 
G/H. The next theorem shows that for any homomorphism f of G and 
the normal subgroup Ker f, the same process produces a Cayley table 
isomorphic to the homomorphic image of G. Thus, homomorphisms, 
like factor groups, cause a systematic collapse of a group to a simpler 
but closely related group. This can be likened to viewing a group through 
the reverse end of a telescope—the general features of the group are 
present, but the apparent size is diminished. The important relationship 
between homomorphisms and factor groups given below is often called 
the Fundamental Theorem of Group Homomorphisms.

200 Groups

57960_ch10_ptg01_194-211.indd   200 10/26/15   3:42 PM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 Theorem 10.3 First Isomorphism Theorem (Jordan, 1870)

Let f be a group homomorphism from G to G. Then the mapping 
from G/Ker f to f(G), given by gKer f → f(g), is an isomorphism. 
In symbols, G/Ker f L f(G).

PROOF Let us use c to denote the correspondence gKer f S f(g). 
That c is well-defined (that is, the correspondence is independent of 
the particular coset representative chosen) and one-to-one follows 
 directly from property 5 of Theorem 10.1. To show that c is operation-
preserving, observe that c(xKer f yKer f) 5 c(xyKer f) 5 f(xy) 5 
f(x) f(y) 5 c(xKer f)c(yKer f). 

The next example demonstrates how Theorem 10.3 is often used to 
prove that a factor group G/H is isomorphic to some particular group G 
by instead showing the less cumbersome problem of proving that there 
is a homomorphism from G onto G.

 EXAMPLE 12 Recall that SL(2, R) 5 hA [ GL(2, R) ) det A 5 1j and let  
H 5 hA [ GL(2, R) ) det A 5 61j. Then then mapping f(A) 5 det A from 
GL  (2, R) onto R* shows that GL   (2, R)/SL    (2, R) < R* and the mapping  
f(A) 5 (det A)2 from GL    (2, R) onto R1 shows that GL    (2, R)/H < R1. 

The next corollary follows directly from Theorem 10.3, property 1 of 
Theorem 10.2, and Lagrange’s Theorem.

 Corollary

If f is a homomorphism from a finite group G to G, then |f(G)| divides 

|G| and |G|.

 EXAMPLE 13 To illustrate Theorem 10.3 and its proof, consider the 
homomorphism f from D4 to itself given by the following.

 R0     R180 R90   R270 H       V D D9

                         
 R0 H R180 V

Then Ker f 5 {R0, R180}, and the mapping c in Theorem 10.3 is  
R0Ker f S R0, R90Ker f S H, HKer f S R180, DKer f S V. It is 
straight forward to verify that the mapping c is an isomorphism. 

Mathematicians often give a pictorial representation of Theorem 10.3, 
as follows:

 

G (G)
φ

φ

φ

γ ψ

G/Ker
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where g: G S G/Ker f is defined as g(g) 5 gKer f. The mapping g 
is  called the natural mapping from G to G/Ker f. Our proof of 
Theorem 10.3 shows that cg 5 f. In this case, one says that the pre-
ceding diagram is commutative.

As a consequence of Theorem 10.3, we see that all homomorphic im-
ages of G can be determined using G. We may simply consider the various 
factor groups of G. For example, we know that the homomorphic image of 
an Abelian group is Abelian because the factor group of an Abelian group 
is Abelian. We know that the number of homomorphic images of a cyclic 
group G of order n is the number of divisors of n, since there is exactly one 
subgroup of G (and therefore one factor group of G) for each divisor of n. 
(Be careful: The number of homomorphisms of a cyclic group of order n 
need not be the same as the number of divisors of n, since different homo-
morphisms can have the same image.)

An appreciation for Theorem 10.3 can be gained by looking at a few 
examples.

 EXAMPLE 14 Z/8n9 ? Zn
Consider the mapping from Z to Zn defined in Example 5. Clearly, its 
kernel is knl. So, by Theorem 10.3, Z/knl L Zn. 

 EXAMPLE 15 Wrapping Function
Recall the wrapping function W from trigonometry. The real number 
line is wrapped around a unit circle in the plane centered at (0, 0) with 
the number 0 on the number line at the point (1, 0), the positive reals 
in the counterclockwise direction and the negative reals in the 
clockwise direction (see Figure 10.3). The function W assigns to each 
real number a the point a radians from (1, 0) on the circle. This map-
ping is a homomorphism from the group R under addition onto the 
circle group (the group of complex numbers of magnitude 1 under 
multiplication). Indeed, it follows from elementary facts of trigonom-
etry that W(x) 5 cos x 1 i sin x and W(x 1 y) 5 W(x)W(y). Since W is 
periodic of period 2p, Ker W 5 k2pl. So, from the First Isomorphism 
Theorem, we see that R/k2pl is isomorphic to the circle group. 

W(3)

W(2)

W(0)

W(1)

(0, 0)

(1, 0)

W(21)

Figure 10.3
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Our next example is a theorem that is used repeatedly in Chapters 24 
and 25.

 EXAMPLE 16 N/C Theorem
Let H be a subgroup of a group G. Recall that the normalizer of H in 
G  is N(H) 5 {x [ G | xHx21 5 H} and the centralizer of H in G is  
C(H) 5 {x [ G | xhx21 5 h for all h in H}. Consider the mapping from 
N(H) to Aut(H) given by g S fg, where fg is the inner automorphism of 
H induced by g [that is, fg(h) 5 ghg21 for all h in H]. This mapping is a 
homomorphism with kernel C(H). So, by Theorem 10.3, N(H)/C(H) is 
isomorphic to a subgroup of Aut(H). 

As an application of the N/C Theorem, we will show that every group 
of order 35 is cyclic.

 EXAMPLE 17 Let G be a group of order 35. By Lagrange’s Theorem, 
every nonidentity element of G has order 5, 7, or 35. If some element 
has order 35, G is cyclic. So we may assume that all nonidentity ele-
ments have order 5 or 7. However, not all such  elements can have  
order 5, since elements of order 5 come 4 at a time (if |x| 5 5, then  
|x2| 5 |x3| 5 |x4| 5 5) and 4 does not divide 34. Similarly, since 6 does 
not divide 34, not all nonidentity elements can have order 7. So, G has 
elements of order 7 and order 5. Since G has an element of order 7, it 
has a subgroup of order 7. Let us call it H. In fact, H is the only sub-
group of G of order 7, for if K is another subgroup of G of order 7, we 
have by Theorem 7.2 that |HK| 5 |H||K|/|H > K| 5 7 ? 7/1 5 49. But, 
of course, this is impossible in a group of order 35. Since for every a in 
G, aHa21 is also a subgroup of G of order 7, we must have aHa21 5 H. 
So, N(H) 5 G. Since H has prime order, it is cyclic and therefore  
Abelian. In particular, C(H) contains H. So, 7 divides |C(H)| and 
|C(H)| divides 35. It follows, then, that C(H) 5 G or C(H) 5 H. If 
C(H) 5 G, then we may obtain an element x of order 35 by letting x 5 
hk, where h is a nonidentity element of H and k has order 5. On the 
other hand, if C(H) 5 H, then |C(H)| 5 7 and |N(H)/C(H)| 5 35/7 5 5. 
However, 5 does not divide |Aut(H)| 5 |Aut(Z7)| 5 6. This contradic-
tion shows that G is cyclic. 

The corollary of Theorem 10.2 says that the kernel of every homo-
morphism of a group is a normal subgroup of the group. We conclude 
this chapter by verifying that the converse of this statement is also true.
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 Theorem 10.4 Normal Subgroups Are Kernels

Every normal subgroup of a group G is the kernel of a homomor- 
phism of G. In particular, a normal subgroup N is the kernel  
of the mapping g S gN from G to G/N.

PROOF Define g: G S G/N by g(g) 5 gN. (This mapping is called the 
natural homomorphism from G to G/N.) Then, g(xy) 5 (xy)N 5 xNyN 5 
g(x)g(y). Moreover, g [ Ker g if and only if gN 5 g(g) 5 N, which is 
true if and only if g [ N (see property 2 of the lemma in Chapter 7). 

Examples 12, 13, 14, and 15 illustrate the utility of the First 
Isomorphism Theorem. But what about homomorphisms in general? Why 
would one care to study a homomorphism of a group? The answer is that, 
just as was the case with factor groups of a group, homomorphic images 
of a group tell us some of the properties of the original group. One mea-
sure of the likeness of a group and its homomorphic image is the size of 
the kernel. If the kernel of the homomorphism of group G is the identity, 
then the image of G tells us everything (group theoretically) about G (the two 
being isomorphic). On the other hand, if the kernel of the homomorphism 
is G itself, then the image tells us nothing about G. Between these two 
extremes, some information about G is preserved and some is lost. The 
utility of a particular homomorphism lies in its ability to preserve the 
group properties we want, while losing some inessential ones. In this way, 
we have replaced G by a group less complicated (and therefore eas ier to 
study) than G; but, in the process, we have saved enough information to 
answer questions that we have about G itself. For example, if G is a group 
of order 60 and G has a homomorphic image of order 12 that is cyclic, 
then we know from properties 5, 7, and 8 of Theorem 10.2 that G has 
normal subgroups of orders 5, 10, 15, 20, 30, and 60. 

The next example illustrates how one can use a homomorphism to 
simplify a problem.

 EXAMPLE 18 Suppose we are asked to find an infinite group that is 
the union of three proper subgroups. Instead of attempting to do this 
 directly, we first make the problem easier by finding a finite group that 
is the union of three proper subgroups. Since no cyclic group can be the 
union of proper subgroups the smallest candidate is a noncyclic group 
of order 4 group such as U(8). Observing that U(8) is the union of 
H � 51, 36, K � 51, 56, and L � 51, 76 we have found our finite  
group. Now all we need do is think of an infinite group that has U(8) as 
a homomorphic image and pull back H, K, and L, and our original 
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 problem is solved. Clearly, the mapping from U(8) ! Z onto U(8) given 
by f(a, b) 5 a is such a mapping, and therefore U(8) ! Z is the union 
of the proper subgroups f�1(H), f�1(K) and f�1(L). 

Although an isomorphism is a special case of a homomorphism, the 
two concepts have entirely different roles. Whereas isomorphisms 
allow us to look at a group in an alternative way, homomorphisms act 
as investigative tools. The following analogy between homomor-
phisms and photography may be instructive.† A photograph of a  person 
cannot tell us the person’s exact height, weight, or age. Nevertheless, 
we may be able to decide from a photograph whether the person is tall 
or short, heavy or thin, old or young, male or female. In the same way, 
a homomorphic image of a group gives us some information about the 
group.

In certain branches of group theory, and especially in physics and 
chemistry, one often wants to know all homomorphic images of a group 
that are matrix groups over the complex numbers (these are called group 
representations). Here, we may carry our analogy with photography one 
step further by saying that this is like wanting photographs of a person 
from many different angles (front view, profile, head-to-toe view, close-
up, etc.), as well as x-rays! Just as this composite information from the 
photographs reveals much about the person, several homomorphic im-
ages of a group reveal much about the group.

Exercises

The greater the difficulty, the more glory in surmounting it. Skillful pilots gain 
their reputation from storms and tempests.

Epicurus

  1. Prove that the mapping given in Example 2 is a homomorphism.
  2. Prove that the mapping given in Example 3 is a homomorphism.
  3. Prove that the mapping given in Example 4 is a homomorphism.
  4. Prove that the mapping given in Example 11 is a homomorphism.
  5. Let R* be the group of nonzero real numbers under multiplication, 

and let r be a positive integer. Show that the mapping that takes x to 
xr is a homomorphism from R* to R* and determine the kernel. 
Which values of r yield an isomorphism?

†“All perception of truth is the detection of an analogy.” Henry David Thoreau, Journal.
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  6. Let G be the group of all polynomials with real coefficients under ad-
dition. For each f in G, let ∫f denote the antiderivative of f that passes 
through the point (0, 0). Show that the mapping f S ∫f from G to G is 
a homomorphism. What is the kernel of this mapping? Is this mapping 
a homomorphism if ∫f denotes the antiderivative of f that passes 
through (0, 1)?

  7. If f is a homomorphism from G to H and s is a homomorphism 
from H to K, show that sf is a homomorphism from G to K. How 
are Ker f and Ker sf related? If f and s are onto and G is finite,

  describe [Ker sf:Ker f] in terms of |H| and |K|.
  8. Let G be a group of permutations. For each s in G, define

 sgn1s2 � e�1  if s is an even permutation, 

�1  if s is an odd permutation.

  Prove that sgn is a homomorphism from G to the multiplicative 
group {11, 21}. What is the kernel? Why does this homomor-
phism allow you to conclude that An is a normal subgroup of Sn of 
index 2? Why does this prove Exercise 23 of Chapter 5?

  9. Prove that the mapping from G % H to G given by (g, h) S g is a 
homomorphism. What is the kernel? This mapping is called the pro-
jection of G % H onto G.

 10. Let G be a subgroup of some dihedral group. For each x in G, define

 f1x2 � e�1  if x is a rotation, 

�1  if x is a reflection.

  Prove that f is a homomorphism from G to the multiplicative group 
{�1, �1}. What is the kernel? Why does this prove Exercise 26 of 
Chapter 3?

 11. Prove that (Z % Z )/(k(a, 0)l 3 k(0, b)l) is isomorphic to Za % Zb.
 12. Suppose that k is a divisor of n. Prove that Zn/kkl L Zk.
 13. Prove that (A % B)/(A % {e}) L B.
 14. Explain why the correspondence x → 3x from Z12 to Z10 is not a 

homomorphism.
 15. Suppose that f is a homomorphism from Z30 to Z30 and Ker f 5 

{0, 10, 20}. If f(23) 5 9, determine all elements that map to 9.
 16. Prove that there is no homomorphism from Z8 % Z2 onto Z4 % Z4.
 17. Prove that there is no homomorphism from Z16 % Z2 onto Z4 % Z4.
 18. Can there be a homomorphism from Z4 % Z4 onto Z8? Can there be 

a homomorphism from Z16 onto Z2 % Z2? Explain your answers.
 19. Suppose that there is a homomorphism f from Z17 to some group 

and that f is not one-to-one. Determine f.
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 20. How many homomorphisms are there from Z20 onto Z8? How many 
are there to Z8?

 21. If f is a homomorphism from Z30 onto a group of order 5, deter-
mine the kernel of f.

 22. Suppose that f is a homomorphism from a finite group G onto G 
and that G has an element of order 8. Prove that G has an element of 
order 8. Generalize.

 23. Let f be a homomorphism from a finite group G to G. If H is a sub-
group of G give a formula for 0f�11H2 0  in terms of 0H 0  and f.

 24. Suppose that f: Z50 S Z15 is a group homomorphism with f(7) 5 6.
  a. Determine f(x).
  b. Determine the image of f.
  c. Determine the kernel of f.
  d.  Determine f21(3). That is, determine the set of all elements that 

map to 3.
 25. How many homomorphisms are there from Z20 onto Z10? How many 

are there to Z10?
 26. Determine all homomorphisms from Z4 to Z2 % Z2.
 27. Determine all homomorphisms from Zn to itself.
 28. Suppose that f is a homomorphism from S4 onto Z2. Determine Ker 

f. Determine all homomorphisms from S4 to Z2.
 29. Suppose that there is a homomorphism from a finite group G onto 

Z10. Prove that G has normal subgroups of indexes 2 and 5.
 30. Suppose that f is a homomorphism from a group G onto Z6 % Z2 

and that the kernel of f has order 5. Explain why G must have nor-
mal subgroups of orders 5, 10, 15, 20, 30, and 60.

 31. Suppose that f is a homomorphism from U(30) to U(30) and  
that Ker f 5 {1, 11}. If f(7) 5 7, find all elements of U(30) that 
map to 7.

 32. Find a homomorphism f from U(30) to U(30) with kernel {1, 11} 
and f(7) 5 7.

 33. Suppose that f is a homomorphism from U(40) to U(40) and that  
Ker f 5 {1, 9, 17, 33}. If f(11) 5 11, find all elements of U(40) 
that map to 11.

 34. Prove that there is no homomorphism from A4 onto Z2.
 35. Prove that the mapping f: Z % Z S Z given by (a, b) S a 2 b is a 

homomorphism. What is the kernel of f? Describe the set f21(3) 
(that is, all elements that map to 3).
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 36. Suppose that there is a homomorphism f from Z % Z to a group G 
such that f((3, 2)) 5 a and f((2, 1)) 5 b. Determine f((4, 4)) in 
terms of a and b. Assume that the operation of G is addition.

 37. Let H 5 {z [ C* | |z| 5 1}. Prove that C*/H is isomorphic to R1, 
the group of positive real numbers under multiplication.

 (Recall 0 a � bi 0 � 4a2 � b2.)
 38. Let a be a homomorphism from G1 to H1 and b be a homomor-

phism from G2 to H2. Determine the kernel of the homomorphism g 
from G1 % G2 to H1 % H2 defined by g(g1, g2) 5 (a(g1), b(g2)).

 39. Prove that the mapping x S x6 from C* to C* is a homomorphism. 
What is the kernel?

 40. For each pair of positive integers m and n, we can define a homo-
morphism from Z to Zm % Zn by x S (x mod m, x mod n). What is 
the kernel when (m, n) 5 (3, 4)? What is the kernel when (m, n) 5 
(6, 4)? Generalize.

 41. (Second Isomorphism Theorem) If K is a subgroup of G and N is 
a normal subgroup of G, prove that K/(K > N) is isomorphic  
to KN/N.

 42. (Third Isomorphism Theorem) If M and N are normal subgroups of 
G and N # M, prove that (G/N)/(M/N) L G/M. Think of this as a 
form of “cancelling out” the N in the numerator and denominator.

 43. Prove that the only homomorphism from A4 to a finite group with 
order not divisible by 3 is the trivial mapping that takes every ele-
ment to the identity.

 44. Let k be a divisor of n. Consider the homomorphism from U(n) to 
U(k) given by x S x mod k. What is the relationship between this 
homomorphism and the subgroup Uk(n) of U(n)?

 45. Determine all homomorphic images of D4 (up to isomorphism).
 46. Let N be a normal subgroup of a finite group G. Use the theorems of 

this chapter to prove that the order of the group element gN in G/N 
divides the order of g.

 47. Suppose that G is a finite group and that Z10 is a homomorphic 
image of G. What can we say about |G|? Generalize.

 48. Suppose that Z10 and Z15 are both homomorphic images of a finite 
group G. What can be said about |G|? Generalize.

 49. Suppose that for each prime p, Zp is the homomorphic image of a 
group G. What can we say about |G|? Give an example of such a 
group.
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 50. (For students who have had linear algebra.) Suppose that x is a 
 particular solution to a system of linear equations and that S is the 
entire solution set of the corresponding homogeneous system of lin-
ear equations. Explain why property 6 of Theorem 10.1 guarantees 
that x 1 S is the entire solution set of the nonhomogeneous system. 
In particular, describe the relevant groups and the homomorphism 
between them.

 51. Let N be a normal subgroup of a group G. Use property 7 of 
Theorem 10.2 to prove that every subgroup of G/N has the form 
H/N, where H is a subgroup of G. (This exercise is referred to in 
Chapter 11 and Chapter 24.)

 52. Show that a homomorphism defined on a cyclic group is completely 
determined by its action on a generator of the group.

 53. Use the First Isomorphism Theorem to prove Theorem 9.4.
 54. Determine all homomorphisms from D5 onto Z2 ! Z2. Determine 

all homomorphisms from D5 to Z2 ! Z2.
 55. Let Z[x] be the group of polynomials in x with integer coefficients 

under addition. Prove that the mapping from Z[x] into Z given by 
f(x) S f(3) is a homomorphism. Give a geometric description of the 
kernel of this homomorphism. Generalize.

 56. Prove that the mapping from R under addition to SL(2, R) that 
takes x to

  c cos x sin x

�sin x cos x
d

  
is a group homomorphism. What is the kernel of the homomorphism?

 57. Suppose there is a homomorphism f from G onto Z2 % Z2. Prove 
that G is the union of three proper normal subgroups.

 58. If H and K are normal subgroups of G and H > K 5 {e}, prove that 
G is isomorphic to a subgroup of G/H % G/K.

 59. If f is a homomorphism from G onto H, prove that f(Z(G)) # Z(H).
 60. Suppose that f is a homomorphism from D12 onto D3. What is  

f(R180)?
 61. Prove that every group of order 77 is cyclic.
 62. Determine all homomorphisms from Z onto S3. Determine all 

 homomorphisms from Z to S3.
 63. Let G be an Abelian group. Determine all homomorphisms from  

S3 to G.
 64. If m and n are positive integers prove that the mapping from Zm to 

Zn given by f(x) 5 x mod n is a homomorphism if and only if n 
 divides m.
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 65. Prove that the mapping from C* to C* given by f(x) 5 x2 is a 
 homomorphism and that C*/ {1, 21} is isomorphic to C*. What 
happens if C* is replaced by R*?

 66. Let p be a prime. Determine the number of homomorphisms from 
Zp % Zp into Zp.

Computer Exercise

A computer exercise for this chapter is available at the website:

http://www.d.umn.edu/~jgallian

Suggested Readings

A. Crans, T. Fiore, and R. Satyendra, “Musical Actions of Dihedral 
Groups,” The American Mathematical Monthly 116 (2009):479-495.
Available at http://arxiv.org/abs/0711.1873

In this award winning article the authors illustrate how music theorists 
have modeled works of music as diverse as Hindemith and the Beatles 
using the dihedral group of order 24.

Jeremiah W. Johnson, “The Number of Group Homomorphisms from Dm 
into Dn,” The College Mathematics Journal 44(2013): 190–192.
Available at http://arxiv.org/pdf/1201.2363

In this article the author gives a formula for the number of group 
 homomorphisms between any two dihedral groups using elementary 
group theory only.
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211

Camille Jordan was born into a well-to-do 
family on January 5, 1838, in Lyons, France. 
Like his father, he graduated from the École 
Polytechnique and became an engineer. 
Nearly all of his 120 research papers in math-
ematics were written before his retirement 
from engineering in 1885. From 1873 until 
1912, Jordan taught simultaneously at the 
École Polytechnique and at the College of 
France.

In the great French tradition, Jordan was a 
universal mathematician who published in 
nearly every branch of mathematics. Among 
the concepts named after him are the Jordan 
canonical form in matrix theory, the Jordan 
curve theorem from topology, and the 
Jordan–Hölder Theorem from group theory. 
His classic book Traité des substitutions, 

published in 1870, was the first to be devoted 
solely to group theory and its applications to 
other branches of mathematics.

Another book that had great influence and 
set a new standard for rigor was his Cours 
d’analyse. This book gave the first clear defi-
nitions of the notions of volume and multiple 
integral. Nearly 100 years after this book ap-
peared, the distinguished mathematician and 
mathematical historian B. L. van der Waerden 
wrote, “For me, every  single chapter of the 
Cours d’analyse is a pleasure to read.” Jordan 
died in Paris on January 22, 1922.

To find more information about Jordan, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

Although these contributions [to  
analysis and topology] would have been 
enough to rank Jordan very high among his 
mathematical contemporaries, it is chiefly 
as an algebraist that he reached celebrity 
when he was barely thirty; and during the 
next forty years he was  universally re-
garded as the undisputed master of group 
theory.

j. dieudonné, Dictionary of  
Scientific Biography
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Fundamental Theorem of  
Finite Abelian Groups

By a small sample we may judge of the whole piece.
Miguel De Cervantes, Don Quixote

Mathematical truths are inevitable.
Edward Frenkel, Love and Math

The Fundamental Theorem
In this chapter, we present a theorem that describes to an algebraist’s 
eye (that is, up to isomorphism) all finite Abelian groups in a  stan- 
d ardized way. Before giving the proof, which is long and difficult, we 
discuss some consequences of the theorem and its proof. The first proof 
of the theorem was given by Leopold Kronecker in 1858.

 Theorem 11.1 Fundamental Theorem of Finite Abelian Groups

Every finite Abelian group is a direct product of cyclic groups of 
prime-power order. Moreover, the number of terms in the product 
and the orders of the cyclic groups are uniquely determined by the 
group.

Theorem 11.1 reduces questions about finite abelian groups to ques-
tions about cyclic groups, which when combined with the results of 
Chapter 4, usually yields complete answers to the questions.

Since a cyclic group of order n is isomorphic to Zn, Theorem 11.1 
shows that every finite Abelian group G is isomorphic to a group of the 
form

Zp1
n1 % Zp2

n2 % ? ? ? % Zpk
nk,

where the pi’s are not necessarily distinct primes and the prime  
powers p1

n1, p2
n2, . . . , pk

nk are uniquely determined by G. Writing a 
group in this form is called determining the isomorphism class of G.

11
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The Isomorphism Classes  
of Abelian Groups

The Fundamental Theorem is extremely powerful. As an application, 
we can use it as an algorithm for constructing all Abelian groups of any 
order. Let’s look at groups whose orders have the form pk, where p is 
prime and k # 4. In general, there is one group of order pk for each set of 
positive integers whose sum is k (such a set is called a partition of k); 
that is, if k can be written as

k 5 n1 1 n2 1 ? ? ? 1 nt,

where each ni is a positive integer, then

Zp 
n1 % Zp 

n2 % ? ? ? % Zp 
nt

is an Abelian group of order pk.

   Possible direct  
 Order of G Partitions of k products for G

 p 1 Zp

 p2 2 Zp2

  1 1 1 Zp % Zp

 p3 3 Zp3

  2 1 1 Zp2 % Zp

  1 1 1 1 1 Zp % Zp % Zp

 p4 4 Zp4

  3 1 1 Zp3 % Zp

  2 1 2 Zp2 % Zp2

  2 1 1 1 1 Zp2 % Zp % Zp

  1 1 1 1 1 1 1 Zp % Zp % Zp % Zp

Furthermore, the uniqueness portion of the Fundamental Theorem 
guarantees that distinct partitions of k yield distinct isomorphism 
classes. Thus, for example, Z9 % Z3 is not isomorphic to Z3 % Z3 % Z3. 
A reliable mnemonic for comparing external direct products is the can-
cellation property: If A is finite, then

A % B L A % C    if and only if    B L C  (see [1]).

Thus, Z4 % Z4 is not isomorphic to Z4 % Z2 % Z2, because Z4 is not  
isomorphic to Z2 % Z2.

To appreciate fully the potency of the Fundamental Theorem, con trast 
the ease with which the Abelian groups of order pk, k # 4, were 
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 determined with the corresponding problem for non-Abelian groups. 
Even a description of the two non-Abelian groups of order 8 is a chal-
lenge (see Theorem 26.4), and a description of the nine non-Abelian 
groups of order 16 is well beyond the scope of this text.

Now that we know how to construct all the Abelian groups of prime-
power order, we move to the problem of constructing all Abelian  
groups of a certain order n, where n has two or more distinct prime 
 divisors. We begin by writing n in prime-power decomposition form  
n 5 p1

n1p2
n2 ? ? ? pk

nk. Next, we individually form all Abelian groups of 
order p1

n1, then p2
n2, and so on, as described earlier. Finally, we form all 

possible external direct products of these groups. For example, let n 5 
1176 5 23 ? 3 ? 72. Then, the complete list of the distinct isomorphism 
classes of Abelian groups of order 1176 is

 Z8 % Z3 % Z49,
 Z4 % Z2 % Z3 % Z49,
 Z2 % Z2 % Z2 % Z3 % Z49,
 Z8 % Z3 % Z7 % Z7,
 Z4 % Z2 % Z3 % Z7 % Z7,

Z2 % Z2 % Z2 % Z3 % Z7 % Z7.

If we are given any particular Abelian group G of order 1176, the 
question we want to answer about G is: Which of the preceding six 
isomorphism classes represents the structure of G? We can answer this 
question by comparing the orders of the elements of G with the orders 
of the elements in the six direct products, since it can be shown that 
two fi nite Abelian groups are isomorphic if and only if they have the 
same number of elements of each order. For instance, we could deter-
mine whether G has any elements of order 8. If so, then G must be 
isomorphic to the first or fourth group above, since these are the only 
ones with elements of order 8. To narrow G down to a single choice, 
we now need only check whether or not G has an element of order 49, 
since the first product above has such an element, whereas the fourth 
one does not.

What if we have some specific Abelian group G of order p1
n1p2

n2  
? ? ? pk

nk, where the pi’s are distinct primes? How can G be expressed as 
an internal direct product of cyclic groups of prime-power order? For 
simplicity, let us say that the group has 2n elements. First, we must com-
pute the orders of the elements. After this is done, pick an element of 
maximum order 2r, call it a1. Then ka1l is one of the factors in the  desired 
internal direct product. If G 2 ka1l, choose an element a2 of maximum 
order 2s such that s # n 2 r and none of a2, a2

2, a2
4, . . . , a2

2 s21
 is in ka1l. 

Then ka2l is a second direct factor. If n 2 r 1 s, select an element a3 of 
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Element 1 8 12 14 18 21 27 31 34 38 44 47 51 53 57 64

Order 1 4 4 2 4 4 4 4 4 4 4 4 2 4 4 2

From the table of orders, we can instantly rule out all but Z4 % Z4 and  
Z4 % Z2 % Z2 as possibilities. Finally, we observe that since this latter 
group has a subgroup isomorphic to Z2 % Z2 % Z2, it has more than three 
elements of order 2, and therefore we must have G L Z4 % Z4.

maximum order 2t such that t # n 2 r 2 s and none of a3, a3
2, a3

4, . . . , 
a3

2 t21
 is in ka1l 3 ka2l 5 {a1

ia2
j | 0 # i , 2r, 0 # j , 2s}. Then ka3l is 

another direct factor. We continue in this fashion until our direct product 
has the same order as G.

A formal presentation of this algorithm for any Abelian group G of 
prime-power order pn is as follows.

Greedy Algorithm for an Abelian Group of Order pn

 1. Compute the orders of the elements of the group G.
 2.  Select an element a1 of maximum order and define G1 5 ka1l.  

Set i 5 1.
 3. If |G| 5 |Gi|, stop. Otherwise, replace i by i 1 1.
 4.  Select an element ai of maximum order pk such that pk #  

|G|/|Gi21| and none of ai, ai
p, ai

p2
, . . . , ai

pk21
 is in Gi21, and define 

Gi 5 Gi21 3 kail.
 5. Return to step 3.

In the general case where |G| 5 p1
n1p2

n2 ? ? ? pk
nk, we simply use the 

algorithm to build up a direct product of order p1
n1, then another of  order 

p2
n 2, and so on. The direct product of all of these pieces is the  desired 

factorization of G. The following example is small enough that we can 
compute the appropriate internal and external direct products by hand.

 EXAMPLE 1 Let G 5 {1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 
57, 64} under multiplication modulo 65. Since G has order 16, we know 
it is isomorphic to one of

 Z16,
 Z8 % Z2,
 Z4 % Z4,
 Z4 % Z2 % Z2,
 Z2 % Z2 % Z2 % Z2.

To decide which one, we dirty our hands to calculate the orders of the 
elements of G.
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Expressing G as an internal direct product is even easier. Pick an ele-
ment of maximum order, say the element 8. Then k8l is a factor in the 
product. Next, choose a second element, say a, so that a has order 4 and 
a and a2 are not in k8l 5 {1, 8, 64, 57}. Since 12 has this property, we 
have G 5 k8l 3 k12l. 

Example 1 illustrates how quickly and easily one can write an Abelian 
group as a direct product given the orders of the elements of the group. 
But calculating all those orders is certainly not an appealing prospect! The 
good news is that, in practice, a combination of theory and calculation of 
the orders of a few elements will usually suffice.

 EXAMPLE 2 Let G 5 {1, 8, 17, 19, 26, 28, 37, 44, 46, 53, 62,  
64, 71, 73, 82, 89, 91, 98, 107, 109, 116, 118, 127, 134} under multi-
plication modulo 135. Since G has order 24, it is isomorphic to  
one of

 Z8 % Z3 L Z24,
 Z4 % Z2 % Z3 L Z12 % Z2,

Z2 % Z2 % Z2 % Z3 L Z6 % Z2 % Z2.

Consider the element 8. Direct calculations show that 86 5 109 and 812 5 1. 
(Be sure to mod as you go. For example, 83 mod 135 5 512 mod  
135 5 107, so compute 84 as 8 ? 107 rather than 8 ? 512.) But now we 
know G. Why? Clearly, |8| 5 12 rules out the third group in the list. At 
the same time, |109| 5 2 5 |134| (remember, 134 5 21 mod 135) 
 implies that G is not Z24 (see Theorem 4.4). Thus, G L Z12 % Z2, and G 5 
k8l 3 k134l. 

Rather than express an Abelian group as a direct product of cyclic 
groups of prime-power orders, it is often more convenient to combine the 
cyclic factors of relatively prime order, as we did in Example 2, to obtain 
a direct product of the form Zn1

 % Zn2
 % ? ? ? % Znk

, where ni divides ni21. 
For example, Z4 % Z4 % Z2 % Z9 % Z3 % Z5 would be written as Z180 % 
Z12 % Z2 (see Exercise 11). The algorithm above is easily adapted to 
 accomplish this by replacing step 4 by 49: Select an element ai of maxi-
mum order m such that m # |G|/|Gi21| and none of ai, ai

2, . . . , ai
m21 is 

in Gi21, and define Gi 5 Gi21 3 kail.
As a consequence of the Fundamental Theorem of Finite Abelian 

Groups, we have the following corollary, which shows that the converse 
of Lagrange’s Theorem is true for finite Abelian groups.
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 Corollary Existence of Subgroups of Abelian Groups

If m divides the order of a finite Abelian group G, then G has a 
subgroup of order m.

PROOF Suppose that G is an Abelian group of order n and m divides n. 
We induct on the order of G. The case where n or m is 1 is trivial. Let p be 
a prime that divides m. It follows from Theorem 11.1 and properties of 
cyclic groups that G has a subgroup K of order p. Then G/K is an Abelian 
group of order n/p and m/p divides |G/K|. By the Second Principle of 
Mathematical Induction G/K has a subgroup of the form H/K where H is  
a subgroup of G and |H/K| 5 m/p (see Exercise 51 of Chapter 10). Then  
|H| 5 (|H|/|K|)|K| 5 (m/p)p 5 m. 

It is instructive to verify this corollary for a specific case. Let us say that 
G is an Abelian group of order 72 and we wish to produce a subgroup of 
order 12. According to the Fundamental Theorem, G is isomorphic to one 
of the following six groups:

 Z8 % Z9, Z8 % Z3 % Z3,
 Z4 % Z2 % Z9, Z4 % Z2 % Z3 % Z3,

Z2 % Z2 % Z2 % Z9,    Z2 % Z2 % Z2 % Z3 % Z3.

Obviously, Z8 % Z9 L Z72 and Z4 % Z2 % Z3 % Z3 L Z12 % Z6 both 
have a subgroup of order 12. To construct a subgroup of order 12 in Z4 
% Z2 % Z9, we simply piece together all of Z4 and the subgroup of order 
3 in Z9; that is, {(a, 0, b) | a [ Z4, b [ {0, 3, 6}}. A subgroup of order 
12 in Z8 % Z3 % Z3 is given by {(a, b, 0) | a [ {0, 2, 4, 6}, b [ Z3}. An 
analogous procedure applies to the remaining cases and indeed to any 
finite Abelian group.

Proof of the Fundamental Theorem
Because of the length and complexity of the proof of the Fundamental 
Theorem of Finite Abelian Groups, we will break it up into a series of 
lemmas.

 Lemma 1

Let G be a finite Abelian group of order pnm, where p is a prime that 
does not divide m. Then G 5 H 3 K, where H 5 {x [ G | x pn 5 e} 
and K 5 {x [ G | xm 5 e}. Moreover, |H| 5 pn.
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PROOF It is an easy exercise to prove that H and K are subgroups of G (see 
Exercise 47 in Chapter 3). Because G is Abelian, to prove that G 5 H 3  
K we need only prove that G 5 HK and H > K 5 {e}. Since we have 
gcd(m, pn) 5 1, there are integers s and t such that 1 5 sm 1 tpn. For any x 
in G, we have x 5 x1 5 xsm1tpn

 5 xsmxtpn
 and, by Corollary 4 of  Lagrange’s 

Theorem (Theorem 7.1), xsm [ H and xtpn
 [ K. Thus, G 5 HK. Now sup-

pose that some x [ H > K. Then x pn 5 e 5 x m and, by Corollary 2  
of Theorem 4.1, |x| divides both pn and m. Since p does not divide m, we 
have |x| 5 1 and, therefore, x 5 e.

To prove the second assertion of the lemma, note that pnm 5  
|HK| 5 |H||K|/|H > K| 5 |H||K| (Theorem 7.2). It follows from 
Theorem 9.5 and Corollary 2 to Theorem 4.1 that p does not divide |K| 
and therefore |H| 5 pn. 

Given an Abelian group G with |G| 5 p1
n1p2

n2 ? ? ? pk
nk, where the p’s 

are distinct primes, we let G(pi) denote the set {x [ G | x pi
ni

 5 e}.  
It then follows immediately from Lemma 1 and induction that G 5 
G(p1) 3 G(p2) 3 ? ? ? 3 G(pk) and |G(pi)| 5 pi

n i. Hence, we turn our 
attention to groups of prime-power order.

 Lemma 2

Let G be an Abelian group of prime-power order and let a be an 
element of maximum order in G. Then G can be written in the form 
kal 3 K.

PROOF We denote |G| by pn and induct on n. If n 5 1, then G 5  
kal 3 kel. Now assume that the statement is true for all Abelian  
groups of order pk, where k , n. Among all the elements of G, choose a 
of maximum order pm. Then xpm 5 e for all x in G. We may assume that 
G 2 kal, for otherwise there is nothing to prove. Now, among all the ele-
ments of G, choose b of smallest order such that b o kal. We claim that 
kal > kbl 5 {e}. Since |bp| 5 |b|/p, we know that bp [ kal by the manner 
in which b was chosen. Say b p 5 ai. Notice that e 5 b pm 5 (b p) pm21 5  
(ai) pm21, so |ai| # pm21. Thus, ai is not a generator of kal and, therefore, 
by Corollary 3 to Theorem 4.2, gcd(pm, i) 2 1. This proves that p divides 
i, so that we can write i 5 pj. Then bp 5 ai 5 apj. Consider the element  
c 5 a2jb. Certainly, c is not in kal, for if it were, b would be, too. Also,  
cp 5 a2jpbp 5 a2ibp 5 b2pbp 5 e. Thus, we have found an element c of 
order p such that c o kal. Since b was chosen to have smallest order such 
that b o kal, we conclude that b also has  order p. It now follows that 
kal > kbl 5 {e}, because any nonidentity element of the intersection 
would generate kbl and thus contradict b o kal.
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Now consider the factor group G 5 G/kbl. To simplify the notation, 
we let x denote the coset xkbl in G. If |a| , |a| 5 pm, then apm21 5 e. This 
means that (akbl) pm21 5 apm21kbl 5 kbl, so that apm21 [ kal > kbl 5 {e}, 
contradicting the fact that |a| 5 pm. Thus, |a| 5 |a| 5 pm, and therefore 
a is an element of maximum order in G. By induction, we know that G 
can be written in the form kal 3 K for some subgroup K of G. Let K be 
the pullback of K under the natural homomorphism from G to G (that 
is, K 5 {x [ G | x [ K}). We claim that kal > K 5 {e}. For if x [ kal 
> K, then x [ kal > K 5 {e} 5 kbl and x [ kal > kbl 5 {e}. It now 
follows from an order argument (see Exercise 35) that G 5 kalK, and 
therefore G 5 kal 3 K. 

Lemma 2 and induction on the order of the group now give the 
 following.

 Lemma 3

A finite Abelian group of prime-power order is an internal direct 
product of cyclic groups.

Let us pause to determine where we are in our effort to prove the 
Fundamental Theorem of Finite Abelian Groups. The remark following 
Lemma 1 shows that G 5 G( p1) 3 G( p2) 3 ? ? ? 3 G( pn), where each  
G( pi) is a group of prime-power order, and Lemma 3 shows that each of 
these factors is an internal direct product of cyclic groups. Thus, we have 
proved that G is an internal direct product of cyclic groups of prime-power 
order. All that remains to be proved is the uniqueness of the factors. 
Certainly the groups G(pi) are uniquely determined by G, since they com-
prise the elements of G whose orders are powers of pi. So we must prove 
that there is only one way (up to isomorphism and  rearrangement of fac-
tors) to write each G(pi) as an internal direct product of cyclic groups.

 Lemma 4

Suppose that G is a finite Abelian group of prime-power order. If  
G 5 H1 3 H2 3 ? ? ? 3 Hm and G 5 K1 3 K2 3 ? ? ? 3 Kn, where the 
H’s and K’s are nontrivial cyclic subgroups with |H1| $ |H2| $ ? ? ? $ 
|Hm| and |K1| $ |K2| $ ? ? ? $ |Kn|, then m 5 n and |Hi| 5 |Ki|  
for all i.

PROOF We proceed by induction on |G|. Clearly, the case where |G| 5 p 
is true. Now suppose that the statement is true for all Abelian groups of 
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order less than |G|. For any Abelian group L, the set Lp 5 {x p | x [ L} 
is a subgroup of L (see Example 5 of Chapter 3) and, by Theorem 9.5,  
is a proper subgroup if p  divides |L|. It follows that G p 5 H1

p 3  
H2

p 3 ? ? ? 3 Hm9
p, and Gp 5 K1

p 3 K2
p 3 ? ? ? 3 Kn9

p, where m9 is the 
largest integer i such that |Hi| . p, and n9 is the largest integer j such 
that |Kj| . p. (This ensures that our two direct products for G p do not 
have trivial factors.) Since |G p| , |G|, we have, by induction, m9 5 n9 
and |Hi

p| 5 |Ki
p| for i 5 1, . . . , m9. Since |Hi| 5 p|Hi

p|, this proves that 
|Hi| 5 |Ki| for all i 5 1, . . . , m9. All that remains to be proved is that the 
number of Hi of order p equals the number of Ki of order p; that is, we 
must prove that m 2 m9 5 n 2 n9 (since n9 5 m9). This follows directly 
from the facts that |H1||H2| ? ? ? |Hm9|p

m2m9 5 |G| 5 |K1||K2| ? ? ? 
|Kn9|p

n2n9, |Hi| 5 |Ki|, and m9 5 n9. 

Exercises

One problem after another presents itself and in the solving of them we can 
find our greatest pleasure.

Karl Menninger 

  1. What is the smallest positive integer n such that there are two noni-
somorphic groups of order n? Name the two groups.

  2. What is the smallest positive integer n such that there are three non-
isomorphic Abelian groups of order n? Name the three groups.

  3. What is the smallest positive integer n such that there are exactly 
four nonisomorphic Abelian groups of order n? Name the four 
groups.

  4. Calculate the number of elements of order 2 in each of Z16, Z8 % Z2,  
Z4 % Z4, and Z4 % Z2 % Z2. Do the same for the elements of order 4.

  5. Prove that any Abelian group of order 45 has an element of order 15. 
Does every Abelian group of order 45 have an element of order 9?

  6. Show that there are two Abelian groups of order 108 that have  
exactly one subgroup of order 3.

  7. Show that there are two Abelian groups of order 108 that have  
exactly four subgroups of order 3.

  8. Show that there are two Abelian groups of order 108 that have  
exactly 13 subgroups of order 3.

  9. Suppose that G is an Abelian group of order 120 and that G has  exactly 
three elements of order 2. Determine the isomorphism class of G.

 10. Find all Abelian groups (up to isomorphism) of order 360.
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 11. Prove that every finite Abelian group can be expressed as the 
 (external) direct product of cyclic groups of orders n1, n2, . . . , nt, 
where ni11 divides ni for i 5 1, 2, . . . , t 2 1. (This exercise is re-
ferred to in this chapter.)

 12. Suppose that the order of some finite Abelian group is divisible by 
10. Prove that the group has a cyclic subgroup of order 10.

 13. Show, by example, that if the order of a finite Abelian group is di-
visible by 4, the group need not have a cyclic subgroup of order 4.

 14. On the basis of Exercises 12 and 13, draw a general conclusion 
about the existence of cyclic subgroups of a finite Abelian group.

 15. How many Abelian groups (up to isomorphism) are there
 a. of order 6?
 b. of order 15?
 c. of order 42?
 d. of order pq, where p and q are distinct primes?
 e. of order pqr, where p, q, and r are distinct primes?
 f. Generalize parts d and e.
 16. How does the number (up to isomorphism) of Abelian groups of 

order n compare with the number (up to isomorphism) of Abelian 
groups of order m where

 a. n 5 32 and m 5 52?
 b. n 5 24 and m 5 54?
 c. n 5 pr and m 5 qr, where p and q are prime?
 d. n 5 pr and m 5 prq, where p and q are distinct primes?
 e. n 5 pr and m 5 prq2, where p and q are distinct primes?
 17. Up to isomorphism, how many additive Abelian groups of order 16 

have the property that x 1 x 1 x 1 x 5 0 for all x in the group?
 18. Let p1, p2,  p , pn be distinct primes. Up to isomorphism, how many 

Abelian groups are there of order p1
4 p2

4 . . . pn
4?

 19. The symmetry group of a nonsquare rectangle is an Abelian group 
of order 4. Is it isomorphic to Z4 or Z2 % Z2?

 20. Verify the corollary to the Fundamental Theorem of Finite  
Abelian Groups in the case that the group has order 1080 and the 
divisor is 180.

 21. The set {1, 9, 16, 22, 29, 53, 74, 79, 81} is a group under multipli-
cation modulo 91. Determine the isomorphism class of this group.

 22. Suppose that G is a finite Abelian group that has exactly one sub-
group for each divisor of |G|. Show that G is cyclic.

 23. Characterize those integers n such that the only Abelian groups of 
order n are cyclic.
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 24. Characterize those integers n such that any Abelian group of order n 
belongs to one of exactly four isomorphism classes.

 25. Refer to Example 1 in this chapter and explain why it is unneces-
sary to compute the orders of the last five elements listed to deter-
mine the isomorphism class of G.

 26. Let G 5 {1, 7, 17, 23, 49, 55, 65, 71} under multiplication modulo  
96. Express G as an external and an internal direct product of cyclic 
groups.

 27. Let G 5 {1, 7, 43, 49, 51, 57, 93, 99, 101, 107, 143, 149, 151, 157, 
193, 199} under multiplication modulo 200. Express G as an exter-
nal and an internal direct product of cyclic groups.

 28. The set G 5 {1, 4, 11, 14, 16, 19, 26, 29, 31, 34, 41, 44} is a group 
under multiplication modulo 45. Write G as an external and an in-
ternal direct product of cyclic groups of prime-power order.

 29. Suppose that G is an Abelian group of order 9. What is the maxi-
mum number of elements (excluding the identity) of which one 
needs to compute the order to determine the isomorphism class of 
G? What if G has order 18? What about 16?

 30. Suppose that G is an Abelian group of order 16, and in computing 
the orders of its elements, you come across an element of order 8 
and two elements of order 2. Explain why no further computations 
are needed to determine the isomorphism class of G.

 31. Let G be an Abelian group of order 16. Suppose that there are ele-
ments a and b in G such that |a| 5 |b| 5 4 and a2 2 b2. Determine 
the isomorphism class of G.

 32. Prove that an Abelian group of order 2n (n $ 1) must have an odd 
number of elements of order 2.

 33. Without using Lagrange’s Theorem, show that an Abelian group of 
odd order cannot have an element of even order.

 34. Let G be the group of all n 3 n diagonal matrices with 61 diago nal 
entries. What is the isomorphism class of G?

 35. Prove the assertion made in the proof of Lemma 2 that G 5 kalK.
 36. Suppose that G is a finite Abelian group. Prove that G has order pn, 

where p is prime, if and only if the order of every element of G is a 
power of p.

 37. Dirichlet’s Theorem says that, for every pair of relatively prime in-
tegers a and b, there are infinitely many primes of the form at 1 b. 
Use Dirichlet’s Theorem to prove that every finite Abelian group is 
isomorphic to a subgroup of a U-group.

 38. Determine the isomorphism class of Aut(Z2 % Z3 % Z5).
 39. Give an example to show that Lemma 2 is false if G is non-Abelian.
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Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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done by undergraduate students.
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49 (1976): 132–135.

In this article, the author determines the percentages of integers k 
 between 1 and n, for sufficiently large n, that have exactly one 
 isomorphism class of Abelian groups of order k, exactly two 
 isomorphism classes of Abelian groups of order k, and so on,  
up to 13 isomorphism classes.

G. Mackiw, “Computing in Abstract Algebra,” The College Mathematics 
 Journal 27 (1996): 136–142.

This article explains how one can use computer software to implement 
the algorithm given in this chapter for expressing an Abelian group as 
an  internal direct product.
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For online student resources, visit this textbook’s website at 
http://college.hmco.com/PIC/gallian7e

PART 3
Integers and  
Equivalence Relations
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Introduction to Rings

Example is the school of mankind, and they will learn at no other.
Edmund Burke, On a Regicide Peace

. . . the source of all great mathematics is the special case, the con-
crete example. It is frequent in mathematics that every instance of a 
concept of seemingly great generality is in essence the same as 
a small and concrete special case.

Paul R. Halmos, I Want to be a Mathematician

12

†The term ring was first applied in 1897 by the German mathematician David Hilbert 
(1862–1943).

Motivation and Definition
Many sets are naturally endowed with two binary operations: addition 
and multiplication. Examples that quickly come to mind are the integers, 
the integers modulo n, the real numbers, matrices, and polynomials. 
When considering these sets as groups, we simply used addition and 
 ignored multiplication. In many instances, however, one wishes to take 
into account both addition and multiplication. One abstract concept that 
does this is the concept of a ring.† This notion was originated in the  
mid-19th century by Richard Dedekind, although its first formal abstract 
definition was not given until Abraham Fraenkel presented it in 1914.

Definition Ring
A ring R is a set with two binary operations, addition  (denoted by  
a 1 b) and multiplication (denoted by ab), such that for all a, b, c in R:

 1. a 1 b 5 b 1 a.
 2. (a 1 b) 1 c 5 a 1 (b 1 c).
 3. There is an additive identity 0. That is, there is an element 0 in R 

such that a 1 0 5 a for all a in R.
 4. There is an element 2a in R such that a 1 (2a) 5 0.
 5. a(bc) 5 (ab)c.
 6. a(b 1 c) 5 ab 1 ac and (b 1 c) a 5 ba 1 ca.
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So, a ring is an Abelian group under addition, also having an asso-
ciative multiplication that is left and right distributive over addition. 
Note that multiplication need not be commutative. When it is, we say 
that the ring is commutative. Also, a ring need not have an identity under 
multiplication. A unity (or identity) in a ring is a nonzero element that is 
an identity under multiplication. A nonzero element of a commutative 
ring with unity need not have a multiplicative inverse. When it does, we 
say that it is a unit of the ring. Thus, a is a unit if a21 exists.

The following terminology and notation are convenient. If a and b 
belong to a commutative ring R and a is nonzero, we say that a divides 
b (or that a is a factor of b) and write a | b, if there exists an element c in 
R such that b 5 ac. If a does not divide b, we write a B b.

Recall that if a  is an element from a group under the operation of 
 addition and n is a positive integer, na means a 1 a 1 ? ? ? 1 a, where 
there are n summands. When dealing with rings, this notation can cause 
confusion, since we also use juxtaposition for the ring multiplication. 
When there is the potential for confusion, we will use n ? a to mean 
a 1 a 1 ? ? ? 1 a (n summands).

For an abstraction to be worthy of study, it must have many diverse 
concrete realizations. The following list of examples shows that the ring 
concept is pervasive.

Examples of Rings
 EXAMPLE 1 The set Z of integers under ordinary addition and  

multiplication is a commutative ring with unity 1. The units of Z are 
1 and 21. 

 EXAMPLE 2 The set Zn 5 {0, 1, . . . , n 2 1} under addition and  
multiplication modulo n is a commutative ring with unity 1. The set of 
units is U(n). 

 EXAMPLE 3 The set Z[x] of all polynomials in the variable x with 
integer coefficients under ordinary addition and multiplication is a  
commutative ring with unity f(x) 5 1. 

 EXAMPLE 4 The set M2(Z) of 2 3 2 matrices with integer entries 

is a noncommutative ring with unity c1 0

0 1
d . 

 EXAMPLE 5 The set 2Z of even integers under ordinary addition  
and multiplication is a commutative ring without unity. 
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 EXAMPLE 6 The set of all continuous real-valued functions of a  
real variable whose graphs pass through the point (1, 0) is a commuta-
tive ring without unity under the operations of pointwise addition and 
multiplication [that is, the operations ( f 1 g)(a) 5 f(a) 1 g(a) and  
( fg)(a) 5 f(a)g(a)]. 

 EXAMPLE 7 Let R1, R2, . . . , Rn be rings. We can use these to construct 
a new ring as follows. Let

R1 % R2 % ? ? ? % Rn 5 {(a1, a2, . . . , an) | ai [ Ri}

and perform componentwise addition and multiplication; that is, define

(a1, a2, . . . , an) 1 (b1, b2, . . . , bn) 5 (a1 1 b1, a2 1 b2, . . . , an 1 bn)

and
(a1, a2, . . . , an)(b1, b2, . . . , bn) 5 (a1b1, a2b2, . . . , anbn).

This ring is called the direct sum of R1, R2, . . . , Rn. 

Properties of Rings
Our first theorem shows how the operations of addition and multiplica-
tion intertwine. We use b 2 c to denote b 1 (2c).

 Theorem 12.1 Rules of Multiplication

Let a, b, and c belong to a ring R. Then

1. a0 5 0a 5 0.
2. a(2b) 5 (2a)b 5 2(ab).
3. (2a)(2b) 5 ab.
4. a(b 2 c) 5 ab 2 ac  and  (b 2 c)a 5 ba 2 ca.

Furthermore, if R has a unity element 1, then

5. (21)a 5 2a.
6. (21)(21) 5 1.

PROOF We will prove rules 1 and 2 and leave the rest as easy exercises 
(see Exercise 11). To prove statements such as those in Theorem 12.1, we 
need only “play off ” the distributive property against the fact that R is a 
group under addition with additive identity 0. Consider rule 1. Clearly,

0 1 a0 5 a0 5 a(0 1 0) 5 a0 1 a0.

So, by cancellation, 0 5 a0. Similarly, 0a 5 0.

22912 | Introduction to Rings

57960_ch12_ptg01_225-236.indd   229 10/27/15   11:52 AM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



To prove rule 2, we observe that a(2b) 1 ab 5 a(2b 1 b) 5  
a0 5 0. So, adding 2(ab) to both sides yields a(2b) 5 2(ab). The remain-
der of rule 2 is done analogously. 

Recall that in the case of groups, the identity and inverses are unique. 
The same is true for rings, provided that these elements exist. The proofs 
are identical to the ones given for groups and therefore are omitted.

 Theorem 12.2 Uniqueness of the Unity and Inverses

If a ring has a unity, it is unique. If a ring element has a multipli- 
cative inverse, it is unique.

Many students have the mistaken tendency to treat a ring as if it were a 
group under multiplication. It is not. The two most common errors are the 
assumptions that ring elements have multiplicative inverses—they need 
not—and that a ring has a multiplicative identity—it need not. For exam-
ple, if a, b, and c belong to a ring, a 2 0 and ab 5 ac, we cannot conclude 
that b 5 c. Similarly, if a2 5 a, we cannot conclude that a 5 0 or 1 (as is 
the case with real numbers). In the first place, the ring need not have mul-
tiplicative cancellation, and in the second place, the ring need not have a 
multiplicative identity. There is an important class of rings that contains Z 
and Z[x] wherein multiplicative identities exist and for which multiplica-
tive cancellation holds. This class is taken up in the next chapter.

Subrings
In our study of groups, subgroups played a crucial role. Subrings, the 
analogous structures in ring theory, play a much less prominent role than 
their counterparts in group theory. Nevertheless, subrings are important.

Definition Subring
A subset S of a ring R is a subring of R if S is itself a ring with the 
 operations of R.

Just as was the case for subgroups, there is a simple test for subrings.

 Theorem 12.3 Subring Test

A nonempty subset S of a ring R is a subring if S is closed under 
subtraction and multiplication—that is, if a 2 b and ab are in S 
whenever a and b are in S.
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PROOF Since addition in R is commutative and S is closed under subtrac-
tion, we know by the One-Step Subgroup Test (Theorem 3.1) that S is an 
Abelian group under addition. Also, since multiplication in R is associa-
tive as well as distributive over addition, the same is true for multiplica-
tion in S. Thus, the only condition remaining to be checked  
is that multiplication is a binary operation on S. But this is exactly what 
closure means. 

We leave it to the student to confirm that each of the following ex-
amples is a subring.

 EXAMPLE 8 {0} and R are subrings of any ring R. {0} is called the 
trivial subring of R. 

 EXAMPLE 9 {0, 2, 4} is a subring of the ring Z6, the inte- 
gers modulo 6. Note that although 1 is the unity in Z6, 4 is the unity in 
{0, 2, 4}. 

 EXAMPLE 10 For each positive integer n, the set

nZ 5 {0, 6n, 62n, 63n, . . .}

is a subring of the integers Z. 

 EXAMPLE 11 The set of Gaussian integers

Z[i] 5 {a 1 bi | a, b [ Z}

is a subring of the complex numbers C. 

 EXAMPLE 12 Let R be the ring of all real-valued functions of a single real 
variable under pointwise addition and multiplication. The subset S of R of 
functions whose graphs pass through the origin forms a subring of R. 

 EXAMPLE 13 The set

e ca 0

0 b
d ` a, b [ Z f

of diagonal matrices is a subring of the ring of all 2 3 2 matrices  
over Z. 

We can picture the relationship between a ring and its various sub-
rings by way of a subring lattice diagram. In such a diagram, any ring 
is a subring of all the rings that it is connected to by one or more up-
ward lines. Figure 12.1 shows the relationships among some of the 
rings we have already discussed.
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C

Q
Q(√2) = {a 1 b√2 | a, b [ Q}

Z

R

5Z 2Z 3Z

6Z4Z

8Z 12Z 18Z

10Z

7Z

9Z

Z[ i] = {a 1 bi | a, b [ Z}

Figure 12.1 Partial subring lattice diagram of C.

In the next several chapters, we will see that many of the fundamental 
concepts of group theory can be naturally extended to rings. In particu-
lar, we will introduce ring homomorphisms and factor rings.

Exercises

There is no substitute for hard work.
Thomas Alva Edison, Life

  1. Give an example of a finite noncommutative ring. Give an example 
of an infinite noncommutative ring that does not have a unity.

  2. The ring {0, 2, 4, 6, 8} under addition and multiplication modulo 
10 has a unity. Find it.

  3. Give an example of a subset of a ring that is a subgroup under 
 addition but not a subring.

  4. Show, by example, that for fixed nonzero elements a and b in a 
ring, the equation ax 5 b can have more than one solution. How 
does this compare with groups?

  5. Prove Theorem 12.2.
  6. Find an integer n that shows that the rings Zn need not have the fol-

lowing properties that the ring of integers has.
  a. a2 5 a implies a 5 0 or a 5 1.
  b. ab 5 0 implies a 5 0 or b 5 0.
  c. ab 5 ac and a 2 0 imply b 5 c.
  Is the n you found prime?
  7. Show that the three properties listed in Exercise 6 are valid for Zp, 

where p is prime.
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  8. Show that a ring is commutative if it has the property that ab 5 ca 
implies b 5 c when a 2 0.

  9. Prove that the intersection of any collection of subrings of a ring R 
is a subring of R.

 10. Verify that Examples 8 through 13 in this chapter are as stated.
 11. Prove rules 3 through 6 of Theorem 12.1.
 12. Let a, b, and c be elements of a commutative ring, and suppose that 

a is a unit. Prove that b divides c if and only if ab divides c.
 13. Describe all the subrings of the ring of integers.
 14. Let a and b belong to a ring R and let m be an integer. Prove that  

m ? (ab) 5 (m ? a)b 5 a(m ? b).
 15. Show that if m and n are integers and a and b are elements from a 

ring, then (m ? a)(n ? b) 5 (mn) ? (ab). (This exercise is referred to in 
Chapters 13 and 15.)

 16. Show that if n is an integer and a is an element from a ring, then  
n ? (2a) 5 2(n ? a).

 17. Show that a ring that is cyclic under addition is commutative.
 18. Let a belong to a ring R. Let S 5 {x [ R | ax 5 0}. Show that S is a 

subring of R.
 19. Let R be a ring. The center of R is the set {x [ R | ax 5 xa for all 

a in R}. Prove that the center of a ring is a subring.
 20. Describe the elements of M2(Z) (see Example 4) that have multipli-

cative inverses.
 21. Suppose that R1, R2, . . . , Rn are rings that contain nonzero ele-

ments. Show that R1 % R2 % ? ? ? % Rn has a unity if and only if 
each Ri has a unity.

 22. Let R be a commutative ring with unity and let U(R) denote the set 
of units of R. Prove that U(R) is a group under the multiplication of 
R. (This group is called the group of units of R.)

 23. Determine U(Z[i]) (see Example 11).
 24. If R1, R2, . . . , Rn are commutative rings with unity, show that 

U(R1 % R2 % ? ? ? % Rn) 5 U(R1) % U(R2) % ? ? ? % U(Rn).
 25. Determine U(Z[x]). (This exercise is referred to in Chapter 17.)
 26. Determine U(R[x]).
 27. Show that a unit of a ring divides every element of the ring.
 28. In Z6, show that 4 | 2; in Z8, show that 3 | 7; in Z15, show that 9 | 12.
 29. Suppose that a and b belong to a commutative ring R with unity. If 

a is a unit of R and b2 5 0, show that a 1 b is a unit of R.
 30. Suppose that there is an integer n . 1 such that xn 5 x for all ele-

ments x of some ring. If m is a positive integer and am 5 0 for some 
a, show that a 5 0.
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 31. Give an example of ring elements a and b with the properties that 
ab 5 0 but ba 2 0.

 32. Let n be an integer greater than 1. In a ring in which xn 5 x for all x, 
show that ab 5 0 implies ba 5 0.

 33. Suppose that R is a ring such that x3 5 x for all x in R. Prove that 6x 5  
0 for all x in R.

 34. Suppose that a belongs to a ring and a4 5 a2. Prove that a2n 5 a2 for 
all n $ 1.

 35. Find an integer n . 1 such that an 5 a for all a in Z6. Do the same 
for Z10. Show that no such n exists for Zm when m is divisible by the 
square of some prime.

 36. Let m and n be positive integers and let k be the least common mul-
tiple of m and n. Show that mZ > nZ 5 kZ.

 37. Explain why every subgroup of Zn under addition is also a subring of Zn.
 38. Is Z6 a subring of Z12?
 39. Suppose that R is a ring with unity 1 and a is an element of R such 

that a2 5 1. Let S 5 {ara | r [ R}. Prove that S is a subring of R. 
Does S contain 1?

 40. Let M2(Z) be the ring of all 2 3 2 matrices over the integers and let R 5

   e c a a � b

a � b b
d `  a, b [ Z f . Prove or disprove that R is a subring

   of M2(Z).
 41. Let M2(Z) be the ring of all 2 3 2 matrices over the integers and let R 5

   e c a a � b

a � b b
d `  a, b [ Z f . Prove or disprove that R is a subring

   of M2(Z).

 42. Let R 5 e ca a

b b
d `  a, b [ Z f . Prove or disprove that R is a subring 

  of M2(Z).
 43. Let R 5 Z % Z % Z and S 5 {(a, b, c) [ R | a 1 b 5 c}. Prove or 

disprove that S is a subring of R.
 44. Suppose that there is a positive even integer n such that an 5 a for 

all elements a of some ring. Show that 2a 5 a for all a in the ring.
 45. Let R be a ring with unity 1. Show that S 5 {n ? 1 | n [ Z} is a sub-

ring of R.
 46. Show that 2Z < 3Z is not a subring of Z.
 47. Determine the smallest subring of Q that contains 1/2. (That is, find 

the subring S with the property that S contains 1/2 and, if T is any 
subring containing 1/2, then T contains S.)
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 48. Determine the smallest subring of Q that contains 2/3.
 49. Let R be a ring. Prove that a2 2 b2 5 (a 1 b)(a 2 b) for all a, b in 

R if and only if R is commutative.
 50. Suppose that R is a ring and that a2 5 a for all a in R. Show that R 

is commutative. [A ring in which a2 5 a for all a is called a  
Boolean ring, in honor of the English mathematician George Boole 
(1815–1864).]

 51. Give an example of a Boolean ring with four elements. Give an ex-
ample of an infinite Boolean ring.

 52. If a, b, and c are elements of a ring, does the equation ax 1 b 5 c 
always have a solution x? If it does, must the solution be unique? 
Answer the same questions given that a is a unit.

 53. Let R and S be commutative rings. Prove that (a, b) is a zero-divisor 
in R % S if and only if a or b is a zero-divisor or exactly one of a or 
b is 0.

 54. Show that 4x2 1 6x 1 3 is a unit in Z8[x].
 55. Let R be a commutative ring with more than one element. Prove 

that if for every nonzero element a of R we have aR 5 R, then R has 
a unity and every nonzero element has an inverse.

 56. Find an example of a commutative ring R with unity such that a, 
b [ R, a 2 b, an 5 bn, and am 5 bm, where n and m are positive inte-
gers that are relatively prime. (Compare with Exercise 39, part b, in 
Chap ter 13.)

 57. Suppose that R is a ring with no zero-divisors and that R contains a 
nonzero element b such that b2 5 b. Show that b is the unity for R.

Computer Exercises

Software for the computer exercises in this chapter is available at the website:

http://www.d.umn.edu/~jgallian

Suggested Reading

D. B. Erickson, “Orders for Finite Noncommutative Rings,” American 
 Mathematical Monthly 73 (1966): 376–377.

In this elementary paper, it is shown that there exists a noncommutative ring 
of order m . 1 if and only if m is divisible by the square of a prime.
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I. N. Herstein

I. N. Herstein was born on March 28, 1923, 
in Poland. His family moved to Canada  
when he was seven. He grew up in a poor 
and tough environment, on which he com-
mented that in his neighborhood you became 
either a gangster or a college professor. 
During his school years he played football, 
hockey, golf, tennis, and pool. During this 
time he worked as a steeplejack and as a bar-
ber at a fair. Herstein received a B.S. degree 
from the University of Manitoba, an M.A. 
from the University of Toronto, and, in 1948, 
a Ph.D. degree from Indiana University 
under the supervision of Max Zorn. Before 
permanently settling at the University of 
Chicago in 1962, he held positions at the 
University of Kansas, the Ohio State 
University, the University of Pennsylvania, 
and Cornell University.

Herstein wrote more than 100 research 
papers and a dozen books. Although his  

principal interest was noncommutative ring 
theory, he also wrote papers on finite groups, 
linear algebra, and mathematical economics. 
His textbook Topics in Algebra, first pub-
lished in 1964, dominated the field for 20 
years and has become a classic. Herstein had 
great influence through his teaching and his 
collaboration with colleagues. He had 30 
Ph.D. students, and traveled and lectured 
widely. His nonmathematical interests in-
cluded languages and art. He spoke Italian, 
Hebrew, Polish, and Portuguese. Herstein 
died on February 9, 1988, after a long battle 
with cancer.

To find more information about Herstein, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

A whole generation of textbooks and an 
entire generation of mathematicians, 
 myself  included, have been profoundly 
influenced by that text [Herstein’s Topics 
in  Algebra]. 
 GEORGIA BENKART
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Integral Domains

Don’t just read it! Ask your own questions, look for your own ex-
amples, discover your own proofs. Is the hypothesis necessary? Is 
the converse true? What happens in the classical special case? 
Where does the proof use the hypothesis?

Paul Halmos

I was mesmerized by the beauty of these mathematical  abstractions.
Edward Frenkel, Love and Math

Definition and Examples
To a certain degree, the notion of a ring was invented in an attempt to 
put the algebraic properties of the integers into an abstract setting. A 
ring is not the appropriate abstraction of the integers, however, for too 
much is lost in the process. Besides the two obvious properties of com
mutativity and existence of a unity, there is one other essential feature 
of the integers that rings in general do not enjoy—the cancellation 
property. In this chapter, we introduce integral domains—a particular 
class of rings that have all three of these properties. Integral domains 
play a prominent role in number theory and algebraic ge ometry.

Definition Zero-Divisors
A zero-divisor is a nonzero element a of a commutative ring R such that 
there is a nonzero element b [ R with ab 5 0.

Definition Integral Domain
An integral domain is a commutative ring with unity and no   
zero- divisors.

Thus, in an integral domain, a product is 0 only when one of the 
 factors is 0; that is, ab 5 0 only when a 5 0 or b 5 0. The following 
 examples show that many familiar rings are integral domains and some 
familiar rings are not. For each example, the student should verify the 
assertion made.

13
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 EXAMPLE 1 The ring of integers is an integral domain. 

 EXAMPLE 2 The ring of Gaussian integers Z[i] 5 {a 1 bi | a, b [ Z} is 
an integral domain. 

 EXAMPLE 3 The ring Z[x] of polynomials with integer coefficients is 
an integral domain. 

 EXAMPLE 4 The ring Z[22] 5 {a 1 b22 | a, b [ Z} is an integral 
domain. 

 EXAMPLE 5 The ring Zp of integers modulo a prime p is an integral 
domain. 

 EXAMPLE 6 The ring Zn of integers modulo n is not an integral domain 
when n is not prime. 

 EXAMPLE 7 The ring M2(Z) of 2 3 2 matrices over the integers is not 
an integral domain. 

 EXAMPLE 8 Z % Z is not an integral domain. 

What makes integral domains particularly appealing is that they have 
an important multiplicative group theoretic property, in spite of the fact 
that the nonzero elements need not form a group under multiplication. 
This property is cancellation.

 Theorem 13.1 Cancellation

Let a, b, and c belong to an integral domain. If a 2 0 and ab 5 ac, 
then b 5 c.

PROOF From ab 5 ac, we have a(b 2 c) 5 0. Since a 2 0, we must have 
b 2 c 5 0. 

Many authors prefer to define integral domains by the cancellation 
property—that is, as commutative rings with unity in which the cancel
lation property holds. This definition is equivalent to ours.

Fields
In many applications, a particular kind of integral domain called a field 
is necessary.
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Definition Field
A field is a commutative ring with unity in which every nonzero 
 element is a unit.

To verify that every field is an integral domain, observe that if a and 
b belong to a field with a 2 0 and ab 5 0, we can multiply both sides of 
the last expression by a21 to obtain b 5 0.

It is often helpful to think of ab21 as a divided by b. With this in 
mind, a field can be thought of as simply an algebraic system that  
is closed under addition, subtraction, multiplication, and division 
 (except by 0). We have had numerous examples of fields: the complex 
numbers, the real numbers, the rational numbers. The abstract theory of 
fields was initiated by Heinrich Weber in 1893. Groups, rings, and fields 
are the three main branches of abstract algebra. Theorem 13.2 says that, 
in the finite case, fields and integral domains are the same.

 Theorem 13.2 Finite Integral Domains Are Fields

A finite integral domain is a field.

PROOF Let D be a finite integral domain with unity 1. Let a be any non
zero element of D. We must show that a is a unit. If a 5 1, a is its own 
inverse, so we may assume that a 2 1. Now consider the following se
quence of elements of D: a, a2, a3, . . . . Since D is finite, there must be 
two positive integers i and j such that i . j and ai 5 a j. Then, by can
cellation, ai2j 5 1. Since a 2 1, we know that i 2 j . 1, and we have 
shown that ai2j21 is the inverse of a. 

 Corollary Zp Is a Field

For every prime p, Zp, the ring of integers modulo p is a field.

PROOF According to Theorem 13.2, we need only prove that Zp has no 
zerodivisors. So, suppose that a, b [ Zp and ab 5 0. Then ab 5 pk for 
some integer k. But then, by Euclid’s Lemma (see Chapter 0), p  divides a 
or p divides b. Thus, in Zp, a 5 0 or b 5 0. 

Putting the preceding corollary together with Example 6, we see that 
Zn is a field if and only if n is prime. In Chapter 22, we will describe how 
all finite fields can be constructed. For now, we give one example of a 
finite field that is not of the form Zp.
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 EXAMPLE 9 FIELD WITH NINE ELEMENTS
Let Z3[i] 5 {a 1 bi | a, b [ Z3}

	 5 {0, 1, 2, i, 1 1 i, 2 1 i, 2i, 1 1 2i, 2 1 2i},

where i2 5 21. This is the ring of Gaussian integers modulo 3. Elements 
are added and multiplied as in the complex numbers, except that the co
efficients are reduced modulo 3. In particular, 21 5 2. Table 13.1 is the 
multiplication table for the nonzero elements of Z3[i]. 

Table 13.1  Multiplication Table for Z3 [i]*

 1 2 i 1 1 i 2 1 i 2i 1 1 2i 2 1 2i

1 1 2 i 1 1 i 2 1 i 2i 1 1 2i 2 1 2i
2 2 1 2i 2 1 2i 1 1 2i i 2 1 i 1 1 i
i i 2i 2 2 1 i 2 1 2i 1 1 1 i 1 1 2i
1 1 i 1 1 i 2 1 2i 2 1 i 2i 1 1 1 2i 2 i
2 1 i 2 1 i 1 1 2i 2 1 2i 1 i 1 1 i 2i 2
2i 2i i 1 1 1 2i 1 1 i 2 2 1 2i 2 1 i
1 1 2i 1 1 2i 2 1 i 1 1 i 2 2i 2 1 2i i 1
2 1 2i 2 1 2i 1 1 i 1 1 2i i 2 2 1 i 1 2i

 EXAMPLE 10 Let Q[22] 5 {a 1 b22 | a, b [ Q}. It is easy to see 
that Q[22] is a ring. Viewed as an element of R, the multiplicative in
verse of any nonzero element of the form a 1 b22 is simply 1/(a 1  
b22). To verify that Q[22] is a field, we must show that 1/(a 1 b22) can 
be written in the form c 1 d22. In high school algebra, this process is 
called “rationalizing the denominator.” Specifically,

1

a � b22
�

1

a � b22
 
a � b22

a � b22
�

a

a2 � 2b2 �
b

a2 � 2b2 22.

(Note that a 1 b22 2 0 guarantees that a 2 b22 2 0.) 

Characteristic of a Ring
Note that for any element x in Z3[i], we have 3x 5 x 1 x 1 x 5 0, since 
addition is done modulo 3. Similarly, in the subring {0, 3, 6, 9} of Z12, 
we have 4x 5 x 1 x 1 x 1 x 5 0 for all x. This observation motivates 
the following definition.

Definition Characteristic of a Ring
The characteristic of a ring R is the least positive integer n such that 
nx 5 0 for all x in R. If no such integer exists, we say that R has charac-
teristic 0. The characteristic of R is denoted by char R.
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Thus, the ring of integers has characteristic 0, and Zn has characteris
tic n. An infinite ring can have a nonzero characteristic. Indeed, the ring 
Z2[x] of all polynomials with coefficients in Z2 has characteristic 2. (Ad
dition and multiplication are done as for polynomials with ordinary inte
ger coefficients except that the coefficients are reduced modulo 2.) When 
a ring has a unity, the task of determining the characteristic is simplified 
by Theorem 13.3.

 Theorem 13.3 Characteristic of a Ring with Unity

Let R be a ring with unity 1. If 1 has infinite order under addition, 
then the characteristic of R is 0. If 1 has order n under addition, 
then the characteristic of R is n.

PROOF If 1 has infinite order, then there is no positive integer n such that 
n ? 1 5 0, so R has characteristic 0. Now suppose that 1 has additive order 
n. Then n ? 1 5 0, and n is the least positive integer with this property. So, 
for any x in R, we have

 n ? x 5 x 1 x 1 ? ?	?	1 x (n summands)
	 5 1x 1 1x	1 ? ?	?	1 1x (n summands)
	 5 (1	1 1	1 ? ?	?	1 1)x (n summands)
	 5 (n ? 1)x 5 0x 5 0.

Thus, R has characteristic n. 

In the case of an integral domain, the possibilities for the characteris
tic are severely limited.

 Theorem 13.4 Characteristic of an Integral Domain

The characteristic of an integral domain is 0 or prime.

PROOF By Theorem 13.3, it suffices to show that if the additive order of 1 
is finite, it must be prime. Suppose that 1 has order n and that n 5 st, 
where 1 # s, t # n. Then, by Exercise 15 in Chapter 12,

0 5 n ? 1 5 (st) ? 1 5 (s ? 1)(t ? 1).

So, s ? 1 5 0 or t ? 1 5 0. Since n is the least positive integer with the 
property that n ? 1 5 0, we must have s 5 n or t 5 n. Thus, n is prime. 
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We conclude this chapter with a brief discussion of polynomials 
with coefficients from a ring—a topic we will consider in detail in later 
chapters. The existence of zerodivisors in a ring causes unusual results 
when one is finding zeros of polynomials with coefficients in the ring. 
Consider, for example, the equation x2 2 4x 1 3 5 0. In the integers, 
we could find all solutions by factoring

x2 2 4x 1 3 5 (x 2 3)(x 2 1) 5 0

and setting each factor equal to 0. But notice that when we say we can 
find all solutions in this manner, we are using the fact that the only way 
for a product to equal 0 is for one of the factors to be 0—that is, we are 
using the fact that Z is an integral domain. In Z12, there are many pairs of 
nonzero elements whose products are 0: 2 ? 6 5 0, 3 ?  4 5 0, 4 ? 6 5 0,  
6 ? 8 5 0, and so on. So, how do we find all solutions of x2 2 4x 1 3 5 
0 in Z12? The easiest way is simply to try every element! Upon doing so, 
we find four solutions: x 5 1, x 5 3, x 5 7, and x 5 9. Observe that we 
can find all solutions of x2 2 4x 1 3 5 0 over Z11 or Z13, say, by setting 
the two factors x 2 3 and x 2 1 equal to 0. Of course, the reason this 
works for these rings is that they are integral domains. Perhaps this will 
convince you that integral domains are particularly advantageous rings. 
Table 13.2 gives a summary of some of the rings we have introduced and 
their properties.

Table 13.2 Summary of Rings and Their Properties

     Integral
Ring  Form of Element Unity Commutative Domain Field Characteristic

Z k 1 Yes Yes No 0

Zn, n composite k 1 Yes No No n

Zp, p prime k 1 Yes Yes Yes p

Z[x] anx
n 1 ? ? ? 1 f(x) 5 1 Yes Yes No 0

   a1x 1 a0

nZ, n . 1 nk None Yes No No 0

M2(Z) c a b

c d
d  c 1 0

0 1
d  No No No 0

M2(2Z) c 2a 2b

2c 2d
d  None No No No 0

Z[i] a 1 bi 1 Yes Yes No 0

Z3[i] a 1 bi; a, b [ Z3 1 Yes Yes Yes 3
Z[22] a 1 b22; a, b [ Z 1 Yes Yes No 0
Q[22] a 1 b22; a, b [ Q 1 Yes Yes Yes 0

Z % Z (a, b) (1, 1) Yes No No 0
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Exercises

It looked absolutely impossible. But it so happens that you go on worrying 
away at a problem in science and it seems to get tired, and lies down and lets 
you catch it.

William Lawrence Bragg†

  1. Verify that Examples 1 through 8 are as claimed.
  2. Which of Examples 1 through 5 are fields?
  3. Show that a commutative ring with the cancellation property  (under 

multiplication) has no zerodivisors.
  4. List all zerodivisors in Z20. Can you see a relationship between the 

zerodivisors of Z20 and the units of Z20?
  5. Show that every nonzero element of Zn is a unit or a zerodivisor.
  6. Find a nonzero element in a ring that is neither a zerodivisor nor a 

unit.
  7. Let R be a finite commutative ring with unity. Prove that every non

zero element of R is either a zerodivisor or a unit. What happens if 
we drop the “finite” condition on R?

  8. Let a 2 0 belong to a commutative ring. Prove that a is a zero 
divisor if and only if a2b 5 0 for some b Z 0.

  9. Find elements a, b, and c in the ring Z % Z % Z such that ab, ac, and 
bc are zerodivisors but abc is not a zerodivisor.

 10. Describe all zerodivisors and units of Z % Q % Z.
 11. Let d be an integer. Prove that Z[2d] 5 {a 1 b2d | a, b [ Z} is an 

integral domain. (This exercise is referred to in Chapter 18.)
 12. In Z7, give a reasonable interpretation for the expressions 1/2, 22/3, 

2�3, and 21/6.
 13. Give an example of a commutative ring without zerodivisors that 

is not an integral domain.
 14. Find two elements a and b in a ring such that both a and b are zero 

divisors, a 1 b 2 0, and a 1 b is not a zerodivisor.
 15. Let a belong to a ring R with unity and suppose that an 5 0 for 

some positive integer n. (Such an element is called nilpotent.) Prove 
that 1 2 a has a multiplicative inverse in R. [Hint: Consider (1 2 a)
(1 1 a 1 a2 1 ? ? ? 1 an21).]

 16. Show that the nilpotent elements of a commutative ring form a subring.

†Bragg, at age 24, won the Nobel Prize for the invention of xray crystallography. He 
remains the youngest person ever to receive the Nobel Prize.
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 17. Show that 0 is the only nilpotent element in an integral domain.
 18. A ring element a is called an idempotent if a2 5 a. Prove that the 

only idempotents in an integral domain are 0 and 1.
 19. Let a and b be idempotents in a commutative ring. Show that each 

of the following is also an idempotent: ab, a � ab, a � b � ab, 
a � b � 2ab.

 20. Show that Zn has a nonzero nilpotent element if and only if n is di
visible by the square of some prime.

 21. Let R be the ring of realvalued continuous functions on [21, 1]. 
Show that R has zerodivisors.

 22. Prove that if a is a ring idempotent, then an � a for all positive inte
gers n.

 23. Determine all ring elements that are both nilpotent elements and 
idempotents.

 24. Find a zerodivisor in Z5[i] 5 {a 1 bi | a, b [ Z5}.
 25. Find an idempotent in Z5[i] 5 {a 1 bi | a, b [ Z5}.
 26. Find all units, zerodivisors, idempotents, and nilpotent elements in 

Z3 % Z6.
 27. Determine all elements of a ring that are both units and idempotents.
 28. Let R be the set of all realvalued functions defined for all real num

bers under function addition and multiplication.
  a. Determine all zerodivisors of R.
  b. Determine all nilpotent elements of R.
  c. Show that every nonzero element is a zerodivisor or a unit.
 29. (Subfield Test) Let F be a field and let K be a subset of F with at 

least two elements. Prove that K is a subfield of F if, for any  
a, b (b 2 0) in K, a 2 b and ab21 belong to K.

 30. Let d be a positive integer. Prove that Q[2d] 5 {a 1 b2d |  
a, b [ Q} is a field.

 31. Let R be a ring with unity 1. If the product of any pair of nonzero 
elements of R is nonzero, prove that ab 5 1 implies ba 5 1.

 32. Let R 5 {0, 2, 4, 6, 8} under addition and multiplication modulo 
10. Prove that R is a field.

 33. Formulate the appropriate definition of a subdomain (that is, a 
“sub” integral domain). Let D be an integral domain with unity 1. 
Show that P 5 {n ? 1 | n [ Z} (that is, all integral multiples of 1) is 
a subdomain of D. Show that P is contained in every subdomain of 
D. What can we say about the order of P?

 34. Prove that there is no integral domain with exactly six elements. Can 
your argument be adapted to show that there is no integral domain 
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with exactly four elements? What about 15 elements? Use these ob
servations to guess a general result about the number of elements in a 
finite integral domain.

 35. Let F be a field of order 2n. Prove that char F 5 2.
 36. Determine all elements of an integral domain that are their own in

verses under multiplication.
 37. Characterize those integral domains for which 1 is the only element 

that is its own multiplicative inverse.
 38. Determine all integers n 7 1 for which 1n � 12! is a zerodivisor 

in Zn.
 39. Suppose that a and b belong to an integral domain.
  a. If a5 5 b5 and a3 5 b3, prove that a 5 b.
  b.  If am 5 bm and an 5 bn, where m and n are positive integers that 

are relatively prime, prove that a 5 b.
 40. Find an example of an integral domain and distinct positive integers 

m and n such that am 5 bm and an 5 bn, but a 2 b.
 41. If a is an idempotent in a commutative ring, show that 1 2 a is also 

an idempotent.
 42. Construct a multiplication table for Z2[i], the ring of Gaussian inte

gers modulo 2. Is this ring a field? Is it an integral domain?
 43. The nonzero elements of Z3[i] form an Abelian group of order 8 un

der multiplication. Is it isomorphic to Z8, Z4 % Z2, or Z2 % Z2 % Z2?
 44. Show that Z 7[23] 5	{a 1 b23 | a, b [ Z 7} is a field. For any 

positive integer k and any prime p, determine a necessary and suf
ficient condition for Zp[2k] 5	{a 1 b2k | a, b [ Zp} to be a field.

 45. Show that a finite commutative ring with no zerodivisors and at 
least two elements has a unity. 

 46. Suppose that a and b belong to a commutative ring and ab is a zero 
divisor. Show that either a or b is a zerodivisor.

 47. Suppose that R is a commutative ring without zerodivisors. Show 
that all the nonzero elements of R have the same additive order.

 48. Suppose that R is a commutative ring without zerodivisors. Show 
that the characteristic of R is 0 or prime.

 49. Let x and y belong to a commutative ring R with prime characteristic p.
  a. Show that (x 1 y)p 5 xp 1 yp.
  b. Show that, for all positive integers n, (x 1 y)pn

 5 xpn
 1 ypn

.
  c.  Find elements x and y in a ring of characteristic 4 such that  

(x 1 y)4 2 x4 1 y4. (This exercise is referred to in Chapter 20.)

 50. Let R be a commutative ring with unity 1 and prime characteristic. 
If a [ R is nilpotent, prove that there is a positive integer k such that 
(1 1 a)k 5 1.
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 51. Show that any finite field has order pn, where p is a prime. Hint: Use 
facts about finite Abelian groups. (This exercise is referred to in 
Chapter 22.)

 52. Give an example of an infinite integral domain that has character
istic 3.

 53. Let R be a ring and let M2(R) be the ring of 2 3 2 matrices with entries 
from R. Explain why these two rings have the same  characteristic.

 54. Let R be a ring with m elements. Show that the characteristic of R 
divides m.

 55. Explain why a finite ring must have a nonzero characteristic.
 56. Find all solutions of x2 2 x 1 2 5 0 over Z3[i]. (See Example 9.)
 57. Consider the equation x2 2 5x 1 6 5 0.
  a. How many solutions does this equation have in Z7?
  b. Find all solutions of this equation in Z8.
  c. Find all solutions of this equation in Z12.
  d. Find all solutions of this equation in Z14.
 58. Find the characteristic of Z4 % 4Z.
 59. Suppose that R is an integral domain in which 20 ? 1 5 0 and  

12 ? 1 5 0. (Recall that n ? 1 means the sum 1 1 1 1 ? ? ? 1 1 with 
n terms.) What is the characteristic of R?

 60. In a commutative ring of characteristic 2, prove that the idempo
tents form a subring.

 61. Describe the smallest subfield of the field of real numbers that con
tains 22. (That is, describe the subfield K with the property that K 
contains 22 and if F is any subfield containing 22, then F con
tains K.)

 62. Let F be a finite field with n elements. Prove that xn21 5 1 for all 
nonzero x in F.

 63. Let F be a field of prime characteristic p. Prove that K 5 {x [ F | 
xp 5 x} is a subfield of F.

 64. Suppose that a and b belong to a field of order 8 and that a2 1 ab 1 
b2 5 0. Prove that a 5 0 and b 5 0. Do the same when the field has 
order 2n with n odd.

 65. Let F be a field of characteristic 2 with more than two elements. 
Show that (x 1 y)3 2 x3 1 y3 for some x and y in F.

 66. Suppose that F is a field with characteristic not 2, and that the nonzero 
elements of F form a cyclic group under multiplication. Prove that F 
is finite.

 67. Suppose that D is an integral domain and that f is a nonconstant 
function from D to the nonnegative integers such that f(xy) 5  
f(x)f(y). If x is a unit in D, show that f(x) 5 1.
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 68. Let F be a field of order 32. Show that the only subfields of F are  
F itself and {0, 1}.

 69. Suppose that F is a field with 27 elements. Show that for every 
 element a [ F, 5a � � a.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian

Suggested Readings

Eric Berg, “A Family of Fields,” Pi Mu Epsilon 9 (1990): 154–155.

In this article, the author uses properties of logarithms and exponents  
to define recursively an infinite family of fields starting with the real 
 numbers.

N. A. Khan, “The Characteristic of a Ring,” American Mathematical Monthly 
70 (1963): 736–738.

Here it is shown that a ring has nonzero characteristic n if and only  
if n is the maximum of the orders of the elements of R.

K. Robin McLean, “Groups in Modular Arithmetic,” The Mathematical  
Gazette 62 (1978): 94–104.

This article explores the interplay between various groups of integers under 
multiplication modulo n and the ring Zn. It shows how to  construct groups 
of integers in which the identity is not obvious; for example, 1977 is the 
identity of the group {1977, 5931} under  multiplication modulo 7908.
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Nathan Jacobson

Nathan Jacobson was born on September 
8, 1910, in Warsaw, Poland. After arriving in 
the United States in 1917, Jacobson grew up 
in Alabama, Mississippi, and Georgia, where 
his father owned small clothing stores. He 
received a B.A. degree from the University 
of Alabama in 1930 and a Ph.D. from 
Princeton in 1934. After brief periods as a 
professor at Bryn Mawr, the University of 
Chicago, the University of North Carolina, 
and Johns Hopkins, Jacobson accepted a po
sition at Yale, where he remained until his 
retirement in 1981.

Jacobson’s principal contributions to al
gebra were in the areas of rings, Lie alge
bras, and Jordan algebras. In particular, he 
developed structure theories for these sys
tems. He was the author of nine books and 

Few mathematicians have been as produc-
tive over such a long career or have had as 
much influence on the profession as has 
Professor Jacobson.

Citation for the Steele Prize
for Lifetime Achievement

numerous articles, and he had 33 Ph.D. 
 students.

Jacobson held visiting positions in 
France, India, Italy, Israel, China, Australia, 
and Switzerland. Among his many honors 
were the presidency of the American 
Mathematical Society, memberships in the 
National Academy of Sciences and the 
American Academy of Arts and Sciences, a 
Guggenheim Fellowship, and an honorary 
degree from the University of Chicago. 
Jacobson died on December 5, 1999, at the 
age of 89.

To find more information about Jacobson, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Ideals and Factor Rings

Abstractness, sometimes hurled as a reproach at mathematics, is its 
chief glory and its surest title to practical usefulness. It is also the source 
of such beauty as may spring from mathematics.

E. T. Bell

The secret of science is to ask the right questions, and it is the choice of 
problem more than anything else that marks the man of genius in the 
scientific world.

Sir Henry Tizard In C. P. Snow,  
A postscript to Science and Government

14

Ideals
Normal subgroups play a special role in group theory—they permit us 
to construct factor groups. In this chapter, we introduce the analogous 
concepts for rings—ideals and factor rings.

Definition Ideal
A subring A of a ring R is called a (two-sided) ideal of R if for  
every r [ R and every a [ A both ra and ar are in A.

So, a subring A of a ring R is an ideal of R if A “absorbs” elements 
from R—that is, if rA 5 {ra | a [ A} # A and Ar 5 {ar | a [ A} # A 
for all r [ R.

An ideal A of R is called a proper ideal of R if A is a proper subset  
of R. In practice, one identifies ideals with the following test, which is 
an immediate consequence of the definition of ideal and the subring test 
given in Theorem 12.3.

 Theorem 14.1 Ideal Test

A nonempty subset A of a ring R is an ideal of R if

 1. a 2 b [ A whenever a, b [ A.
2. ra and ar are in A whenever a [ A and r [ R.
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 EXAMPLE 1 For any ring R, {0} and R are ideals of R. The ideal {0} is 
called the trivial ideal. 

 EXAMPLE 2 For any positive integer n, the set nZ 5 {0, 6n,  
62n, . . .} is an ideal of Z. 

 EXAMPLE 3 Let R be a commutative ring with unity and let a [ R. The 
set kal 5 {ra | r [ R} is an ideal of R called the principal ideal gener-
ated by a. (Notice that kal is also the notation we used for the cyclic 
subgroup generated by a. However, the intended meaning will always be 
clear from the context.) The assumption that R is commutative is neces-
sary in this example. 

 EXAMPLE 4 Let R[x] denote the set of all polynomials with real coeffi-
cients and let A denote the subset of all polynomials with constant term 
0. Then A is an ideal of R[x] and A 5 kxl. 

 EXAMPLE 5 Let R be a commutative ring with unity and let a1, 
a2, . . . , an belong to R. Then I 5 ka1, a2, . . . , anl 5 {r1a1 1 r2a2 1 
? ? ? 1 rnan | ri [ R} is an ideal of R called the ideal generated by a1,  
a2, . . . , an. The verification that I is an ideal is left as an easy exercise 
(Exercise 3). 

 EXAMPLE 6 Let Z[x] denote the ring of all polynomials with integer 
coefficients and let I be the subset of Z[x] of all polynomials with even 
constant terms. Then I is an ideal of Z[x] and I 5 kx, 2l (see  
Exercise 39). 

 EXAMPLE 7 Let R be the ring of all real-valued functions of a real 
variable. The subset S of all differentiable functions is a subring of R but 
not an ideal of R. 

Factor Rings
Let R be a ring and let A be an ideal of R. Since R is a group under addi-
tion and A is a normal subgroup of R, we may form the factor group 
R/A 5 {r 1 A | r [ R}. The natural question at this point is: How may 
we form a ring of this group of cosets? The addition is already taken care 
of, and, by analogy with groups of cosets, we define the product of two 
cosets of s 1 A and t 1 A as st 1 A. The next theorem shows that this de-
finition works as long as A is an ideal, and not just a subring, of R.
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 Theorem 14.2 Existence of Factor Rings

Let R be a ring and let A be a subring of R. The set of cosets {r 1 A | 
r [ R} is a ring under the operations (s 1 A) 1 (t 1 A) 5 s 1 t 1 A 
and (s 1 A)(t 1 A) 5 st 1 A if and only if A is an ideal of R.

PROOF We know that the set of cosets forms a group under addition. 
Once we know that multiplication is indeed a binary operation on the co-
sets, it is trivial to check that the multiplication is associative and that 
multiplication is distributive over addition. Hence, the proof boils down 
to showing that multiplication is well-defined if and only if A is an ideal 
of R. To do this, let us suppose that A is an ideal and let s 1 A 5 s9 1 A 
and t 1 A 5 t9 1 A. Then we must show that st 1 A 5 s9t9 1 A. Well, by 
definition, s 5 s9 1 a and t 5 t9 1 b, where a and b belong to A. Then

st 5 (s9 1 a)(t9 1 b) 5 s9t9 1 at9 1 s9b 1 ab,

and so

st 1 A 5 s9t9 1 at9 1 s9b 1 ab 1 A 5 s9t9 1 A,

since A absorbs at9 1 s9b 1 ab. Thus, multiplication is well-defined when 
A is an ideal.

On the other hand, suppose that A is a subring of R that is not an ideal 
of R. Then there exist elements a [ A and r [ R such that ar o A or  
ra o A. For convenience, say ar o A. Consider the elements a 1 A 5 0 
1 A and r 1 A. Clearly, (a 1 A)(r 1 A) 5 ar 1 A but (0 1 A) ? (r 1 A)  
5 0 ? r 1 A 5 A. Since ar 1 A 2 A, the multiplication is not well- 
defined and the set of cosets is not a ring. 

Let’s look at a few factor rings.

 EXAMPLE 8 Z/4Z 5 {0 1 4Z, 1 1 4Z, 2 1 4Z, 3 1 4Z}. To see how to 
add and multiply, consider 2 1 4Z and 3 1 4Z.

(2 1 4Z) 1 (3 1 4Z) 5 5 1 4Z 5 1 1 4 1 4Z 5 1 1 4Z,
 (2 1 4Z)(3 1 4Z) 5 6 1 4Z 5 2 1 4 1 4Z 5 2 1 4Z.

One can readily see that the two operations are essentially modulo 4 
arithmetic. 

 EXAMPLE 9 2Z/6Z 5 {0 1 6Z, 2 1 6Z, 4 1 6Z}. Here the operations 
are essentially modulo 6 arithmetic. For example, (4 1 6Z) 1  
(4 1 6Z) 5 2 1 6Z and (4 1 6Z)(4 1 6Z) 5 4 1 6Z. 
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Here is a noncommutative example of an ideal and factor ring.

 EXAMPLE 10 Let R 5 e ca1 a2

a3 a4
d ` ai [ Z f  and let I be the 

subset of R consisting of matrices with even entries. It is easy to 
show that I is indeed an ideal of R (Exercise 21). Consider the factor  
ring R/I. The interesting question about this ring is: What is its size? 

We claim R/I has 16 elements; in fact, R/I 5e c r1 r2

r3 r4
d�I  0  ri [{0, 1}f .

An  example illustrates the typical situation. Which of the 16 elements 

i s  c7 8

5 �3
d� I ?  Wel l ,  observe  tha t  c7 8

5 �3
d � I � c1 0

1 1
d �

c6 8

4 �4
d� I � c1 0

1 1
d� I, since an ideal absorbs its own elements. 

The general case is left to the reader (Exercise 23). 

 EXAMPLE 11 Consider the factor ring of the Gaussian integers 
R 5 Z[i]/k2 2 il. What does this ring look like? Of course, the elements 
of R have the form a 1 bi 1 k2 2 il, where a and b are integers, but the 
important question is: What do the distinct cosets look like? The fact that 
2 2 i 1 k2 2 il 5 0 1 k2 2 il means that when dealing with coset rep-
resentatives, we may treat 2 2 i as equivalent to 0, so that 2 5 i. For 
example, the coset 3 1 4i 1 k2 2 il 5 3 1 8 1 k2 2 il 5 11 1 k2 2 il. 
Similarly, all the elements of R can be written in the form a 1 k2 2 il, 
where a is an integer. But we can further reduce the set of distinct coset 
representatives by observing that when dealing with coset representa-
tives, 2 5 i implies (by squaring both sides) that 4 5 21 or 5 5 0. Thus, 
the coset 3 1 4i 1 k2 2 il 5 11 1 k2 2 il 5 1 1 5 1 5 1 k2 2 il 5 1 1  
k2 2 il. In this way, we can show that every element of R is equal to one of 
the following cosets: 0 1 k2 2 il, 1 1 k2 2 il, 2 1 k2 2 il, 3 1 k2 2 il, 
4 1 k2 2 il. Is any further reduction possible? To demonstrate that there 
is not, we will show that these five cosets are distinct. It suffices to show 
that 1 1 k2 2 il has additive order 5. Since 5(1 1 k2 2 il) 5 5 1 k2 2 il 
5 0 1 k2 2 il, 1 1 k2 2 il has order 1 or 5. If the order is actually 1, then 
1 1 k2 2 il 5 0 1 k2 2 il, so 1 [ k2 2 il. Thus, 1 5  
(2 2 i) (a 1 bi) 5 2a 1 b 1 (2a 1 2b)i for some integers a and b. But 
this equation implies that 1 5 2a 1 b and 0 5 2a 1 2b, and solving these 
simultaneously yields b 5 1/5, which is a contradiction. It should be 
clear that the ring R is essentially the same as the field Z5. 

 EXAMPLE 12 Let R[x] denote the ring of polynomials with real coeffi-
cients and let kx2 1 1l denote the principal ideal generated by  
x2 1 1; that is,
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kx2 1 1l 5 {f(x)(x2 1 1) | f(x) [ R[x]}.

Then

R[x]/kx2 1 1l 5 {g(x) 1 kx2 1 1l | g(x) [ R[x]}
5 {ax 1 b 1 kx2 1 1l | a, b [ R}.

To see this last equality, note that if g(x) is any member of R[x], then we 
may write g(x) in the form q(x)(x2 1 1) 1 r(x), where q(x) is the quo-
tient and r(x) is the remainder upon dividing g(x) by x2 1 1. In particu-
lar, r(x) 5 0 or the degree of r(x) is less than 2, so that r(x) 5 ax 1 b for 
some a and b in R. Thus,

g(x) 1 kx2 1 1l 5 q(x)(x2 1 1) 1 r(x) 1 kx2 1 1l
  5 r(x) 1 kx2 1 1l,

since the ideal kx2 1 1l absorbs the term q(x)(x2 1 1).
How is multiplication done? Since

x2 1 1 1 kx2 1 1l 5 0 1 kx2 1 1l,

one should think of x2 1 1 as 0 or, equivalently, as x2 5 21. So, for 
 example,

(x 1 3 1 kx2 1 1l) ? (2x 1 5 1 kx2 1 1l)
5 2x2 1 11x 1 15 1 kx2 1 1l 5 11x 1 13 1 kx2 1 1l.

In view of the fact that the elements of this ring have the form ax 1b 1 
kx2 1 1l, where x2 1 kx2 1 1l 5 21 1 kx2 1 1l, it is perhaps not surpris-
ing that this ring turns out to be algebraically the same ring as the ring of 
complex numbers. This observation was first made by Cauchy in 1847. 

Examples 11 and 12 illustrate one of the most important applications 
of factor rings—the construction of rings with highly desirable proper-
ties. In particular, we shall show how one may use factor rings to con-
struct integral domains and fields.

Prime Ideals and Maximal Ideals

Definition Prime Ideal, Maximal Ideal
A prime ideal A of a commutative ring R is a proper ideal of R such that 
a, b [ R and ab [ A imply a [ A or b [ A. A maximal ideal of a com-
mutative ring R is a proper ideal of R such that, whenever B is an ideal 
of R and A # B # R, then B 5 A or B 5 R.
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So, the only ideal that properly contains a maximal ideal is the en-
tire ring. The motivation for the definition of a prime ideal comes from 
the integers.

 EXAMPLE 13 Let n be an integer greater than 1. Then, in the ring of 
integers, the ideal nZ is prime if and only if n is prime (Exercise 9). ({0} 
is also a prime ideal of Z.) 

 EXAMPLE 14 The lattice of ideals of Z36 (Figure 14.1) shows that only 
k2l and k3l are maximal ideals. 

 EXAMPLE 15 The ideal kx2 1 1l is maximal in R[x]. To see this, assume 
that A is an ideal of R[x] that properly contains kx2 1 1l. We will prove 
that A 5 R[x] by showing that A contains some nonzero real number c. 
[This is the constant polynomial h(x) 5 c for all x.] Then 1 5 (1/c) c [ A 
and therefore, by Exercise 15, A 5 R[x]. To this end, let f(x) [ A, but f(x) 
o kx2 1 1l. Then

f(x) 5 q(x)(x2 1 1) 1 r(x),

where r(x) 2 0 and the degree of r(x) is less than 2. It follows that  
r(x) 5 ax 1 b, where a and b are not both 0, and

ax 1 b 5 r(x) 5 f(x) 2 q(x)(x2 1 1) [ A.

<2>

<4>

<12> <18>

<6>

<3>

<9>

<0>

Z36

Figure 14.1
Thus,

a2x2 2 b2 5 (ax 1 b)(ax 2 b) [ A    and    a2(x2 1 1) [ A.

So,

 0 2 a2 1 b2 5 (a2x2 1 a2) 2 (a2x2 2 b2) [ A. 
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 EXAMPLE 16 The ideal kx2 1 1l is not prime in Z2[x], since it contains  
(x 1 1)2 5 x2 1 2x 1 1 5 x2 1 1 but does not contain x 1 1. 

The next two theorems are useful for determining whether a particu-
lar ideal is prime or maximal.

 Theorem 14.3 R/A Is an Integral Domain If and Only If A Is Prime

Let R be a commutative ring with unity and let A be an ideal of R. 
Then R/A is an integral domain if and only if A is prime.

PROOF Suppose that R/A is an integral domain and ab [ A. Then (a 1 A)
(b 1 A) 5 ab 1 A 5 A, the zero element of the ring R/A. So, either a 1 A 
5 A or b 1 A 5 A; that is, either a [ A or b [ A. Hence, A is prime.

To prove the other half of the theorem, we first observe that R/A is a 
commutative ring with unity for any proper ideal A. Thus, our task is 
simply to show that when A is prime, R/A has no zero-divisors. So, sup-
pose that A is prime and (a 1 A)(b 1 A) 5 0 1 A 5 A. Then ab [ A 
and, therefore, a [ A or b [ A. Thus, one of a 1 A or b 1 A is the zero 
coset in R/A. 

For maximal ideals, we can do even better.

 Theorem 14.4 R/A Is a Field If and Only If A Is Maximal

Let R be a commutative ring with unity and let A be an ideal of R. 
Then R/A is a field if and only if A is maximal.

PROOF Suppose that R/A is a field and B is an ideal of R that properly 
contains A. Let b [ B but b o A. Then b 1 A is a nonzero element of R/A 
and, therefore, there exists an element c 1 A such that (b 1 A) ? (c 1 A) 5 
1 1 A, the multiplicative identity of R/A. Since b [ B, we have bc [ B. 
Because

1 1 A 5 (b 1 A)(c 1 A) 5 bc 1 A,

we have 1 2 bc [ A , B. So, 1 5 (1 2 bc) 1 bc [ B. By Exercise 15, B 
5 R. This proves that A is maximal.

Now suppose that A is maximal and let b [ R but b o A. It suffices to 
show that b 1 A has a multiplicative inverse. (All other properties for a 
field follow trivially.) Consider B 5 {br 1 a | r [ R, a [ A}. This is an 
ideal of R that properly contains A (Exercise 25). Since A is maximal, we 
must have B 5 R. Thus, 1 [ B, say, 1 5 bc 1 a9, where a9 [ A. Then

  1 1 A 5 bc 1 a9 1 A 5 bc 1 A 5 (b 1 A)(c 1 A). 
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When a commutative ring has a unity, it follows from Theorems 14.3 
and 14.4 that a maximal ideal is a prime ideal. The next example shows 
that a prime ideal need not be maximal.

 EXAMPLE 17 The ideal kxl is a prime ideal in Z[x] but not a maximal 
ideal in Z[x]. To verify this, we begin with the observation that kxl 5 
{f(x) [ Z[x] | f(0) 5 0} (see Exercise 31). Thus, if g(x)h(x) [ kxl, then 
g(0)h(0) 5 0. And since g(0) and h(0) are integers, we have g(0) 5 0 or 
h(0) 5 0.

To see that kxl is not maximal, we simply note that kxl , kx, 2l , 
Z[x] (see Exercise 39). 

Exercises

One Problem after another presents itself and in the solving of them we can 
find our greatest pleasure.

  Karl Menninger

  1. Verify that the set defined in Example 3 is an ideal.
  2. Verify that the set A in Example 4 is an ideal and that A 5 kxl.
  3. Verify that the set I in Example 5 is an ideal and that if J is any 

ideal of R that contains a1, a2, . . . , an, then I # J. (Hence, ka1,  
a2, . . . , anl is the smallest ideal of R that contains a1, a2, . . . , an.)

  4. Find a subring of Z % Z that is not an ideal of Z % Z.
  5. Let S 5 {a 1 bi | a, b [ Z, b is even}. Show that S is a subring of 

Z[i], but not an ideal of Z[i].
  6. Find all maximal ideals in 
 a. Z8. b. Z10. c. Z12. d. Zn.
  7. Let a belong to a commutative ring R. Show that aR 5 {ar | r [ R} is 

an ideal of R. If R is the ring of even integers, list the  elements of 4R.
  8. Prove that the intersection of any set of ideals of a ring is an ideal.
  9. If n is an integer greater than 1, show that knl 5 nZ is a prime ideal 

of Z if and only if n is prime. (This exercise is referred to in this 
chapter.)

 10. If A and B are ideals of a ring, show that the sum of A and B, A 1 B 5 
{a 1 b | a [ A, b [ B}, is an ideal.

 11. In the ring of integers, find a positive integer a such that
 a. kal 5 k2l 1 k3l.
 b. kal 5 k6l 1 k8l.
 c. kal 5 kml 1 knl.
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 12. If A and B are ideals of a ring, show that the product of A and B, AB 
5 {a1b1 1 a2b2 1 ? ? ? 1 anbn | ai [ A, bi [ B, n a positive  integer}, 
is an ideal.

 13. Find a positive integer a such that
 a. kal 5 k3lk4l.
 b. kal 5 k6lk8l.
 c. kal 5 kmlknl.

 14. Let A and B be ideals of a ring. Prove that AB # A > B.
 15. If A is an ideal of a ring R and 1 belongs to A, prove that A 5 R. 

(This exercise is referred to in this chapter.)
 16. If A and B are ideals of a commutative ring R with unity and A 1 B 5 R, 

show that A > B 5 AB.
 17. If an ideal I of a ring R contains a unit, show that I 5 R.
 18. If R is a finite commutative ring with unity, prove that every prime 

ideal of R is a maximal ideal of R. 
 19. Give an example of a ring that has exactly two maximal ideals.
 20. Suppose that R is a commutative ring and |R| 5 30. If I is an ideal 

of R and |I| 5 10, prove that I is a maximal ideal.
 21. Let R and I be as described in Example 10. Prove that I is an ideal  

of R.
 22. Let I 5 k2l. Prove that I[x] is not a maximal ideal of Z[x] even 

though I is a maximal ideal of Z.
 23. Verify the claim made in Example 10 about the size of R/I.
 24. Give an example of a commutative ring that has a maximal ideal 

that is not a prime ideal.
 25. Show that the set B in the latter half of the proof of Theorem 14.4 is 

an ideal of R. (This exercise is referred to in this chapter.)
 26. If R is a commutative ring with unity and A is a proper ideal of R, 

show that R/A is a commutative ring with unity.
 27. Prove that the only ideals of a field F are {0} and F itself.
 28. Let R be a commutative ring with unity. Suppose that the only ide-

als of R are {0} and R. Show that R is a field.
 29. List the distinct elements in the ring Z[x]/K3, x2 1 1L. Show that this 

ring is a field.
 30. Show that R[x]/kx2 1 1l is a field.
 31. In Z[x], the ring of polynomials with integer coefficients, let I 5  

{ f (x) [ Z [x] | f (0) 5 0}. Prove that I 5 kxl. (This exercise is re-
ferred to in this chapter and in Chapter 15.)

 32. Show that A 5 {(3x, y) | x, y [ Z} is a maximal ideal of Z % Z. 
Generalize. What happens if 3x is replaced by 4x? Generalize.
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 33. Let R be the ring of continuous functions from R to R. Show that  
A 5 { f [ R | f (0) 5 0} is a maximal ideal of R.

 34. Let R 5 Z8 % Z30. Find all maximal ideals of R, and for each maxi-
mal ideal I, identify the size of the field R/I.

 35. How many elements are in Z[i]/k3 1 il? Give reasons for your  answer.
 36. In Z[x], the ring of polynomials with integer coefficients, let I 5 

{ f (x) [ Z[x] | f (0) 5 0}. Prove that I is not a maximal ideal.
 37. In Z % Z, let I 5 {(a, 0) | a [ Z}. Show that I is a prime ideal but 

not a maximal ideal.
 38. Let R be a ring and let I be an ideal of R. Prove that the factor ring 

R/I is commutative if and only if rs 2 sr [ I for all r and s in R.
 39. In Z[x], let I 5 { f(x) [ Z[x] | f (0) is an even integer}. Prove that  

I 5 kx, 2l. Is I a prime ideal of Z[x]? Is I a maximal ideal? How 
many elements does Z[x]/I have? (This exercise is referred to in this 
chapter.)

 40. Prove that I 5 k2 1 2il is not a prime ideal of Z[i]. How many 
 elements are in Z[i]/I? What is the characteristic of Z[i]/I?

 41. In Z5[x], let I 5 kx2 1 x 1 2l. Find the multiplicative inverse of 2x 1 3 
1 I in Z5[x]/I.

 42. Let R be a ring and let p be a fixed prime. Show that Ip 5 {r [ R | 
additive order of r is a power of p} is an ideal of R.

 43. An integral domain D is called a principal ideal domain if every 
ideal of D has the form kal 5 {ad | d [ D} for some a in D. Show 
that Z is a principal ideal domain. (This exercise is referred to in 
Chapter 18.)

 44. Let R 5 e ca b

0 d
d `  a, b, d [ Z f  and S � e c r s

0 t
d `  r, s, t [ Z, s

  
is even f . If S is an ideal of R, what can you say about r and t?

 45. If R and S are principal ideal domains, prove that R % S is a princi-
pal ideal ring. (See Exercise 41 for the definition.)

 46. In a principal ideal domain, show that every nontrivial prime ideal 
is a maximal ideal.

 47. Let R be a commutative ring and let A be any subset of R. Show that 
the annihilator of A, Ann(A) 5 {r [ R | ra 5 0 for all a in A}, is an 
ideal.

 48. Let R be a commutative ring and let A be any ideal of R. Show that 
the nil radical of A, N(A) 5 {r [ R | r n [ A for some positive inte-
ger n (n depends on r)}, is an ideal of R. [N(k0l) is called the nil 
radical of R.]
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 49. Let R 5 Z27. Find
 a. N(k0l).     b. N(k3l).     c. N(k9l).

 50. Let R 5 Z36. Find
 a. N(k0l).     b. N(k4l). c. N(k6l).

 51. Let R be a commutative ring. Show that R/N(k0l) has no nonzero 
nilpotent elements.

 52. Let A be an ideal of a commutative ring. Prove that N(N(A)) 5 N(A).
 53. Let Z2[x] be the ring of all polynomials with coefficients in Z2 (that 

is, coefficients are 0 or 1, and addition and multiplication of coeffi-
cients are done modulo 2). Show that Z2[x]/kx2 1 x 1 1l is a field.

 54. List the elements of the field given in Exercise 51, and make an ad-
dition and multiplication table for the field.

 55. Show that Z3[x]/kx2 1 x 1 1l is not a field.
 56. Let R be a commutative ring without unity, and let a [ R. Describe 

the smallest ideal I of R that contains a (that is, if J is any ideal that 
contains a, then I # J).

 57. Let R be the ring of continuous functions from R to R. Let A 5 
{ f [ R | f (0) is an even integer}. Show that A is a subring of R, 
but not an ideal of R.

 58. Show that Z[i]/k1 2 il is a field. How many elements does this field 
have?

 59. If R is a principal ideal domain and I is an ideal of R, prove that ev-
ery ideal of R/I is principal (see Exercise 43).

 60. How many elements are in Z5[i]/k1 1 il?
 61. Show, by example, that the intersection of two prime ideals need 

not be a prime ideal.
 62. Let R denote the ring of real numbers. Determine all ideals of R % R. 

What happens if R is replaced by any field F?
 63. Find the characteristic of Z[i]/k2 1 il.
 64. Show that the characteristic of Z[i]/ka 1 bil divides a2 1 b2.
 65. Prove that the set of all polynomials whose coefficients are all even 

is a prime ideal in Z[x].
 66. Let R 5 Z[2�5] and let I 5 {a 1 b2�5 | a, b [ Z, a 2 b is 

even}. Show that I is a maximal ideal of R.
 67. Let R be a commutative ring with unity that has the property that 

a2 5 a for all a in R. Let I be a prime ideal in R. Show that |R/I| 5 2.
 68. Let R be a commutative ring with unity, and let I be a proper ideal 

with the property that every element of R that is not in I is a unit of R. 
Prove that I is the unique maximal ideal of R.
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 69. Let I0 5 { f(x) [ Z[x] | f(0) 5 0}. For any positive integer n, show 
that there exists a sequence of strictly increasing ideals such that 
I0 , I1 , I2 , ? ? ? , In , Z[x].

 70. Let R 5 {(a1, a2, a3, . . .)}, where each ai [ Z. Let I 5 {(a1, a2,  
a3, . . . )}, where only a finite number of terms are nonzero. Prove 
that I is not a principal ideal of R.

 71. Let R be a commutative ring with unity and let a, b [ R. Show that  
ka, bl, the smallest ideal of R containing a and b, is I 5 {ra 1 sb |  
r, s [ R}. That is, show that I contains a and b and that any ideal 
that contains a and b also contains I.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian

Suggested Reading

Thomas Sonar, “Brunswick’s Second Mathematical Star: Richard Dede-
kind (1831–1916),” The Mathematical Intelligencer 34:2 (2012): 63–67.

This beautifully illustrated short biographical sketch of Dedekind em-
phasizes the breadth of his talent and interests. Dedekind was the last 
doctoral student of Gauss, and a steadfast friend of Bernhard Riemann. 
He gave the first lectures on Galois theory in Germany, edited the 
 collective works of Lejeune Dirichlet, and promoted the work of Georg 
Cantor. He was also an accomplished musician on the piano and the 
cello, and played chamber music with Brahms in the home of Dirichlet, 
whose wife Rebecka Mendelssohn was the sister of Felix Mendelssohn. 
As the first president of the Technical University of Brunswick, 
 Dedekind supervised the construction of the new university. In his 
honor, the council of mathematics students at the university still call 
themselves the Dedekinder, the “children of Dedekind”.
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Richard Dedekind was not only  
a mathematician, but one of the wholly 
great in the history of mathematics, now 
and in the past, the last hero of a great 
epoch, the last pupil of Gauss, for four  
decades himself a classic, from whose 
works not only we, but our teachers and the 
teachers of our teachers, have drawn.

edmund landau,  
Commemorative Address  

to the Royal Society of Göttingen

Richard Dedekind was born on October 6, 
1831, in Brunswick, Germany, the birthplace 
of Gauss. Dedekind was the youngest of four 
children of a law professor. His early inter-
ests were in chemistry and physics, but he 
obtained a doctor’s degree in mathe matics at 
the age of 21 under Gauss at the University of 
Göttingen. Dedekind continued his studies at 
Göttingen for a few years, and in 1854 he 
began to lecture there.

Dedekind spent the years 1858–1862 as a 
professor in Zürich. Then he accepted a po-
sition at an institute in Brunswick where he 
had once been a student. Although this 
school was less than university level,  
Dedekind remained there for the next  
50 years. He died in Brunswick in 1916.

During his career, Dedekind made 
 numer -ous fundamental contributions to 
mathematics. His treatment of irrational 
numbers, “Dedekind cuts,” put analysis on a 
firm, logical foundation. His work on unique 
factorization led to the modern theory of al-
gebraic numbers. He was a pioneer in the 
theory of rings and fields. The notion of ide-
als as well as the term itself are attributed to 
Dedekind. Mathematics historian Morris 
Kline has called him “the effective founder 
of abstract algebra.”

To find more information about  
Dedekind, visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

Richard Dedekind
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Emmy Noether was born on March 23, 
1882, in Germany. When she entered the 
University of Erlangen, she was one of  
only two women among the 1000 students. 
Noether completed her doctorate in 1907.

In 1916, Noether went to Göttingen and, 
under the influence of David Hilbert and 
Felix Klein, became interested in general 
relativity. While there, she made a major 
contribution to physics with her theorem 
that whenever there is a symmetry in nature, 
there is also a conservation law, and vice 
versa. In a 2012 issue of the New York 
Times science writer Ranson Stephens said 
“You can make a strong case that her theo-
rem is the backbone on which all of modern 
physics is built.” Hilbert tried unsuccess-
fully to obtain a faculty appointment at 
Göttingen for Noether, saying, “I do not see 
that the sex of the candidate is an argument 
against her admission as Privatdozent. After 
all, we are a university and not a bathing es-
tablishment.”

It was not until she was 38 that Noether’s 
true genius revealed itself. Over the next 
13 years, she used an axiomatic method to 
develop a general theory of ideals and non-
commutative algebras. With this abstract 
theory, Noether was able to weld together 
many important concepts. Her approach was 
even more important than the individual  
results. Hermann Weyl said of Noether,  
“She originated above all a new and epoch- 
making style of thinking in algebra.”

With the rise of Hitler in 1933, Noether,  
a Jew, fled to the United States and took a posi-
tion at Bryn Mawr College. She died suddenly 
on April 14, 1935, following an operation.

To find more information about Noether, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

. . . she discovered methods which have 
proved of enormous importance in the  
development of the pres ent-day younger 
generation of mathematicians.

albert einstein, The New York Time
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Ring Homomorphisms

If there is one central idea which is common to all aspects of modern 
algebra it is the notion of homomorphism.

I. N. Herstein, Topics in Algebra

In mathematics, functions are used, among other purposes, (1) to carry 
out a matching up of elements of one system with those of another; and 
(2) to transform a given system (or problem) into a simpler one. 

Norman J. Block, Abstract Algebra with Applications

Definition and Examples
In our work with groups, we saw that one way to discover information 
about a group is to examine its interaction with other groups by way of 
homomorphisms. It should not be surprising to learn that this concept 
extends to rings with equally profitable results.

Just as a group homomorphism preserves the group operation, a ring 
homomorphism preserves the ring operations.

Definitions Ring Homomorphism, Ring Isomorphism
A ring homomorphism f from a ring R to a ring S is a mapping from 
R to S that preserves the two ring operations; that is, for all a, b in R,

f(a 1 b) 5 f(a) 1 f(b)    and    f(ab) 5 f(a)f(b).

A ring homomorphism that is both one-to-one and onto is called a 
ring isomorphism.

As is the case for groups, in the preceding definition the operations on 
the left of the equal signs are those of R, whereas the operations on the 
right of the equal signs are those of S.

Again as with group theory, the roles of isomorphisms and homomor-
phisms are entirely distinct. An isomorphism is used to show that two rings 
are algebraically identical; a homomorphism is used to simplify a ring 
while retaining certain of its features.
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A schematic representation of a ring homomorphism is given in 
Figure 15.1. The dashed arrows indicate the results of performing the 
ring operations.

The following examples illustrate ring homomorphisms. The reader 
should supply the missing details.

a

b

a . b (a)  .   (b)
a 1 b

(a) 1   (b)

SR

(a)

(b)

Figure 15.1

 EXAMPLE 1 For any positive integer n, the mapping k S k mod n is a 
ring homomorphism from Z onto Zn (see Exercise 9 in Chapter 0). This 
mapping is called the natural homomorphism from Z to Zn. 

 EXAMPLE 2 The mapping a 1 bi S a 2 bi is a ring isomorphism from 
the complex numbers onto the complex numbers (see Exercise 37 in 
Chapter 6). 

 EXAMPLE 3 Let R[x] denote the ring of all polynomials with real coef-
ficients. The mapping f (x) S f (1) is a ring homomorphism from R[x] 
onto R. 

 EXAMPLE  4 The correspondence f: x S 5x from Z4 to Z10  
is a ring homomorphism. Although showing that f(x 1 y) 5 
f(x) 1 f(y) appears to be accomplished by the simple statement that  
5(x 1 y) 5 5x 1 5y, we must bear in mind that the addition on the left is 
done modulo 4, whereas the addition on the right and the multiplication on 
both sides are done modulo 10. An analogous difficulty arises in showing 
that f preserves multiplication. So, to verify that f preserves both op erations, 
we write x 1 y 5 4q1 1 r1 and xy 5 4q2 1 r2, where 0 # r1 , 4 and 0 # 
r2 , 4. Then f(x 1 y) 5 f(r1) 5 5r1 5 5(x 1 y 2 4q1) 5 5x 1 5y 2 20q1 5  
5x 1 5y 5 f(x) 1 f(y) in Z10. Similarly, using the fact that 5 ? 5 5 5 in Z10, 
we have f(xy) 5 f(r2) 5 5r2 5 5(xy 2 4q2) 5 5xy 2 20q2 5 (5 ? 5)xy 5 
5x5y 5 f(x)f(y) in Z10. 

 EXAMPLE 5 We determine all ring homomorphisms from Z12 to Z30. By 
Example 10 in Chapter 10, the only group homomorphisms from Z12 to 
Z30 are x S ax, where a 5 0, 15, 10, 20, 5, or 25. But, since 1 ? 1 5 1 in 
Z12, we must have a ? a 5 a in Z30. This requirement rules out 20 and 5 as 
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possibilities for a. Finally, simple calculations show that each of the  
remaining four choices does yield a ring homomorphism. 

 EXAMPLE 6 Let R be a commutative ring of characteristic 2. Then the 
mapping a S a2 is a ring homomorphism from R to R. 

 EXAMPLE 7 Although 2Z, the group of even integers under addition, is 
group-isomorphic to the group Z under addition, the ring 2Z is not ring-
isomorphic to the ring Z. (Quick! What does Z have that 2Z doesn’t?) 

Our next two examples are applications to number theory of the natu-
ral homomorphism given in Example 1.

 EXAMPLE 8 Test for Divisibility by 9
An integer n with decimal representation akak21 ? ? ? a0 is divisible by 
9 if and only if ak 1 ak21 1 ? ? ? 1 a0 is divisible by 9. To verify this, 
observe that n 5 ak10k 1 ak2110k21 1 ? ? ? 1 a0. Then, letting a denote 
the natural homomorphism from Z to Z9 [in particular, a(10) 5 1], we 
note that n is divisible by 9 if and only if

0 5 a(n) 5 a(ak)(a(10))k 1 a(ak21)(a(10))k21 1 ? ? ? 1 a(a0)

5 a(ak) 1 a(ak21) 1 ? ? ? 1 a(a0)

5 a(ak 1 ak21 1 ? ? ? 1 a0).

But a(ak 1 ak21 1 ? ? ? 1 a0) 5 0 is equivalent to ak 1 ak21 1 ? ? ? 1 a0 
being divisible by 9. 

The next example illustrates the value of the natural homomorphism 
given in Example 1.

 EXAMPLE 9 Theorem of Gersonides
In 1844 Eugéne Charles Catalan conjectured that 23 and 32 is the only 
instance of two consecutive powers greater than 1 of natural numbers. 
That is, they are the only solution in the natural numbers of xm – yn 5 
1where m, n, x, y . 1. This conjecture was proved in 2002 by Preda 
Mihăilescu. The special case where x and y are restricted to 2 and 3 was 
first proved by the Rabbi Gersonides in the fourteenth century who 
proved for m, n .1 the only case when 2m 5 3n 6 1 is for (m, n) 5 (3, 2). 
To verify this is so for 2m 5 3n 1 1, observe that for all n we have 3n mod 
8 5 3 or 1. Thus, 3n 1 1 mod 8 5 4 or 2. On the other hand, for m . 2, 
we have 2m mod 8 5 0. To handle the case where 2m 5 3n 2 1, we first 
note that for all n, 3n mod 16 5 3, 9, 11, or 1, depending on the value of 
n mod 4. Thus, (3n 2 1) mod 16 5 2, 8, 10, or 0. Since 2m mod 16 5 0 
for m $ 4, we have ruled out the cases where n mod 4 5 1, 2, or 3. 
 Because 34k mod 5 5 (34)k mod 5 5 1k mod 5 5 1, we know that (34k 2 1) 
mod 5 5 0. But the only values for 2m mod 5 are 2, 4, 3, and 1. This 
 contradiction completes the proof. 
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Properties of Ring Homomorphisms
 Theorem 15.1 Properties of Ring Homomorphisms

Let f be a ring homomorphism from a ring R to a ring S. Let A be a 
subring of R and let B be an ideal of S.

1.  For any r [ R and any positive integer n, f(nr) 5 nf(r) and 
f(rn) 5 (f(r))n.

2. f(A) 5 {f(a) | a [ A} is a subring of S.
3. If A is an ideal and f is onto S, then f(A) is an ideal.
4. f21(B) 5 {r [ R | f(r) [ B} is an ideal of R.
5. If R is commutative, then f(R) is commutative.
6.  If R has a unity 1, S 2 {0}, and f is onto, then f(1) is the unity 

of S.
7.  f is an isomorphism if and only if f is onto and Ker f 5  

{r [ R | f(r) 5 0} 5 {0}.
8.  If f is an isomorphism from R onto S, then f21 is an 

isomorphism from S onto R.

PROOF The proofs of these properties are similar to those given in Theo-
rems 10.1 and 10.2 and are left as exercises (Exercise 1). 

The student should learn the various properties of Theorem 15.1 
in words in addition to the symbols. Property 2 says that the homomor-
phic image of a subring is a subring. Property 4 says that the pullback of 
an ideal is an ideal, and so on.

The next three theorems parallel results we had for groups. The 
proofs are nearly identical to their group theory counterparts and are left 
as exercises (Exercises 2, 3, and 4).

 Theorem 15.2 Kernels Are Ideals

Let f be a ring homomorphism from a ring R to a ring S. Then Ker f 
5 {r [ R | f(r) 5 0} is an ideal of R.

 Theorem 15.3 First Isomorphism Theorem for Rings

Let f be a ring homomorphism from R to S. Then the mapping from 
R/Ker f to f(R), given by r 1 Ker f S f(r), is an isomorphism. In 
symbols, R/Ker f < f(R).
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  Theorem 15.4 Ideals Are Kernels

Every ideal of a ring R is the kernel of a ring homomorphism of R.  
In particular, an ideal A is the kernel of the mapping r S r 1 A  
from R to R/A.

The homomorphism from R to R/A given in Theorem 15.4 is called 
the natural homomorphism from R to R/A. Theorem 15.3 is often re-
ferred to as the Fundamental Theorem of Ring Homomorphisms.

In Example 17 in Chapter 14 we gave a direct proof that kxl is a 
prime ideal of Z[x] but not a maximal ideal. In the following example 
we illustrate a better way to do this kind of problem.

 EXAMPLE 10 Since the mapping f from Z[x] onto Z given by  
f( f(x)) 5 f(0) is a ring homomorphism with Ker f 5 kxl (see Exercise 31 
in Chapter 14), we have, by Theorem 15.3, Z[x]/kxl < Z. And because  
Z is an integral domain but not a field, we know by Theorems 14.3 and 
14.4 that the ideal kxl is prime but not maximal in Z[x]. 

 Theorem 15.5 Homomorphism from Z to a Ring with Unity

Let R be a ring with unity 1. The mapping f: Z S R given by n S n ? 1 
is a ring homomorphism.

PROOF Since the multiplicative group property am+n 5 aman translates to 
(m 1 n)a 5 ma 1 na when the operation is addition, we have f(m 1 n) 5 
(m 1 n) ? 1 5 m ? 1 1 n ? 1. So, f preserves addition. 

That f also preserves multiplication follows from Exercise 15 in 
Chapter 12, which says that (m ? a)(n ? b) 5 (mn) ? (ab) for all integers 
m and n. Thus, f(mn) 5 (mn) ? 1 5 (mn) ? ((1)(1)) 5 (m ? 1)(n ? 1) 5 
f(m)f(n). So, f preserves multiplication as well. 

 Corollary 1 A Ring with Unity Contains Zn or Z

If R is a ring with unity and the characteristic of R is n . 0, then 
R contains a subring isomorphic to Zn. If the characteristic of R is 0, 
then R contains a subring isomorphic to Z.

PROOF Let 1 be the unity of R and let S 5 {k ? 1 | k [ Z}. Theorem 15.5 
shows that the mapping f from Z to S given by f(k) 5 k ? 1 is a homomor-
phism, and by the First Isomorphism Theorem for rings, we have  
Z/Ker f < S. But, clearly, Ker f 5 knl, where n is the additive  order of 1 

26715 | Ring Homomorphisms

57960_ch15_ptg01_263-275.indd   267 10/27/15   11:54 AM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



and, by Theorem 13.3, n is also the characteristic of R. So, when R has char-
acteristic n, S < Z/knl < Zn. When R has characteristic 0, S < Z/k0l < Z. 

 Corollary 2 Zm Is a Homomorphic Image of Z

For any positive integer m, the mapping of f: Z S Zm given by x S  
x mod m is a ring homomorphism.

PROOF This follows directly from the statement of Theorem 15.5, since 
in the ring Zm, the integer x mod m is x ? 1. (For example, in Z3, if x 5 5, 
we have 5 ? 1 5 1 1 1 1 1 1 1 1 1 5 2.) 

 Corollary 3 A Field Contains Zp or Q (Steinitz, 1910)

If F is a field of characteristic p, then F contains a subfield 
isomorphic to Zp. If F is a field of characteristic 0, then F contains 
a subfield isomorphic to the rational numbers.

PROOF By Corollary 1, F contains a subring isomorphic to Zp if F has 
characteristic p, and F has a subring S isomorphic to Z if F has character-
istic 0. In the latter case, let

T 5 {ab21 | a, b [ S, b 2 0}.

Then T is isomorphic to the rationals (Exercise 63). 

Since the intersection of all subfields of a field is itself a subfield 
(Exercise 11), every field has a smallest subfield (that is, a subfield 
that is contained in every subfield). This subfield is called the prime 
subfield of the field. It follows from Corollary 3 that the prime 
subfield of a field of characteristic p is isomorphic to Zp, whereas the 
prime subfield of a field of characteristic 0 is isomorphic to Q. (See 
Exercise 67.) 

The Field of Quotients
Although the integral domain Z is not a field, it is at least contained in a 
field—the field of rational numbers. And notice that the field of rational 
numbers is nothing more than quotients of integers. Can we mimic the 
construction of the rationals from the integers for other integral do- 
mains? Yes. The field constructed in Theorem 15.6 is called the field of 
quotients of D. Throughout the proof of Theorem 15.6, you should keep 
in mind that we are using the construction of the rationals from the inte-
gers as a model for our construction of the field of quotients of D.
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Theorem 15.6 Field of Quotients

Let D be an integral domain. Then there exists a field F (called the 
field of quotients of D) that contains a subring isomorphic to D.

PROOF Let S 5 {(a, b) | a, b [ D, b 2 0}. We define an equivalence rela-
tion on S by (a, b) ; (c, d) if ad 5 bc. Now, let F be the set of equivalence 
classes of S under the relation ; and denote the equivalence class that 
contains (x, y) by x/y. We define addition and multiplication on F by

a/b 1 c/d 5 (ad 1 bc)/(bd )    and    a/b ? c/d 5 (ac)/(bd ).

(Notice that here we need the fact that D is an integral domain to ensure 
that multiplication is closed; that is, bd 2 0 whenever b 2 0 and d 2 0.)

Since there are many representations of any particular element of F 
( just as in the rationals, we have 1/2 5 3/6 5 4/8), we must show that 
these two operations are well-defined. To do this, suppose that a/b 5 a9/b9 
and c/d 5 c9/d9, so that ab9 5 a9b and cd9 5 c9d. It then follows that

 (ad 1 bc)b9d9 5 adb9d9 1 bcb9d9 5 (ab9)dd9 1 (cd9)bb9
5 (a9b)dd9 1 (c9d )bb9 5 a9d9bd 1 b9c9bd
5 (a9d9 1 b9c9)bd.

Thus, by definition, we have

(ad 1 bc)/(bd) 5 (a9d9 1 b9c9)/(b9d9),

and, therefore, addition is well-defined. We leave the verification that 
multiplication is well-defined as an exercise (Exercise 55). That F is a 
field is straightforward. Let 1 denote the unity of D. Then 0/1 is the 
 additive identity of F. The additive inverse of a/b is 2a/b; the multipli-
cative inverse of a nonzero element a/b is b/a. The remaining field prop-
erties can be checked easily.

Finally, the mapping f: D S F given by x S x/1 is a ring isomor-
phism from D to f(D) (see Exercise 7).�

 EXAMPLE 11 Let D 5 Z[x]. Then the field of quotients of D is {f(x)/g(x) 
| f(x), g(x) [ D, where g(x) is not the zero polynomial}. 

When F is a field, the field of quotients of F[x] is traditionally 
 denoted by F(x).

 EXAMPLE 12 Let p be a prime. Then Zp(x) 5 {f(x)/g(x) | f(x), g(x) [ 
Zp[x], g(x) 2 0} is an infinite field of characteristic p. 
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Exercises

We can work it out.
John Lennon and Paul Mccartney,  

“We Can Work It Out,” single*

  1. Prove Theorem 15.1.
  2. Prove Theorem 15.2.
  3. Prove Theorem 15.3.
  4. Prove Theorem 15.4.
  5. Show that the correspondence x S 5x from Z5 to Z10 does not pre-

serve addition.
  6. Show that the correspondence x S 3x from Z4 to Z12 does not pre-

serve multiplication.
  7. Show that the mapping f: D S F in the proof of Theorem 15.6 is a 

ring homomorphism.
  8. Prove that every ring homomorphism f from Zn to itself has the 

form f(x) 5 ax, where a2 5 a.
  9. Suppose that f is a ring homomorphism from Zm to Zn. Prove that if 

f(1) 5 a, then a2 5 a. Give an example to show that the converse is 
false.

 10. a. Is the ring 2Z isomorphic to the ring 3Z?
  b. Is the ring 2Z isomorphic to the ring 4Z?
 11. Prove that the intersection of any collection of subfields of a field F 

is a subfield of F. (This exercise is referred to in this chapter.)
 12. Let Z3[i] 5 {a 1 bi | a, b [ Z3} (see Example 9 in Chapter 13). Show 

that the field Z3[i] is ring-isomorphic to the field Z3[x]/kx2 1 1l. 
 13. Let

S � e c a b

�b a
d ` a, b [ Rf .

  Show that f: C S S given by

f(a 1 bi) 5 c a b

�b a
d

  is a ring isomorphism.

 14. Let Z[22] 5 {a 1 b22 | a, b [ Z} and

H � e ca 2b

b a
d ` a, b [ Z f .

  Show that Z[22] and H are isomorphic as rings.

*Copyright © 1965 (Renewed) Stony/ATV Tunes LLC. All rights  administered by 
Sony/ATV Music Publishing, 8 Music Square West, Nashville, TN 37203. All rights 
reserved. 
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 15. Consider the mapping from M2(Z ) into Z given by ca b

c d
d  S a. 

  Prove or disprove that this is a ring homomorphism.

 16. Let R 5 e ca b

0 c
d  ̀ a, b, c [ Z f . Prove or disprove that the map-

  ping ca b

0 c
d
 
S a is a ring homomorphism.

 17. Is the mapping from Z5 to Z30 given by x S 6x a ring homomor-
phism? Note that the image of the unity is the unity of the image 
but not the unity of Z30.

 18. Is the mapping from Z10 to Z10 given by x S 2x a ring homomor-
phism?

 19. Describe the kernel of the homomorphism given in Example 3.
 20. Recall that a ring element a is called an idempotent if a2 5 a. Prove 

that a ring homomorphism carries an idempotent to an idempotent.
 21. Determine all ring homomorphisms from Z6 to Z6. Determine all 

ring homomorphisms from Z20 to Z30.
 22. Determine all ring isomorphisms from Zn to itself.
 23. Determine all ring homomorphisms from Z to Z.
 24. Suppose f is a ring homomorphism from Z % Z into Z % Z. What 

are the possibilities for f((1, 0))?
 25. Determine all ring homomorphisms from Z % Z into Z % Z.
 26. In Z, let A 5 k2l and B 5 k8l. Show that the group A/B is isomor-

phic to the group Z4 but that the ring A/B is not ring-isomorphic to 
the ring Z4.

 27. Let R be a ring with unity and let f be a ring homomorphism from R 
onto S where S has more than one element. Prove that S has a unity.

 28. Show that (Z % Z )/(kal % kbl) is ring-isomorphic to Za % Zb.
 29. Determine all ring homomorphisms from Z % Z to Z.
 30. Prove that the sum of the squares of three consecutive integers can-

not be a square.
 31. Let m be a positive integer and let n be an integer obtained from m 

by rearranging the digits of m in some way. (For example, 72345 is 
a rearrangement of 35274.) Show that m 2 n is divisible by 9.

 32. (Test for Divisibility by 11) Let n be an integer with decimal repre-
sentation akak21 ? ? ? a1a0. Prove that n is divisible by 11 if and only 
if a0 2 a1 1 a2 2 ? ? ? (21)kak is divisible by 11.

 33. Show that the number 7,176,825,942,116,027,211 is divisible by 9 
but not divisible by 11.
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 34. If m and n are positive integers, prove that the mapping from Zm to 
Zn given by f(x) 5 x mod n is a ring homomorphism if and only if 
n divides m.

 35. (Test for Divisibility by 3) Let n be an integer with decimal repre-
sentation akak21 ? ? ? a1a0. Prove that n is divisible by 3 if and only 
if ak 1 ak21 1 ? ? ? 1 a1 1 a0 is divisible by 3.

 36. (Test for Divisibility by 4) Let n be an integer with decimal repre-
sentation akak21 ? ? ? a1a0. Prove that n is divisible by 4 if and only if 
a1a0 is divisible by 4.

 37. For any integer n .1, prove that Zn[x]/kxl is isomorphic to Zn.
 38. For any integer n .1, prove that kxl is a maximal ideal of Zn[x] if 

and only if n is prime.
 39. Give an example of a ring homomorphism from a commutative ring 

R to a ring S that maps a zero-divisor in R to the unity of S.
 40. Prove that any automorphism of a field F is the identity from the 

prime subfield to itself.
 41. In your head, determine (2 ? 1075 1 2)100 mod 3 and (10100 1 1)99 mod 3.
 42. Determine all ring homomorphisms from Q to Q.
 43. Let R and S be commutative rings with unity. If f is a homomor-

phism from R onto S and the characteristic of R is nonzero, prove 
that the characteristic of S divides the characteristic of R.

 44. Let R be a commutative ring of prime characteristic p. Show that the 
Frobenius map x S xp is a ring homomorphism from R to R.

 45. Is there a ring homomorphism from the reals to some ring whose 
kernel is the integers?

 46. Show that a homomorphism from a field onto a ring with more than 
one element must be an isomorphism.

 47. Suppose that R and S are commutative rings with unities. Let f be a 
ring homomorphism from R onto S and let A be an ideal of S.

 a. If A is prime in S, show that f21(A) 5 {x [ R | f(x) [ A} is 
prime in R.

 b. If A is maximal in S, show that f21(A) is maximal in R.
 48. A principal ideal ring is a ring with the property that every ideal has 

the form kal. Show that the homomorphic image of a principal ideal 
ring is a principal ideal ring.

 49. Let R and S be rings.
 a.  Show that the mapping from R % S onto R given by (a, b) S a is 

a ring homomorphism.
 b.  Show that the mapping from R to R % S given by a S (a, 0) is a 

one-to-one ring homomorphism.
 c. Show that R % S is ring-isomorphic to S % R.
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 50. Show that if m and n are distinct positive integers, then mZ is not 
ring-isomorphic to nZ.

 51. Prove or disprove that the field of real numbers is ring-isomorphic 
to the field of complex numbers.

 52. Show that the only ring automorphism of the real numbers is the 
identity mapping.

 53. Determine all ring homomorphisms from R to R.
 54. Suppose that n divides m and that a is an idempotent of Zn (that is, 

a2 5 a). Show that the mapping x S ax is a ring homomorphism 
from Zm to Zn. Show that the same correspondence need not yield a 
ring homomorphism if n does not divide m.

 55. Show that the operation of multiplication defined in the proof of 
Theorem 15.6 is well-defined.

 56. Let Q[22] 5 {a 1 b22 | a, b [ Q} and Q[25] 5 {a 1 b25 |  
a, b [ Q}. Show that these two rings are not ring-isomorphic.

 57. Let Z[i] 5 {a 1 bi | a, b [ Z}. Show that the field of quotients of 
Z[i] is ring-isomorphic to Q[i] 5 {r 1 si | r, s [ Q}. (This exercise 
is referred to in Chapter 18.)

 58. Let F be a field. Show that the field of quotients of F is ring- 
isomorphic to F.

 59. Let D be an integral domain and let F be the field of quotients of D. 
Show that if E is any field that contains D, then E contains a  subfield 
that is ring-isomorphic to F. (Thus, the field of quotients of an inte-
gral domain D is the smallest field containing D.)

 60. Explain why a commutative ring with unity that is not an integral do-
main cannot be contained in a field. (Compare with Theorem 15.6.)

 61. Show that the relation ; defined in the proof of Theorem 15.6 is an 
equivalence relation.

 62. Give an example of a ring without unity that is contained in a field.
 63. Prove that the set T in the proof of Corollary 3 to Theorem 15.5 is 

ring-isomorphic to the field of rational numbers.
 64. Suppose that f: R S S is a ring homomorphism and that the image 

of f is not {0}. If R has a unity and S is an integral domain, show 
that f carries the unity of R to the unity of S. Give an example to 
show that the preceding statement need not be true if S is not an 
integral domain.

 65. Let f(x) [ R[x]. If a 1 bi is a complex zero of f(x) (here i 5 2�1), 
show that a 2 bi is a zero of f(x). (This exercise is referred to in 
Chapter 32.)
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 66. Let R 5 e ca b

b a
d ` a, b [ Z f , and let f be the mapping that

  takes c a b

b a
d  to a 2 b.

 a. Show that f is a homomorphism.
 b. Determine the kernel of f.
 c. Show that R/Ker f is isomorphic to Z.
 d. Is Ker f a prime ideal?
 e. Is Ker f a maximal ideal?
 67. Show that the prime subfield of a field of characteristic p is ring-

isomorphic to Zp and that the prime subfield of a field of charac-
teristic 0 is ring-isomorphic to Q. (This exercise is referred to in 
this chapter.)

 68. Let n be a positive integer. Show that there is a ring isomorphism 
from Z2 to a subring of Z2n if and only if n is odd.

 69. Show that Zmn is ring-isomorphic to Zm % Zn when m and n are rela-
tively prime.

Suggested Readings
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Zm into Zn.

Lillian Kinkade and Joyce Wagner, “When Polynomial Rings Are 
 Principal Ideal Rings,” Journal of Undergraduate Mathematics 23 
(1991): 59–62.

In this article written by undergraduates, it is shown that R[x] is a 
 principal ideal ring if and only if R < R1 % R2 % ? ? ? % Rn, where 
each Ri is a field.

Mohammad Saleh and Hasan Yousef, “The Number of Ring Homomor-
phisms from Zm1

 % ? ? ? % Zmr into Zk1
 % ? ? ? % Zks,” American Mathemat-

ical Monthly 105 (1998): 259–260.

This article gives a formula for the number described in the title.
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He got to the top of the heap  
by being a first-rate doer and  
expositor of algebra.

paul r. halmos, I Have a  
Photographic Memory

Irving Kaplansky was born on March 22, 
1917, in Toronto, Canada, a few years after 
his parents emigrated from Poland. Although 
his parents thought he would pursue a career 
in music, Kaplansky knew early on that 
mathematics was what he wanted to do. As 
an undergraduate at the University of  
Toronto, Kaplansky was a member of the 
winning team in the first William Lowell 
Putnam Competition, a mathematical contest 
for United States and Canadian college stu-
dents. Kaplansky received a B.A. degree from 
Toronto in 1938 and an M.A. in 1939. In 1939, 
he entered Harvard University to earn his doc-
torate as the first recipient of a Putnam Fellow-
ship. After receiving his Ph.D. from Harvard in 
1941, Kaplansky stayed on as Benjamin Peirce 
Instructor until 1944. After one year at Colum-
bia University, he went to the University of 
Chicago, where he remained until his retire-
ment in 1984. He then became the director of 
the Mathematical Sciences  Research Institute 
at the University of California, Berkeley.

Kaplansky’s interests were broad, includ-
ing areas such as ring theory, group theory, 
field theory, Galois theory, ergodic theory, 
algebras, metric spaces, number theory, sta-
tistics, and probability.

Among the many honors Kaplansky 
 received are election to both the  National 
Academy of Sciences and the American 
Academy of Arts and Sciences, election to 
the presidency of the American Mathematical 
Society,  and the 1989 Steele Prize for cumu-
lative influence from the American 
Mathematical Society. The Steele Prize cita-
tion says, in part, “. . . he has made striking 
changes in mathematics and has inspired 
generations of younger mathematicians.” 
Kaplansky died on June 25, 2006, at the age 
of 89.

For more information about Kaplansky, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

Irving Kaplansky
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16 Polynomial Rings

We lay down a fundamental principle of generalization by abstrac-
tion: The existence of analogies between central features of vari-
ous theories implies the existence of a general theory which un-
derlies the particular theories and unifies them with respect to 
those central features.…

E. H. Moore, (1862–1932)

Wit lies in recognizing the resemblance among things which differ 
and the difference between things which are alike.

Madame De Staël

Notation and Terminology
One of the mathematical concepts that students are most familiar with 
and most comfortable with is that of a polynomial. In high school,  
students study polynomials with integer coefficients, rational coeffi-
cients, real coefficients, and perhaps even complex coefficients. In ear-
lier chapters of this book, we introduced something that was probably 
new—polynomials with coefficients from Zn. Notice that all of these sets 
of polynomials are rings, and, in each case, the set of coefficients is also 
a ring. In this chapter, we abstract all of these examples into one.

Definition Ring of Polynomials over R
Let R be a commutative ring. The set of formal symbols

R[x] 5 {anxn 1 an21xn21 1 ? ? ? 1 a1x 1 a0 | ai [ R,
 n is a nonnegative integer}

is called the ring of polynomials over R in the indeterminate x.

Two elements

anxn 1 an21xn21 1 ? ? ? 1 a1x 1 a0

and

bmxm 1 bm21xm21 1 ? ? ? 1 b1x 1 b0

of R[x] are considered equal if and only if ai 5 bi for all nonnegative 
 integers i. (Define ai 5 0 when i . n and bi 5 0 when i . m.)   
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In this definition, the symbols x, x2, . . . , xn do not represent 
 “unknown” elements or variables from the ring R. Rather, their  purpose 
is to serve as convenient placeholders that separate the ring  elements an, 
an21, . . . , a0. We could have avoided the x’s by defining a polynomial 
as an infinite sequence a0, a1, a2, . . . , an, 0, 0, 0, . . . , but our method 
takes advantage of the student’s experience in manipulating polynomi-
als where x does represent a variable. The disadvantage of our method 
is that one must be careful not to confuse a polynomial with the func-
tion determined by a polynomial. For example, in Z3[x], the polynomi-
als f (x) 5 x and g(x) 5 x3 determine the same function from Z3 to Z3, 
since f(a) 5 g(a) for all a in Z3.† But f(x) and g(x) are different elements 
of Z3[x]. Also, in the ring Zn[x], be careful to reduce only the coeffi-
cients and not the exponents modulo n. For example, in Z3[x], 5x 5 2x, 
but x5 2 x2.

To make R[x] into a ring, we define addition and multiplication in the 
usual way.

Definition Addition and Multiplication in R[x]
Let R be a commutative ring and let

f (x) 5 anxn 1 an21xn21 1 ? ? ? 1 a1x 1 a0

and

g(x) 5 bmxm 1 bm21xm21 1 ? ? ? 1 b1x 1 b0

belong to R[x]. Then

f (x) 1 g(x) 5 (as 1 bs)xs 1 (as21 1 bs21)xs21

 1 ? ? ? 1 (a1 1 b1)x 1 a0 1 b0,

where s is the maximum of m and n, ai 5 0 for i . n, and bi 5 0 for  
i . m. Also,

f (x)g(x) 5 cm1nxm1n 1 cm1n21xm1n21 1 ? ? ? 1 c1x 1 c0,

where

ck 5 akb0 1 ak21b1 1 ? ? ? 1 a1bk21 1 a0bk

for k 5 0, . . . , m 1 n.

Although the definition of multiplication might appear complicated, 
it is just a formalization of the familiar process of using the distributive 
property and collecting like terms. So, just multiply polynomials over a 

†In general, given f(x) in R[x] and a in R, f(a) means substitute a for x in the formula  
for f(x). This substitution is a homomorphism from R[x] to R.
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commutative ring R in the same way that polynomials are always multi-
plied. Here is an example.

Consider f(x) 5 2x3 1 x2 1 2x 1 2 and g(x) 5 2x2 1 2x 1 1 in Z3[x]. 
Then, in our preceding notation, a5 5 0, a4 5 0, a3 5 2, a2 5 1, a1 5 2, 
a0 5 2, and b5 5 0, b4 5 0, b3 5 0, b2 5 2, b1 5 2, b0 5 1. Now, using 
the definitions and remembering that addition and multiplication of the 
coefficients are done modulo 3, we have

f(x) 1 g(x) 5 (2 1 0)x3 1 (1 1 2)x2 1 (2 1 2)x 1 (2 1 1)

 5 2x3 1 0x2 1 1x 1 0

 5 2x3 1 x

and

 f(x) ? g(x) 5 (0 ? 1 1 0 ? 2 1 2 ? 2 1 1 ? 0 1 2 ? 0 1 2 ? 0)x5

  1 (0 ? 1 1 2 ? 2 1 1 ? 2 1 2 ? 0 1 2 ? 0)x4

  1 (2 ? 1 1 1 ? 2 1 2 ? 2 1 2 ? 0)x3

  1 (1 ? 1 1 2 ? 2 1 2 ? 2)x2 1 (2 ? 1 1 2 ? 2)x 1 2 ? 1
 5 x5 1 0x4 1 2x3 1 0x2 1 0x 1 2
 5 x5 1 2x3 1 2.

Our definitions for addition and multiplication of polynomials were 
formulated so that they are commutative and associative, and so that 
multiplication is distributive over addition. We leave the verification 
that R[x] is a ring to the reader.

It is time to introduce some terminology for polynomials. If

f(x) 5 anxn 1 an21xn21 1 ? ? ? 1 a1x 1 a0,

where an 2 0, we say that f(x) has degree n; the term an is called the 
leading coefficient of f(x), and if the leading coefficient is the multipli-
cative identity element of R, we say that f(x) is a monic polynomial. The 
polynomial f(x) 5 0 has no degree. Polynomials of the form 
f(x) 5 a0 are called constant. We often write deg f(x) 5 n to indicate 
that f(x) has degree n. As with polynomials with real coefficients, we 
may insert or delete terms of the form 0xk; 1xk is the same as xk; and 
1(2ak)xk is the same as 2akxk.

Very often properties of R carry over to R[x]. Our first theorem is a 
case in point.

 Theorem 16.1 D an Integral Domain Implies D[x] an Integral Domain

If D is an integral domain, then D [x] is an integral domain.
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PROOF Since we already know that D[x] is a ring, all we need  
to show is that D[x] is commutative with a unity and has no zero -divisors. 
Clearly, D[x] is commutative whenever D is. If 1 is the unity  element of 
D, it is obvious that f(x) 5 1 is the unity element of D[x]. Finally, sup-
pose that

f (x) 5 anxn 1 an21xn21 1 ? ? ? 1 a0

and

g(x) 5 bmxm 1 bm21xm21 1 ? ? ? 1 b0,

where an 2 0 and bm 2 0. Then, by definition, f(x)g(x) has leading coef-
ficient anbm and, since D is an integral domain, anbm 2 0. 

The Division Algorithm  
and Consequences

One of the properties of integers that we have used repeatedly is the 
division algorithm: If a and b are integers and b 2 0, then there exist 
unique integers q and r such that a 5 bq 1 r, where 0 # r , |b|. The 
next theorem is the analogous statement for polynomials over a field.

 Theorem 16.2 Division Algorithm for F  [x]

Let F be a field and let f(x), g(x) [ F[x] with g(x) 2 0. Then  
there exist unique polynomials q(x) and r(x) in F[x] such that f(x) 5 
g(x)q(x) 1 r(x) and either r(x) 5 0 or deg r(x) , deg g(x).

PROOF We begin by showing the existence of q(x) and r(x). If 
f(x) 5 0 or deg f(x) , deg g(x), we simply set q(x) 5 0 and r(x) 5 f(x). 
So, we may assume that n 5 deg f(x) $ deg g(x) 5 m and let f(x) 5 
anxn 1 ? ? ? 1 a0 and g(x) 5 bmxm 1 ? ? ? 1 b0. The idea behind this 
proof is to begin just as if you were going to “long divide” g(x) into 
f(x), then use the Second Principle of Mathematical Induction on 
deg f(x) to finish up. Thus, resorting to long division, we let f1(x) 5 
f(x) 2 anbm  

21xn2mg(x).† Then, f1(x) 5 0 or deg f1(x) , deg f(x); so, by 
our  induction hypothesis, there exist q1(x) and r1(x) in F[x] such that  
f1(x) 5 g(x)q1(x) 1 r1(x), where r1(x) 5 0 or deg r1(x) , deg g(x). 
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[Technically, we should get the induction started by proving the case 
in which deg f(x) 5 0, but this is trivial.] Thus,

f(x) 5 anbm   
21xn2mg(x) 1 f1(x)

 5 anbm   
21xn2mg(x) 1 q1(x)g(x) 1 r1(x)

 5 [anbm   
21xn2m 1 q1(x)]g(x) 1 r1(x).

So, the polynomials q(x) 5 anbm   
21xn2m 1 q1(x) and r(x) 5 r1(x) have the 

desired properties.
To prove uniqueness, suppose that f(x) 5 g(x)q(x) 1 r(x) and f(x) 5 

g(x) q(x) 1 r(x), where r(x) 5 0 or deg r(x) , deg g(x) and r(x) 5 0 
or deg r(x) , deg g(x). Then, subtracting these two equations, we obtain

0 5 g(x)[q(x) 2 q(x)] 1 [r(x) 2 r(x)]

or

r(x) 2 r(x) 5 g(x)[q(x) 2 q(x)].

Thus, r(x) 2 r(x) is 0, or the degree of r(x) 2 r(x) is at least that of  
g(x). Since the latter is clearly impossible, we have r(x) 5 r(x) and  
q(x) 5 q(x) as well. 

The polynomials q(x) and r(x) in the division algorithm are called the 
quotient and remainder in the division of f(x) by g(x). When the ring of 
coefficients of a polynomial ring is a field, we can use the long division 
process to determine the quotient and remainder.

†For example,

 

 (3>2)x2

q3x4                1 x 1 1

3x4 1 3x2                   

2 3x2 1 x 1 1

2x2 1 2

So,
23x2 1 x 1 1 5 3x4 1 x 1 1 2 (3/2)x2(2x2 1 2)

In general,
anbm

21xn2m

qan x
n 1 . . . 

 an x
n 1 . . . 

f1(x)

bm xm 1 . . .

So,
f1(x) 5 (anxn 1 ? ? ?) 2 anbm  

21xn2m(bmxm 1 ? ? ?)
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 EXAMPLE 1 To find the quotient and remainder upon dividing 
f(x) 5 3x4 1 x3 1 2x2 1 1 by g(x) 5 x2 1 4x 1 2, where f(x) and g(x) 
belong to Z5[x], we may proceed by long division, provided we keep in 
mind that addition and multiplication are done modulo 5. Thus,

 3x2 1 4x

q3x4 1 x3 1 2x2     1 1

  3x4 1 2x3 1    x2                   

4x3 1  x2     1 1

  4x3 1  x2 1 3x        

2x 1 1

x2 1 4x 1 2

So, 3x2 1 4x is the quotient and 2x 1 1 is the remainder. Therefore,

  3x4 1 x3 1 2x2 1 1 5 (x2 1 4x 1 2)(3x2 1 4x) 1 2x 1 1. 

Let D be an integral domain. If f(x) and g(x) [ D[x], we say that g(x) 
divides f(x) in D[x] [and write g(x) | f(x)] if there exists an h(x) [ D[x] 
such that f(x) 5 g(x)h(x). In this case, we also call g(x) a factor of f(x). 
An element a is a zero (or a root) of a polynomial f(x) if f(a) 5 0.  [Recall 
that f(a) means substitute a for x in the expression for f(x).] When F is a 
field, a [ F, and f(x) [ F[x], we say that a is a zero of multiplicity  
k (k $ 1) if (x 2 a)k is a factor of f(x) but (x 2 a)k11 is not a factor of 
f(x). With these definitions, we may now give several important corol-
laries of the division algorithm. No doubt you have seen these for the 
special case where F is the field of real numbers.

 Corollary 1 Remainder Theorem

Let F be a field, a [ F, and f(x) [ F [x]. Then f(a) is the remainder in 
the division of f(x) by x 2 a.

PROOF The proof of Corollary 1 is left as an exercise (Exercise 5). 

 Corollary 2 Factor Theorem

Let F be a field, a [ F, and f(x) [ F[x]. Then a is a zero of f(x) if 
and only if x 2 a is a factor of f(x).

PROOF The proof of Corollary 2 is left as an exercise (Exercise 13). 
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 Theorem 16.3 Polynomials of Degree n Have at Most n Zeros

A polynomial of degree n over a field has at most n zeros, counting 
multiplicity. 

PROOF We proceed by induction on n. Clearly, a polynomial of  degree 
0 over a field has no zeros. Now suppose that f(x) is a polynomial of 
degree n over a field and a is a zero of f(x) of multi plicity k. Then, f(x) 
5 (x 2 a)kq(x) and q(a) 2  0; and, since n 5 deg f (x) 5 deg   
(x 2 a)k q(x) 5 k 1 deg q(x), we have k # n (see Exercise 19). If f(x)  
has no zeros other than a, we are done. On the other hand, if b 2 a and b 
is a zero of f(x), then 0 5 f(b) 5 (b 2 a)kq(b), so that b is also a zero of 
q(x) with the same multiplicity as it has for f (x) (see Exercise 21).  
By the Second Principle of Mathematical Induction, we know that 
q(x) has at most deg q(x) 5 n 2 k zeros, counting multiplicity. Thus, 
f(x) has at most k 1 n 2 k 5 n zeros, counting multiplicity. 

We remark that Theorem 16.4 is not true for arbitrary polynomial 
rings. For example, the polynomial x2 1 7 has 1, 3, 5 and 7 as zeros over 
Z8. Lagrange was the first to prove Theorem 16.4 for polynomials in 
Zp[x].

 EXAMPLE 2 THE COMPLEX ZEROS OF X n – 1
We find all complex zeros of xn 2 1. Let v 5 cos(360°/n) 1 
i sin(360°/n). It follows from DeMoivre’s Theorem (see Example 12  
in Chapter 0) that vn 5 1 and vk 2 1 for 1 # k , n. Thus, each of 1,  
v, v2, . . . , vn21 is a zero of xn 2 1 and, by Theorem 16.4, there are no 
others. 

The complex number v in Example 2 is called a primitive nth root of 
unity.

We conclude this chapter with an important theoretical application of 
the division algorithm, but first an important definition.

Definition Principal Ideal Domain (PID)
A principal ideal domain is an integral domain R in which every ideal 
has the form kal 5 {ra | r [ R} for some a in R.

 Theorem 16.4 F  [x] Is a PID

Let F be a field. Then F [x] is a principal ideal domain.
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PROOF By Theorem 16.1, we know that F[x] is an integral domain. Now, 
let I be an ideal in F[x]. If I 5 {0}, then I 5 k0l. If I 2 {0}, then among 
all the elements of I, let g(x) be one of minimum degree. We will show 
that I  5  kg(x)l .  Since g(x) [  I ,  we have kg(x)l  #  I .  Now 
let f(x) [ I. Then, by the division algorithm, we may write f(x) 5  
g(x)q(x) 1 r(x), where r(x) 5 0 or deg r(x) , deg g(x). Since r(x) 5 f(x) 2 
g(x)q(x) [ I, the minimality of deg g(x) implies that the latter condition 
cannot hold. So, r(x) 5 0 and, therefore, f(x) [ kg(x)l. This shows that  
I # kg(x)l. 

The proof of Theorem 16.3 also establishes the following.

 Theorem 16.5 Criterion for I 5 kg(x)l

Let F be a field, I a nonzero ideal in F [x], and g(x) an element of 
F [x]. Then, I 5 8g(x)9 if and only if g(x) is a nonzero polynomial of 
minimum degree in I.

As an application of the First Isomorphism Theorem for Rings 
(Theorem 15.3) and Theorem 16.5, we verify the remark we made in 
Example 12 in Chapter 14 that the ring R[x]/kx2 1 1l is isomorphic to 
the ring of complex numbers.

 EXAMPLE 3 Consider the homomorphism f from R[x] onto C given by 
f(x) S f(i) (that is, evaluate a polynomial in R[x] at i). Then  
x2 1 1 [ Ker f and is clearly a polynomial of minimum degree in Ker f. 
Thus, Ker f 5 kx2 1 1l and R[x]/kx2 1 1l is isomorphic to C. 

Exercises

If I feel unhappy, I do mathematics to become happy. If I am happy, I do mathe-
matics to keep happy.

Paul Turán

  1. Let f(x) 5 4x3 1 2x2 1 x 1 3 and g(x) 5 3x4 1 3x3 1 3x2 1 x 1 4, 
where f(x), g(x) [ Z5[x]. Compute f(x) 1 g(x) and f(x) ? g(x).

  2. In Z3[x], show that the distinct polynomials x4 1 x and x2 1 x 
 determine the same function from Z3 to Z3.

  3. Show that x2 1 3x 1 2 has four zeros in Z6.
  4. If R is a commutative ring, show that the characteristic of R[x] is the 

same as the characteristic of R.
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  5. Prove Corollary 1 of Theorem 16.2.
  6. List all the polynomials of degree 2 in Z2[x]. Which of these are 

equal as functions from Z2 to Z2?
  7. Find two distinct cubic polynomials over Z2 that determine the same 

function from Z2 to Z2.
  8. For any positive integer n, how many polynomials are there of  

degree n over Z2? How many distinct polynomial functions from Z2 
to Z2 are there?

  9. Let f(x) 5 5x4 1 3x3 1 1 and g(x) 5 3x2 1 2x 1 1 in Z7[x]. 
Determine the quotient and remainder upon dividing f(x) by g(x). 

 10. Let R be a commutative ring. Show that R[x] has a subring isomor-
phic to R.

 11. If f: R S S is a ring homomorphism, define f: R[x] S S[x] by (anxn 
1 ? ? ? 1 a0) S f(an)xn 1 ? ? ? 1 f(a0). Show that f is a ring  
homomorphism. (This exercise is referred to in Chapter 33.)

 12. If the rings R and S are isomorphic, show that R[x] and S[x] are  
isomorphic. (The converse to not true–see [1].)

 13. Prove Corollary 2 of Theorem 16.2.
 14. Let f(x) and g(x) be cubic polynomials with integer coefficients 

such that f (a) 5 g(a) for four integer values of a. Prove that f (x) 5 
g(x). Generalize.

 15. Show that the polynomial 2x 1 1 in Z4[x] has a multiplicative in-
verse in Z4[x].

 16. Are there any nonconstant polynomials in Z[x] that have multi-
plicative inverses? Explain your answer.

 17. Let p be a prime. Are there any nonconstant polynomials in Zp[x] 
that have multiplicative inverses? Explain your answer.

 18. Show that Theorem 16.4 is false for any commutative ring that has 
a zero divisor.

 19. (Degree Rule) Let D be an integral domain and f(x), g(x) [ D[x]. 
Prove that deg ( f(x) ? g(x)) 5 deg f(x) 1 deg g(x). Show, by ex-
ample, that for commutative ring R it is possible that deg f(x)g(x) , 
deg f(x) 1 deg g(x), where f(x) and g(x) are nonzero elements in 
R[x]. (This exercise is referred to in this chapter, Chapter 17, and 
Chapter 18.)

 20. Prove that the ideal kxl in Q[x] is maximal.
 21. Let f(x) belong to F[x], where F is a field. Let a be a zero of f(x) of 

multiplicity n, and write f(x) 5 (x 2 a)nq(x). If b Z a is a zero of 
q(x), show that b has the same multiplicity as a zero of q(x) as it 
does for f(x). (This exercise is referred to in this chapter.)
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 22. Prove that for any positive integer n, a field F can have at most a 
 finite number of elements of multiplicative order at most n.

 23. Let F be a field, and let f(x) and g(x) belong to F[x]. If there is no 
polynomial of positive degree in F[x] that divides both f(x) and g(x) 
[in this case, f(x) and g(x) are said to be relatively prime], prove that 
there exist polynomials h(x) and k(x) in F[x] with the property that 
f(x)h(x) 1 g(x)k(x) 5 1. (This exercise is referred to in Chapter 20.)

 24. Let F be an infinite field and let f(x), g(x) [ F[x]. If f(a) 5 g(a) for 
infinitely many elements a of F, show that f(x) 5 g(x).

 25. Let F be a field and let p(x) [ F[x]. If f(x), g(x) [ F[x] and  
deg f(x) , deg p(x) and deg g(x) , deg p(x), show that f(x) 1  
kp(x)l 5 g(x) 1 kp(x)l implies f(x) 5 g(x). (This exercise is  
 referred to in Chapter 20.)

 26. Prove that Z[x] is not a principal ideal domain. (Compare this with 
Theorem 16.3.)

 27. Find a polynomial with integer coefficients that has 1/2 and 21/3 as 
zeros.

 28. Let f(x) [ R[x]. Suppose that f(a) 5 0 but f9(a) 2 0, where f9(x) is 
the derivative of f(x). Show that a is a zero of f(x) of multiplicity 1.

 29. Show that Corollary 2 of Theorem 16.2 is true over any commuta-
tive ring with unity.

 30. Show that Theorem 16.4 is true for polynomials over integral do-
mains.

 31. Let F be a field and let

I 5 {anxn 1 an21xn21 1 ? ? ? 1 a0 | an, an21, . . . , a0 [ F and  
 an 1 an21 1 ? ? ? 1 a0 5 0}.

  Show that I is an ideal of F[x] and find a generator for I.
 32. Let F be a field and let f(x) 5 anxn 1 an21xn21 1 ? ? ? 1 a0 [ F[x]. 

Prove that x 2 1 is a factor of f(x) if and only if an 1 an21 1 ? ? ? 1 
a0 5 0.

 33. Let m be a fixed positive integer. For any integer a, let a denote 
a mod m. Show that the mapping of f: Z[x] S Zm[x] given by

f(anxn 1 an21xn21 1 ? ? ? 1 a0) 5 anxn 1 an21xn21 1 ? ? ? 1 a0

  is a ring homomorphism. (This exercise is referred to in Chapters 
17 and 33.)

 34. Find infinitely many polynomials f(x) in Z3[x] such that f(a) 5 0 for 
all a in Z3.
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 35. For every prime p, show that

xp21 2 1 5 (x 2 1)(x 2 2) ? ? ? [x 2 (p 2 1)]
  in Zp[x].
 36. Let f be the ring homomorphism from Z[x] to Z given by f(f(x)) 5 

f(1). Find a polynomial g(x) in Z[x] such that Ker f 5 kg(x)l. Is 
there more than one possibility for g(x)? To what familiar ring is 
Z[x]/Ker f isomorphic? Do this exercise with Z replaced by Q.

 37. Give an example of a field that properly contains the field of 
 complex numbers C.

 38. (Wilson’s Theorem) For every integer n . 1, prove that (n 2 1)! 
mod n 5 n 2 1 if and only if n is prime.

 39. For every prime p, show that ( p 2 2)! mod p 5 1.
 40. Find the remainder upon dividing 98! by 101.
 41. Prove that (50!)2 mod 101 5 21 mod 101.
 42. If I is an ideal of a ring R, prove that I[x] is an ideal of R[x].
 43. Give an example of a commutative ring R with unity and a   

maximal ideal I of R such that I[x] is not a maximal ideal of R[x].
 44. Let R be a commutative ring with unity. If I is a prime ideal of R, 

prove that I[x] is a prime ideal of R[x].
 45. Let F be an infinite field and let f(x) [ F[x]. If f(a) 5 0 for infinitely 

many elements a of F, show that f(x) 5 0.
 46. Prove that Q[x]/kx2 2 2l is ring-isomorphic to Q[22] 5 {a 1  

b22 | a, b [ Q}.
 47. Let f(x) [ R[x]. If f(a) 5 0 and f 9(a) 5 0 [f 9(a) is the derivative of 

f(x) at a], show that (x 2 a)2 divides f(x).
 48. Let F be a field and let I 5 {f(x) [ F[x] | f (a) 5 0 for all a in F}. 

Prove that I is an ideal in F[x]. Prove that I is infinite when F is fi-
nite and I 5 {0} when F is infinite. When F is finite, find a monic 
polynomial g(x) such that I 5 kg(x)l.

 49. Let g(x) and h(x) belong to Z[x] and let h(x) be monic. If h(x) di-
vides g(x) in Q[x], show that h(x) divides g(x) in Z[x]. (This exercise 
is referred to in Chapter 33.)

 50. Let R be a ring and x be an indeterminate. Prove that the rings R[x] 
and R[x2] are ring-isomorphic.

 51. Let f (x) be a nonconstant element of Z[x]. Prove that f (x) takes on 
infinitely many values in Z.

 52. Let f (x) be a nonconstant element in Z[x]. Prove that k f (x)l is not 
maximal in Z[x].
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 53. Suppose that F is a field and there is a ring homomorphism from Z 
onto F. Show that F is isomorphic to Zp for some prime p.

 54. Let f (x) belong to Zp[x]. Prove that if f (b) 5 0, then f (bp) 5 0.
 55. Suppose f (x) is a polynomial with odd integer coefficients and even 

degree. Prove that f (x) has no rational zeros. 
 56. Find the remainder when x51 is divided by x 1 4 in Z7[x].
 57. Let F be a field. Show that there exist a, b [ F with the property 

that x2 1 x 1 1 divides x43 1 ax 1 b.
 58. Let f(x) 5 amxm 1 am21xm21 1 ? ? ? 1 a0 and g(x) 5 bnx n1 bn21xn21 1 

? ? ? 1 b0 belong to Q[x] and suppose that f (x)g(x) belongs to Z[x]. 
Prove that aibj is an integer for every i and j.

 59. Let f (x) belong to Z[x]. If a mod m 5 b mod m, prove that f (a) mod 
m 5 f(b) mod m. Prove that if both f(0) and f(1) are odd, then  
f  has no zero in Z.

 60. For any field F, recall that F(x) denotes the field of quotients of the 
ring F[x]. Prove that there is no element in F(x) whose square is x.

 61. Show that 1 is the only solution of x25 2 1 5 0 in Z37.

Suggested Reading

M. Hochster, “Nonuniqueness of Coefficient Rings in a Polynomial Ring,” 
Proceedings of American Mathematical Society, 34 (1972): 81–82.

The author gives an example of non-isomorphic commutative rings R 
and S with property that the ring R[x] and S[x] are isomorphic.
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Saunders Mac Lane ranks among the most 
influential mathematicians in the 20th cen-
tury. He was born on August 4, 1909, in 
Norwich, Connecticut. In 1933, at the height 
of the Depression, he was newly married; de-
spite having degrees from Yale, the University 
of Chicago, and the University of Göttingen, 
he had no prospects for a position at a college 
or university. After applying for employment 
as a master at a private preparatory school for 
boys, Mac Lane received a two-year instruc-
torship at Harvard in 1934. He then spent a 
year at Cornell and a year at the University 
of Chicago before returning to Harvard  
in 1938. In 1947, he went back to Chicago  
permanently. 

Much of Mac Lane’s work focuses on the 
interconnections among algebra, topology, 

The 1986 Steele Prize for cumulative 
 influence is awarded to Saunders Mac 
Lane for his many contributions to algebra 
and algebraic topology, and in particular 
for his pioneering work in homological and 
 categorical algebra.

Citation for the Steele Prize

and geometry. His book Survey of Modern 
Algebra, coauthored with Garrett Birkhoff, 
influenced generations of mathematicians 
and is now a classic. Mac Lane served as 
president of the Mathematical Association of 
America and the American Mathematical 
Society. He was elected to the National 
Academy of Sciences, received the National 
Medal of Science and the American 
Mathematical Society’s Steele Prize for 
Lifetime Achievement, and supervised 41 
Ph.D. theses. Mac Lane died April 14, 2005, 
at age 95.

To find more information about Mac 
Lane, visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

Saunders Mac Lane
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Factorization  
of Polynomials

Very early in our mathematical education—in fact in junior high 
school or early in high school itself—we are introduced to polyno-
mials. For a seemingly endless amount of time we are drilled, to 
the point of utter boredom, in factoring them, multiplying them, di-
viding them, simplifying them. Facility in factoring a quadratic be-
comes confused with genuine mathematical talent. 

I. N. Herstein, Topics in Algebra 

The value of a principle is the number of things it will explain.
Ralph Waldo Emerson

17

Reducibility Tests
In high school, students spend much time factoring polynomials and 
finding their zeros. In this chapter, we consider the same problems in a 
more abstract setting.

To discuss factorization of polynomials, we must first introduce the 
polynomial analog of a prime integer.

Definition Irreducible Polynomial, Reducible Polynomial
Let D be an integral domain. A polynomial f(x) from D[x] that is 
 neither the zero polynomial nor a unit in D[x] is said to be irreducible 
over D if, whenever f(x) is expressed as a product f(x) 5 g(x)h(x), with 
g(x) and h(x) from D[x], then g(x) or h(x) is a unit in D[x]. A nonzero, 
nonunit element of D[x] that is not irreducible over D is called 
 reducible over D.

In the case that an integral domain is a field F, it is equivalent and more 
convenient to define a nonconstant f(x) [ F[x] to be irreducible if f(x) can
not be expressed as a product of two polynomials of lower degree.
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 EXAMPLE 1 The polynomial f(x) 5 2x2 1 4 is irreducible over Q  
but reducible over Z, since 2x2 1 4 5 2(x2 1 2) and neither 2 nor x2 1 2 
is a unit in Z[x]. 

 EXAMPLE 2 The polynomial f(x) 5 2x2 1 4 is irreducible over R  
but reducible over C. 

 EXAMPLE 3 The polynomial x2 2 2 is irreducible over Q but re ducible 
over R. 

 EXAMPLE 4 The polynomial x2 1 1 is irreducible over Z3 but re ducible 
over Z5. 

In general, it is a difficult problem to decide whether or not a particu
lar polynomial is reducible over an integral domain, but there are special 
cases when it is easy. Our first theorem is a case in point. It applies to 
the four preceding examples.

 Theorem 17.1 Reducibility Test for Degrees 2 and 3

Let F be a field. If f(x) [ F[x] and deg f(x) is 2 or 3, then f(x) is 
reducible over F if and only if f(x) has a zero in F.

PROOF Suppose that f(x) 5 g(x)h(x), where both g(x) and h(x) belong to 
F[x] and have degrees less than that of f(x). Since deg f(x) 5 deg g(x) 1 
deg h(x) (Exercise 19 in Chapter 16) and deg f(x) is 2 or 3, at least one of 
g(x) and h(x) has degree 1. Say g(x) 5 ax 1 b. Then, clearly, 2a21b is a 
zero of g(x) and therefore a zero of f(x) as well.

Conversely, suppose that f(a) 5 0, where a [ F. Then, by the Factor 
Theorem, we know that x 2 a is a factor of f(x) and, therefore, f(x) is 
reducible over F. 

Theorem 17.1 is particularly easy to use when the field is Zp, because 
in this case we can check for reducibility of f(x) by simply testing  
to see if f(a) 5 0 for a 5 0, 1, . . . , p 2 1. For example, since 2 is a  
zero of x2 1 1 over Z5, x2 1 1 is reducible over Z5. On the other hand, 
because neither 0, 1, nor 2 is a zero of x2 1 1 over Z3, x

2 1 1 is irre
ducible over Z3.

Note that polynomials of degree larger than 3 may be reducible over a 
field even though they do not have zeros in the field. For example, in Q[x], 
the polynomial x4 1 2x2 1 1 is equal to (x2 1 1)2, but has no zeros in Q.

Our next three tests deal with polynomials with integer coefficients. 
To simplify the proof of the first of these, we introduce some terminol
ogy and isolate a portion of the argument in the form of a lemma.
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Definition Content of a Polynomial, Primitive Polynomial
The content of a nonzero polynomial anxn 1 an21x

n21 1 ? ? ? 1 a0, 
where the a’s are integers, is the greatest common divisor of the  integers 
an, an21, . . . , a0. A primitive polynomial is an element of Z[x] with 
 content 1.

 Gauss’s Lemma

The product of two primitive polynomials is primitive.

PROOF Let f(x) and g(x) be primitive polynomials, and suppose that f(x)
g(x) is not primitive. Let p be a prime divisor of the content of  
f(x)g(x), and let f (x), g(x), and f(x)g(x) be the polynomials obtained from 
f(x), g(x), and f(x)g(x) by reducing the coefficients modulo p. Then, f (x) 
and g(x) belong to the integral domain Zp[x] and f (x)g(x) 5 f(x)g(x) 5 0, 
the zero element of Zp[x] (see Exercise 33 in Chapter 16). Thus, f (x) 5 0 
or g(x) 5 0. This means that either p divides every co efficient of f(x) or p 
divides every coefficient of g(x). Hence, either f(x) is not primitive or g(x) 
is not primitive. This contradiction completes the proof. 

Remember that the question of reducibility depends on which ring  
of coefficients one permits. Thus, x2 2 2 is irreducible over Z but  
reducible over Q[22]. In Chapter 20, we will prove that every poly
nomial of degree greater than 1 with coefficients from an integral  
domain is reducible over some field. Theorem 17.2 shows that in the 
case of polynomials irreducible over Z, this field must be larger than 
the field of rational numbers.

 Theorem 17.2 Reducibility over Q Implies Reducibility over Z

Let f(x) [ Z[x]. If f(x) is reducible over Q, then it is reducible over Z.

PROOF Suppose that f(x) 5 g(x)h(x), where g(x) and h(x) [ Q[x]. Clearly, 
we may assume that f(x) is primitive because we can divide both f(x) and 
g(x) by the content of f(x). Let a be the least common multiple of the de
nominators of the coefficients of g(x), and b the least common multiple of 
the denominators of the coefficients of h(x). Then abf(x) 5 ag(x) ? bh(x), 
where ag(x) and bh(x) [ Z[x]. Let c1 be the content of ag(x) and let c2 be 
the content of bh(x). Then ag(x) 5 c1g1(x) and bh(x) 5 c2h1(x), where 
both g1(x) and h1(x) are primitive, and abf(x) 5 c1c2g1(x)h1(x). Since f(x) 
is primitive, the content of abf(x) is ab. Also, since the product of two 
primitive polynomials is primitive, it follows that the content of c1c2g1(x)
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h1(x) is c1c2. Thus, ab 5 c1c2 and f(x) 5 g1(x)h1(x), where g1(x) and h1(x) 
[ Z[x] and deg g1(x) 5 deg g(x) and deg h1(x) 5 deg h(x). 

 EXAMPLE 5 We illustrate the proof of Theorem 17.2 by tracing 
through it for the polynomial f (x) 5 6x2 1 x 2 2 5 (3x 2 3/2)(2x 1 
4/3) 5 g(x)h(x). In this case we have a 5 2, b 5 3, c1 5 3, c2 5 2, g1(x) 
5 2x 2 1, and h1(x) 5 3x 1 2, so that 2 ? 3(6x2 1 x 2 2) 5 3 ? 2(2x 2  
1)(3x 1 2) or 6x2 1 x 2 2 5 (2x 2 1)(3x 1 2). 

Irreducibility Tests
Theorem 17.1 reduces the question of irreducibility of a polynomial of 
degree 2 or 3 to one of finding a zero. The next theorem often allows us 
to simplify the problem even further.

 Theorem 17.3 Mod p Irreducibility Test

Let p be a prime and suppose that f(x) [ Z[x] with deg f(x) $ 1.  
Let f (x) be the polynomial in Zp[x] obtained from f(x) by reducing 
all the coefficients of f(x) modulo p. If f (x) is irreducible over Zp and 
deg f (x) 5 deg f(x), then f(x) is irreducible over Q.

PROOF It follows from the proof of Theorem 17.2 that if f(x) is re ducible 
over Q, then f(x) 5 g(x)h(x) with g(x), h(x) [ Z[x], and both g(x) and h(x) 
have degree less than that of f(x). Let f (x), g(x), and h(x) be the polyno
mials obtained from f(x), g(x), and h(x) by reducing all the coefficients 
modulo p. Since deg f(x) 5 deg f (x), we have deg g(x) # deg g(x) , deg 
f (x) and deg h(x) # deg h(x) , deg f (x). But, f (x) 5 g(x)h(x), and this 
contradicts our assumption that f (x) is irreducible over Zp. 

 EXAMPLE 6 Let f(x) 5 21x3 2 3x2 1 2x 1 9. Then, over Z2, we have 
f (x) 5 x3 1 x2 1 1 and, since f 102 5 1 and f 112 5 1, we see that f (x) 
is irreducible over Z2. Thus, f (x) is irreducible over Q. Notice that, over 
Z3, f (x) 5 2x is irreducible, but we may not apply Theorem 17.3 to con
clude that f(x) is irreducible over Q. 

Be careful not to use the converse of Theorem 17.3. If f(x) [ Z[x] and 
f (x) is reducible over Zp for some p, f(x) may still be irreducible over Q. 
For example, consider f(x) 5 21x3 2 3x2 1 2x 1 8. Then, over Z2, f (x) 
5 x3 1 x2 5 x2(x 1 1). But over Z5, f (x) has no zeros and therefore is 
irreducible over Z5. So, f(x) is irreducible over Q. Note that this  example 
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shows that the Mod p Irreducibility Test may fail for some p and work 
for others. To conclude that a particular f(x) in Z[x] is irreducible over 
Q, all we need to do is find a single p for which the corresponding poly
nomial f 1x2 in Zp is irreducible. However, this is not always possible, 
since f(x) 5 x4 1 1 is irreducible over Q but reducible over Zp for every 
prime p. (See Exercise 17.)

The Mod p Irreducibility Test can also be helpful in checking for 
 irreducibility of polynomials of degree greater than 3 and polynomials 
with rational coefficients.

 EXAMPLE 7 Let f(x) 5 (3/7)x4 2 (2/7)x2 1 (9/35)x 1 3/5. We will 
show that f(x) is irreducible over Q. First, let h(x) 5 35f(x) 5 15x4 2 
10x2 1 9x 1 21. Then f(x) is irreducible over Q if h(x) is irreducible 
over Z. Next, applying the Mod 2 Irreducibility Test to h(x), we get  
h1x2 5 x4 1 x 1 1. Clearly, h1x2 has no zeros in Z2. Furthermore, h1x2 
has no quadratic factor in Z2[x] either. [For if so, the factor would have 
to be either x2 1 x 1 1 or x2 1 1. Long division shows that x2 1 x 1 1 is 
not a factor, and x2 1 1 cannot be a factor because it has a zero, whereas 
h1x2 does not.] Thus, h1x2 is irreducible over Z2[x]. This guarantees that 
h(x) is irreducible over Q. 

 EXAMPLE 8 Let f(x) 5 x5 1 2x 1 4. Obviously, neither Theorem 17.1 
nor the Mod 2 Irreducibility Test helps here. Let’s try mod 3. Substitution 
of 0, 1, and 2 into f (x) does not yield 0, so there are no linear factors. But 
f (x)  may have a quadratic factor. If so, we may assume it has the form x2 
1 ax 1 b (see Exercise 5). This gives nine possibilities to check. We can 
immediately rule out each of the nine that has a zero over Z3, since f (x) 
does not have one. This leaves only x2 1 1, x2 1 x 1 2, and x2 1 2x 1 2 to 
check. These are eliminated by long division. So, since f (x) is irreducible 
over Z3, f(x) is irreducible over Q. (Why is it unnecessary to check for 
cubic or fourthdegree factors?) 

Another important irreducibility test is the following one, credited to 
Ferdinand Eisenstein (1823–1852), a student of Gauss. The corollary 
was first proved by Gauss by a different method.

 Theorem 17.4 Eisenstein’s Criterion (1850)

Let

f(x) 5 anxn 1 an21x
n21 1 ? ? ? 1 a0 [ Z[x].

If there is a prime p such that p B an, p | an21, . . . , p | a0 and p2 B a0, 
then f (x) is irreducible over Q.
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PROOF If f(x) is reducible over Q, we know by Theorem 17.2 that there 
exist elements g(x) and h(x) in Z[x] such that f (x) 5 g(x)h(x),  
1 # deg g(x), and 1 # deg h(x) , n. Say g(x) 5 br x

r 1 ? ? ? 1 b0 and h(x) 
5 cs x

s 1 ? ? ? 1 c0. Then, since p | a0, p
2 B a0, and a0 5 b0c0, it follows 

that p divides one of b0 and c0 but not the other. Let us say p | b0 and  
p B c0. Also, since p B an 5 brcs, we know that p B br. So, there is a least 
integer t such that p B bt. Now, consider at 5 btc0 1 bt21c1 1 ? ? ? 1 b0ct. 
By assumption, p divides at and, by choice of t, every summand on the 
right after the first one is divisible by p. Clearly, this forces p to divide btc0 
as well. This is impossible, however, since p is prime and p divides nei
ther bt nor c0. 

 Corollary Irreducibility of pth Cyclotomic Polynomial

For any prime p, the pth cyclotomic polynomial

Fp(x) 5 
xp � 1
x � 1

 5 xp21 1 xp22 1 ? ? ? 1 x 1 1

is irreducible over Q.

PROOF Let

f(x)�£p(x � 1)�
(x � 1)p � 1

(x � 1) � 1
�xp�1�ap

1
b xp�2�ap

2
b xp�3� . . .�ap

1
b.

Then, since every coefficient except that of xp21 is divisible by p and 
the constant term is not divisible by p2, by Eisenstein’s Criterion, f(x) is 
irreducible over Q. So, if Fp(x) 5 g(x)h(x) were a nontrivial factorization 
of Fp(x) over Q, then f(x) 5 Fp(x 1 1) 5 g(x 1 1) ? h(x 1 1) would be a 
nontrivial factorization of f(x) over Q. Since this is impossible, we con
clude that Fp(x) is irreducible over Q. 

 EXAMPLE 9 The polynomial 3x5 1 15x4 2 20x3 1 10x 1 20 is 
 irreducible over Q because 5 B 3 and 25 B 20 but 5 does divide 15, 220, 
10, and 20. 

The principal reason for our interest in irreducible polynomials stems 
from the fact that there is an intimate connection among them, maximal 
ideals, and fields. This connection is revealed in the next theorem and its 
first corollary.
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 Theorem 17.5 kp(x)l Is Maximal If and Only If p(x) Is Irreducible

Let F be a field and let p(x) [ F[x]. Then kp(x)l is a maximal ideal  
in F[x] if and only if p(x) is irreducible over F.

PROOF Suppose first that kp(x)l is a maximal ideal in F[x]. Clearly, p(x) is 
neither the zero polynomial nor a unit in F[x], because neither {0} nor 
F[x] is a maximal ideal in F[x]. If p(x) 5 g(x)h(x) is a factor ization of p(x) 
over F, then k p(x)l # kg(x)l # F[x]. Thus, k p(x)l 5 kg(x)l or F[x] 5 kg(xl. 
In the first case, we must have deg p(x) 5 deg g(x). In the second case, it 
follows that deg g(x) 5 0 and, consequently, deg h(x) 5 deg p(x). Thus, 
p(x) cannot be written as a product of two polynomials in F[x] of lower 
degree.

Now, suppose that p(x) is irreducible over F. Let I be any ideal of 
F[x] such that k p(x)l # I # F[x]. Because F[x] is a principal ideal do
main, we know that I 5 kg(x)l for some g(x) in F[x]. So, p(x) [ kg(x)l 
and, therefore, p(x) 5 g(x)h(x), where h(x) [ F[x]. Since p(x) is irreduc
ible over F, it follows that either g(x) is a constant or h(x) is a constant. 
In the first case, we have I 5 F[x]; in the second case, we have k p(x)l 5 
kg(x)l 5 I. So, k p(x)l is maximal in F[x]. 

 Corollary 1 F [x]/k p(x)l Is a Field

Let F be a field and p(x) be an irreducible polynomial over F. Then  
F[x]/k p(x)l is a field.

PROOF This follows directly from Theorems 17.5 and 14.4. 

The next corollary is a polynomial analog of Euclid’s Lemma for 
primes (see Chapter 0).

 Corollary 2 p(x) | a(x)b(x) Implies p(x) | a(x) or p(x) | b(x)

Let F be a field and let p(x), a(x), b(x) [ F[x]. If p(x) is irreducible 
over F and p(x) | a(x)b(x), then p(x) | a(x) or p(x) | b(x).

PROOF Since p(x) is irreducible, F[x]/kp(x)l is a field and, therefore, an inte
gral domain. From Theorem 14.3, we know that kp(x)l is a prime  
ideal, and since p(x) divides a(x)b(x), we have a(x)b(x) [ kp(x)l. Thus, a(x) 
[ k p(x)l or b(x) [ kp(x)l. This means that p(x) | a(x) or p(x) | b(x). 
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The next two examples put the theory to work.

 EXAMPLE 10 We construct a field with eight elements. By Theorem 
17.1 and Corollary 1 of Theorem 17.5, it suffices to find a cubic polyno
mial over Z2 that has no zero in Z2. By inspection, x3 1x 1 1 fills the bill. 
Thus, Z2[x]/kx3 1 x 1 1l 5 {ax2 1 bx 1 c 1 kx3 1 x 1 1l | a, b, c [ Z2} 
is a field with eight elements. For practice, let us do a few calculations in 
this field. Since the sum of two polynomials of the form ax2 1 bx 1 c is 
another one of the same form, addition is easy. For example,

(x2 1 x 1 1 1 kx3 1 x 1 1l) 1 (x2 1 1 1 kx3 1 x 1 1l)
  5 x 1 kx3 1 x 1 1l.

On the other hand, multiplication of two coset representatives need not 
yield one of the original eight coset representatives:

(x2 1 x 1 1 1 kx3 1 x 1 1l) ? (x2 1 1 1 kx3 1 x 1 1l)
  5 x4 1 x3 1 x 1 1 1 kx3 1 x 1 1l 5 x4 1 kx3 1 x 1 1l

(since the ideal absorbs the last three terms). How do we express this in 
the form ax2 1 bx 1 c 1 kx3 1 x 1 1l? One way is to long divide x4 by 
x3 1 x 1 1 to obtain the remainder of x2 1 x (just as one reduces  
12 1 k5l to 2 1 k5l by dividing 12 by 5 to obtain the remainder 2). 
Another way is to observe that x3 1 x 1 1 1 kx3 1 x 1 1l 5 0 1 
kx3 1 x 1 1l implies x3 1 kx3 1 x 1 1l 5 x 1 1 1 kx3 1 x 1 1l. Thus, 
we may multiply both sides by x to obtain

x4 1 kx3 1 x 1 1l 5 x2 1 x 1 kx3 1 x 1 1l.

Similarly,

(x2 1 x 1 kx3 1 x 1 1l) ? (x 1 kx3 1 x 1 1l)
 5 x3 1 x2 1 kx3 1 x 1 1l

 5 x2 1 x 1 1 1 kx3 1 x 1 1l.

A partial multiplication table for this field is given in Table 17.1.  
To simplify the notation, we indicate a coset by its representative only.

Table 17.1 A Partial Multiplication Table for Example 10

 1 x x 1 1 x2 x2 1 1 x2 1 x x2 1 x 1 1

1 1 x x 1 1 x2 x2 1 1 x2 1 x x2 1 x 1 1
x x x2 x2 1 x x 1 1 1 x2 1 x 1 1 x2 1 1
x 1 1 x 1 1 x2 1 x x2 1 1 x2 1 x 1 1 x2 1 x
x2 x2 x 1 1 x2 1 x 1 1 x2 1 x x x2 1 1 1
x2 1 1 x2 1 1 1 x2 x x2 1 x 1 1 x 1 1 x2 1 x
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(Complete the table yourself. Keep in mind that x3 can be replaced by  
x 1 1 and x4 by x2 1 x.) 

 EXAMPLE 11 Since x2 1 1 has no zero in Z3, it is irreducible over Z3. 
Thus, Z3[x]/kx2 1 1l is a field. Analogous to Example 12 in Chapter 14, 
Z3[x]/kx2 1 1l 5 {ax 1 b 1 kx2 1 1l | a, b [ Z3}. Thus, this field has 
nine elements. A multiplication table for this field can be obtained from 
Table 13.1 by replacing i by x. (Why does this work?) 

Unique Factorization in Z [x]
As a further application of the ideas presented in this chapter, we next 
prove that Z[x] has an important factorization property. In Chapter 18, 
we will study this property in greater depth. The first proof of Theorem 
17.6 was given by Gauss. In reading this theorem and its proof, keep in 
mind that the units in Z[x] are precisely f(x) 5 1 and f(x) 5 21 (see 
Exercise 25 in Chapter 12), the irreducible polynomials of degree 0 over 
Z are precisely those of the form f(x) 5 p and f(x) 5 2p where p is a 
prime, and every nonconstant polynomial from Z[x] that is irreducible 
over Z is primitive (see Exercise 3).

 Theorem 17.6 Unique Factorization in Z [x]

Every polynomial in Z[x] that is not the zero polynomial or a unit 
in Z[x] can be written in the form b1b2 ? ? ? bs p1(x)p2(x) ? ? ? pm(x), 
where the bi’s are irreducible polynomials of degree 0 and the pi(x)’s 
are irreducible polynomials of positive degree. Furthermore, if

b1b2 ? ? ? bs p1(x)p2(x) ? ? ? pm(x) 5 c1c2 ? ? ? ct q1(x)q2(x) ? ? ? qn(x),

where the bi’s and ci’s are irreducible polynomials of degree 0 and the 
pi(x)’s and qi(x)’s are irreducible polynomials of positive degree, then 
s 5 t, m 5 n, and, after renumbering the c’s and q(x)’s, we have  
bi 5 6ci  for i 5 1, . . . , s and pi(x) 5 6qi(x) for i 5 1, . . . , m.

PROOF Let f(x) be a nonzero, nonunit polynomial from Z[x]. If deg f(x) 5 
0, then f(x) is constant and the result follows from the Fundamental Theo
rem of Arithmetic. If deg f(x) . 0, let b denote the content of f(x), and let 
b1b2 ? ? ? bs be the factorization of b as a product of primes. Then, f(x) 5 
b1b2 ? ? ? bs f1(x), where f1(x) belongs to Z[x], is primitive and deg f1(x) 5 
deg f(x). Thus, to prove the existence portion of the theorem, it suffices to 
show that a primitive polynomial f(x) of positive degree can be written as 
a product of irreducible polynomials of positive degree. We proceed by 
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induction on deg f(x). If deg f(x) 5 1, then f(x) is already irreducible and 
we are done. Now suppose that every primitive polynomial of degree less 
than deg f(x) can be written as a product of irreducibles of positive degree. 
If f(x) is irreducible, there is nothing to prove. Otherwise, f(x) 5 g(x)h(x), 
where both g(x) and h(x) are primitive and have degree less than that of 
f(x). Thus, by induction, both g(x) and h(x) can be written as a product of 
irreducibles of positive degree. Clearly, then, f(x) is also such a product.

To prove the uniqueness portion of the theorem, suppose that 
f(x) 5 b1b2 ? ? ? bsp1(x)p2(x) ? ? ? pm(x) 5 c1c2 ? ? ? ctq1(x)q2(x) ? ? ? qn(x), 
where the bi’s and ci’s are irreducible polynomials of degree 0 and the 
pi(x)’s and qi(x)’s are irreducible polynomials of positive degree. Let b 5 
b1b2 ? ? ? bs and c 5 c1c2 ? ? ? ct. Since the p(x)’s and q(x)’s are primitive, 
it follows from Gauss’s Lemma that p1(x)p2(x) ? ? ? pm(x) and q1(x)q2(x) 
? ? ? qn(x) are primitive. Hence, both b and c must equal plus or minus 
the content of f(x) and, therefore, are equal in absolute value. It then fol
lows from the Fundamental Theorem of Arithmetic that s 5 t and, after 
renumbering, bi 5 6ci for i 5 1, 2, . . . , s. Thus, by cancel ing the 
 constant terms in the two factorizations for f(x), we have  
p1(x)p2(x) ? ? ? pm(x) 5 6q1(x) q2(x) ? ? ? qn(x). Now, viewing the p(x)’s 
and q(x)’s as elements of Q[x] and noting that p1(x) divides q1(x) ? ? ? 
qn(x), it follows from Corollary 2 of Theorem 17.5 and induction (see 
Exercise 32) that p1(x) | qi(x) for some i. By renumbering, we may as
sume i 5 1. Then, since q1(x) is irreducible, we have q1(x) 5 (r/s)p1(x), 
where r, s [ Z. However, because both q1(x) and p1(x) are primitive, we 
must have r/s 5 61. So, q1(x) 5 6p1(x). Also, after canceling, we have 
p2(x) ? ? ? pm(x) 5 6q2(x) ? ? ? qn(x). Now, we may repeat the argument 
above with p2(x) in place of p1(x). If m , n, after m such steps we would 
have 1 on the left and a nonconstant polynomial on the right. Clearly, 
this is impossible. On the other hand, if m . n, after n steps we would 
have 61 on the right and a nonconstant polynomial on the left—another 
impossibility. So, m 5 n and pi(x) 5 6qi(x) after suitable  
renumbering of the q(x)’s. 

Weird Dice: An Application 
of Unique Factorization

 EXAMPLE 12 Consider an ordinary pair of dice whose faces are  labeled 
1 through 6. The probability of rolling a sum of 2 is 1/36, the probabil
ity of rolling a sum of 3 is 2/36, and so on. In a 1978 issue of  Scientific 
American [1], Martin Gardner remarked that if one were to label the six 
faces of one cube with the integers 1, 2, 2, 3, 3, 4 and the six faces of 
another cube with the integers 1, 3, 4, 5, 6, 8, then the probabil ity of 
obtaining any particular sum with these dice (called Sicherman dice) 
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would be the same as the probability of rolling that sum with ordinary 
dice (that is, 1/36 for a 2, 2/36 for a 3, and so on). See Figure 17.1. In 
this example, we show how the Sicherman labels can be derived, and 
that they are the only possible such labels besides 1 through 6. To do 
so, we utilize the fact that Z[x] has the unique factorization property.
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Figure 17.1

To begin, let us ask ourselves how we may obtain a sum of 6, say, with 
an ordinary pair of dice. Well, there are five possibilities for the two faces: 
(5, 1), (4, 2), (3, 3), (2, 4), and (1, 5). Next we consider the product of the 
two polynomials created by using the ordinary dice labels as exponents:

(x6 1 x5 1 x4 1 x3 1 x2 1 x)(x6 1 x5 1 x4 1 x3 1 x2 1 x).

Observe that we pick up the term x6 in this product in precisely the fol
lowing ways: x5 ? x1, x4 ? x2 , x3 ? x3, x2 ? x4, x1 ? x5. Notice the correspon
dence between pairs of labels whose sums are 6 and pairs of terms whose 
products are x6. This correspondence is onetoone, and it is valid for all 
sums and all dice—including the Sicherman dice and any other dice that 
yield the desired probabilities. So, let a1, a2, a3, a4, a5, a6 and b1, b2, b3, 
b4, b5, b6 be any two lists of positive integer labels for the faces of a pair 
of cubes with the property that the probability of rolling any particular 
sum with these dice (let us call them weird dice) is the same as the prob
ability of rolling that sum with ordinary dice labeled 1 through 6. Using 
our observation about products of polynomials, this means that

(x6 1 x5 1 x4 1 x3 1 x2 1 x)(x6 1 x5 1 x4 1 x3 1 x2 1 x)
  5 (xa1 1 xa2 1 xa3 1 xa4 1 xa5 1 xa6) ?

(xb1 1 xb2 1 xb3 1 xb4 1 xb5 1 xb6).                 (1)

Now all we have to do is solve this equation for the a’s and b’s. Here is 
where unique factorization in Z[x] comes in. The polynomial x6 1 x5 1 
x4 1 x3 1 x2 1 x factors uniquely into irreducibles as
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x(x 1 1)(x2 1 x 1 1)(x2 2 x 1 1)

so that the lefthand side of Equation (1) has the irreducible factor ization

x2(x 1 1)2(x2 1 x 1 1)2(x2 2 x 1 1)2.

So, by Theorem 17.6, this means that these factors are the only possible 
irreducible factors of P(x) 5 xa1 1 xa2 1 xa3 1 xa4 1 xa5 1 xa6. Thus, P(x) 
has the form

xq(x 1 1)r(x2 1 x 1 1)t(x2 2 x 1 1)u,

where 0 # q, r, t, u # 2.
To restrict further the possibilities for these four parameters, we evalu

ate P(1) in two ways. P(1) 5 1a1 1 1a2 1 ? ? ? 1 1a6 5 6 and  
P(1) 5 1q2r3t1u. Clearly, this means that r 5 1 and t 5 1. What about q? 
Evaluating P(0) in two ways shows that q 2 0. On the other hand, if  
q 5 2, the smallest possible sum one could roll with the corresponding 
labels for dice would be 3. Since this violates our assumption, we have 
now reduced our list of possibilities for q, r, t, and u to q 5 1, r 5 1,  
t 5 1, and u 5 0, 1, 2. Let’s consider each of these possibilities in turn.

When u 5 0, P(x) 5 x4 1 x3 1 x3 1 x2 1 x2 1 x, so the die labels are 
4, 3, 3, 2, 2, 1—a Sicherman die.

When u 5 1, P(x) 5 x6 1 x5 1 x4 1 x3 1 x2 1 x, so the die labels are 
6, 5, 4, 3, 2, 1—an ordinary die.

When u 5 2, P(x) 5 x8 1 x6 1 x5 1 x4 1 x3 1 x, so the die labels are 
8, 6, 5, 4, 3, 1—the other Sicherman die.

This proves that the Sicherman dice do give the same probabilities as 
ordinary dice and that they are the only other pair of dice that have this 
property. 

Exercises

No matter how good you are at something, there’s always about a million peo-
ple better than you.

Homer Simpson

  1. Verify the assertion made in Example 2.
  2. Suppose that D is an integral domain and F is a field containing D. 

If f(x) [ D[x] and f(x) is irreducible over F but reducible over D, 
what can you say about the factorization of f(x) over D?

  3. Show that a nonconstant polynomial from Z[x] that is irreducible 
over Z is primitive. (This exercise is referred to in this chapter.)

  4. Suppose that f(x) 5 xn 1 an21x
n21 1 ? ? ? 1 a0 [ Z[x]. If r is ra

tional and x 2 r divides f(x), show that r is an integer.
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  5. Let F be a field and let a be a nonzero element of F.
 a. If af(x) is irreducible over F, prove that f(x) is irreducible over F.
 b. If f(ax) is irreducible over F, prove that f(x) is irreducible over F.
 c.  If f(x 1 a) is irreducible over F, prove that f(x) is irreducible 

over F.
 d. Use part c to prove that 8x3 2 6x 1 1 is irreducible over Q.
  (This exercise is referred to in this chapter.)
  6. Let F be a field and f(x) [ F[x]. Show that, as far as deciding upon 

the irreducibility of f(x) over F is concerned, we may assume that 
f(x) is monic. (This assumption is useful when one uses a computer 
to check for irreducibility.)

  7. Suppose there is a real number r with the property that r 1 1/r is an 
odd integer. Prove that r is irrational.

  8. Show that the equation x2 1 y2 5 2003 has no solutions in the 
 integers.

  9. Explain how the Mod p Irreducibility Test (Theorem 17.3) can be 
used to test members of Q[x] for irreducibility.

 10. Suppose that f(x) [ Zp[x] and f(x) is irreducible over Zp, where p is 
a prime. If deg f(x) 5 n, prove that Zp[x]/k f(x)l is a field with pn 
 elements.

 11. Construct a field of order 25.
 12. Construct a field of order 27.
 13. Show that x3 1 x2 1 x 1 1 is reducible over Q. Does this fact con

tradict the corollary to Theorem 17.4?
 14. Determine which of the polynomials below is (are) irreducible  

over Q.
 a. x5 1 9x4 1 12x2 1 6
 b. x4 1 x 1 1
 c. x4 1 3x2 1 3
 d. x5 1 5x2 1 1
 e. (5/2)x5 1 (9/2)x4 1 15x3 1 (3/7)x2 1 6x 1 3/14
 15. Show that x4 1 1 is irreducible over Q but reducible over R. (This 

exercise is referred to in this chapter.)
 16. Prove that x4 1 15x3 1 7 is irreducible over Q
 17. Show that x4 1 1 is reducible over Zp for every prime p. (This ex

ercise is referred to in this chapter.)
 18. Show that x2 1 x 1 4 is irreducible over Z11.
 19. Let f(x) 5 x3 1 6 [ Z7[x]. Write f(x) as a product of irreducible 

polynomials over Z7.
 20. Let f(x) 5 x3 1 x2 1 x 1 1 [ Z2[x]. Write f(x) as a product of irre

ducible polynomials over Z2.
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 21. Find all the zeros and their multiplicities of x5 1 4x4 1 4x3 2 x2 2 
4x 1 1 over Z5.

 22. Find all zeros of f(x) 5 3x2 1 x 1 4 over Z7 by substitution. Find all 
zeros of f(x) by using the quadratic formula (2b 6 2b2 � 4ac) ? 
(2a)21 (all calculations are done in Z7). Do your answers agree? 
Should they? Find all zeros of g(x) 5 2x2 1 x 1 3 over Z5 by sub
stitution. Try the quadratic formula on g(x). Do your answers agree? 
State necessary and sufficient conditions for the quadratic formula 
to yield the zeros of a quadratic from Zp[x], where p is a prime 
greater than 2.

 23. Let p be a prime.
 a.  Show that the number of reducible polynomials over Zp of the 

form x2 1 ax 1 b is p(p 1 1)/2.
 b.  Determine the number of reducible quadratic polynomials over Zp.
 24. Let p be a prime.
 a.  Determine the number of irreducible polynomials over Zp of the 

form x2 1 ax 1 b.
 b.  Determine the number of irreducible quadratic polynomials  

over Zp.
 25. Show that for every prime p there exists a field of order p2.
 26. Prove that, for every positive integer n, there are infinitely many 

polynomials of degree n in Z[x] that are irreducible over Q.
 27. Show that the field given in Example 11 in this chapter is isomor

phic to the field given in Example 9 in Chapter 13.
 28. Let f(x) [ Zp[x]. Prove that if f(x) has no factor of the form x2 1  

ax 1 b, then it has no quadratic factor over Zp.
 29. Find all monic irreducible polynomials of degree 2 over Z3.
 30. Given that p is not the zero of a nonzero polynomial with rational 

coefficients, prove that p 2 cannot be written in the form ap 1 b, 
where a and b are rational.

 31. (Rational Root Theorem) Let

f (x) 5 anx
n 1 an21x

n21 1 ? ? ? 1 a0 [ Z[x]

  and an 2 0. Prove that if r and s are relatively prime integers and 
f (r/s) 5 0, then r | a0 and s | an.

 32. Let F be a field and let p(x), a1(x), a2(x), . . . , ak(x) [ F[x], where 
p(x) is irreducible over F. If p(x) | a1(x)a2(x) ? ? ? ak(x), show that 
p(x) divides some ai(x). (This exercise is referred to in the proof of 
Theorem 17.6.)

 33. Let F be a field and p(x) [ F[x]. Use Theorem 14.4 to prove that if 
kp(x)l is a maximal ideal in F[x], then p(x) is irreducible over F (see 
Theorem 17.5).
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 34. If p is a prime, prove that xp21 2 xp22 1 xp23 2 ? ? ? 2 x 1 1 is 
 irreducible over Q.

 35. Let F be a field and let p(x) be irreducible over F. If E is a field 
that contains F and there is an element a in E such that p(a) 5 0, 
show that the mapping f: F[x] S E given by f(x) S f(a) is a ring 
homomorphism with kernel kp(x)l. (This exercise is referred to in 
Chapter 20.)

 36. Prove that the ideal kx2 1 1l is prime in Z[x] but not maximal in Z[x].
 37. Let F be a field and let p(x) be irreducible over F. Show that {a 1  

k p(x)l | a [ F} is a subfield of F[x]/kp(x)l isomorphic to F. (This 
exercise is referred to in Chapter 20.)

 38. Let F be a field and let f(x) be a polynomial in F[x] that is reducible 
over F. Prove that kf(x)l is not a prime ideal in F[x].

 39. Example 1 in this chapter shows the converse of Theorem 17.2 is 
not true. That is, a polynomial f(x) in Z[x] can be reducible over Z 
but irreducible over Q. State a condition on f(x) that makes the con
verse true.

 40. Carry out the analysis given in Example 12 for a pair of tetrahe
drons instead of a pair of cubes. (Define ordinary tetrahedral dice 
as the ones labeled 1 through 4.)

 41. Suppose in Example 12 that we begin with n (n . 2) ordinary dice 
each labeled 1 through 6, instead of just two. Show that the only 
possible labels that produce the same probabilities as n ordinary 
dice are the labels 1 through 6 and the Sicherman labels.

 42. Show that one twosided die labeled with 1 and 4 and another 18 
sided die labeled with 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8 
yield the same probabilities as an ordinary pair of cubes labeled 
1 through 6. Carry out an analysis similar to that given in Example  
12 to derive these labels.

 43. In the game of Monopoly, would the probabilities of landing on 
various properties be different if the game were played with  
Sicherman dice instead of ordinary dice? Why?

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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Serge Lang was a prolific mathematician, 
inspiring teacher, and political activist. He 
was born near Paris on May 19, 1927. His 
family moved to Los Angeles when he was a 
teenager. Lang received a B.A. in physics 
from Caltech in 1946 and a Ph.D. in mathe
matics from Princeton in 1951 under Emil 
Artin (see the biography in Chapter 19). His 
first permanent position was at Columbia 
University in 1955, but in 1971 Lang re
signed his position at Columbia as a protest 
against Columbia’s handling of Vietnam anti
war protesters. He joined Yale University in 
1972 and remained there until his retirement.

Lang made significant contributions to 
number theory, algebraic geometry, differen
tial geometry, and analysis. He wrote more 
than 120 research articles and 60 books.  
His most famous and influential book was 
his graduatelevel Algebra. Lang was a 

prizewinning teacher known for his extraor
dinary devotion to students. Lang often got 
into heated discussions about mathematics, 
the arts, and politics. In one incident, he 
threatened to hit a fellow mathematician 
with a bronze bust for not conceding it was 
self evident that the Beatles were greater 
musicians than Beethoven.

Among Lang’s honors were the Steele 
Prize for Mathematical Exposition from the 
American Mathematical Society, the Cole 
Prize in Algebra (see Chapter 25), and elec
tion to the National Academy of Sciences. 
Lang died on September 25, 2005, at the age 
of 78.

For more information about Lang, visit:

http://wikipedia.org/wiki/ 
Serge_Lang

Lang’s Algebra changed the way graduate 
algebra is taught . . . . It has affected all sub-
sequent graduate-level algebra books. 

Citation for the Steele Prize
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Divisibility in  
Integral Domains

Fundamental definitions do not arise at the start but at the end of 
the exploration, because in order to define a thing you must know 
what it is and what it is good for.

Hans Freudenthal, Developments in Mathematical Education

Give me a fruitful error anytime, full of seeds, bursting with its own 
corrections. You can keep your sterile truth for yourself.

Vilfredo Pareto

Irreducibles, Primes
In the preceding two chapters, we focused on factoring polynomials 
over the integers or a field. Several of those results—unique factoriza
tion in Z[x] and the division algorithm for F[x], for instance—are natu
ral counterparts to theorems about the integers. In this chapter and the 
next, we examine factoring in a more abstract setting.

Definition Associates, Irreducibles, Primes
Elements a and b of an integral domain D are called associates if a 5 ub, 
where u is a unit of D. A nonzero element a of an integral  domain D is 
called an irreducible if a is not a unit and, whenever b, c [ D with a 5 
bc, then b or c is a unit. A nonzero element a of an  integral domain D is 
called a prime if a is not a unit and a | bc implies a | b or a | c.

Roughly speaking, an irreducible is an element that can be factored 
only in a trivial way. Notice that an element a is a prime if and only if 
kal is a prime ideal.

Relating the definitions above to the integers may seem a bit confus
ing, since in Chapter 0 we defined a positive integer to be a prime if it 
satisfies our definition of an irreducible, and we proved that a prime inte
ger satisfies the definition of a prime in an integral domain (Euclid’s 
Lemma). The source of the confusion is that in the case of the integers, 
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the concepts of irreducibles and primes are equivalent, but in general, as 
we will soon see, they are not.

The distinction between primes and irreducibles is best illustrated by 
integral domains of the form Z[2d] 5 {a 1 b2d | a, b [ Z}, where d is 
not 1 and is not divisible by the square of a prime. (These rings are of 
fundamental importance in number theory.) To analyze these rings, we 
need a convenient method of determining their units, irreducibles, and 
primes. To do this, we define a function N, called the norm, from Z[2d] 
into the nonnegative integers by N(a 1 b2d) 5 |a2 2 db2|. We leave it to 
the reader (Exercise 1) to verify the following four properties: N(x) 5 0 if 
and only if x 5 0; N(xy) 5 N(x)N(y) for all x and y; x is a unit if and only if 
N(x) 5 1; and, if N(x) is prime, then x is irreducible in Z[2d].

 EXAMPLE 1 We exhibit an irreducible in Z[2�3] that is not prime. 
Here, N(a 1 b2�3) 5 a2 1 3b2. Consider 1 1 2�3. Suppose that we 
can factor this as xy, where neither x nor y is a unit. Then N(xy) 5  
N(x)N(y) 5 N(1 1 2�3) 5 4, and it follows that N(x) 5 2. But there are 
no integers a and b that satisfy a2 1 3b2 5 2. Thus, x or y is a unit and  
1 1 2�3 is an irreducible. To verify that it is not prime, we observe that 
(1 1 2�3)(1 2 2�3) 5 4 5 2 ? 2, so that 1 1 2�3 divides 2 ? 2. On the 
other hand, for integers a and b to exist so that 2 5 (1 1 2�3)(a 1 
b2�3) 5 (a 2 3b) 1 (a 1 b)2�3, we must have a 2 3b 5 2 and a 1 
b 5 0, which is impossible. 

Showing that an element of a ring of the form Z[2d] is irreducible is 
more difficult when d . 1. The next example illustrates one method of 
doing this. The example also shows that the converse of the fourth prop
erty above for the norm is not true. That is, it shows that x may be irre
ducible even if N(x) is not prime.

 EXAMPLE 2 The element 7 is irreducible in the ring Z[25]. To verify this 
assertion, suppose that 7 5 xy, where neither x nor y is a unit. Then  
49 5 N(7) 5 N(x)N(y), and since x is not a unit, we cannot have N(x) 5 1. 
This leaves only the case N(x) 5 7. Let x 5 a 1 b25. Then there are in
tegers a and b satisfying |a2 2 5b2| 5 7. This means that a2 2 5b2 5 67. 
Viewing this equation modulo 5 and trying all possible cases for a reveals 
that there are no solutions. 

Example 1 raises the question of whether or not there is an integral 
domain containing a prime that is not an irreducible. The answer: no.

 Theorem 18.1 Prime Implies Irreducible

In an integral domain, every prime is an irreducible.
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PROOF Suppose that a is a prime in an integral domain and a 5 bc. We 
must show that b or c is a unit. By the definition of prime, we know that  
a | b or a | c. Say at 5 b. Then 1b 5 b 5 at 5 (bc)t 5 b(ct) and,  
by cancellation, 1 5 ct. Thus, c is a unit. 

Recall that a principal ideal domain is an integral domain in which 
every ideal has the form kal. The next theorem reveals a circumstance in 
which primes and irreducibles are equivalent.

 Theorem 18.2 PID Implies Irreducible Equals Prime

In a principal ideal domain, an element is an irreducible if and only  
if it is a prime.

PROOF Theorem 18.1 shows that primes are irreducibles. To prove the 
converse, let a be an irreducible element of a principal ideal domain D 
and suppose that a | bc. We must show that a | b or a | c. Consider the 
ideal I 5 {ax 1 by | x, y [ D} and let kdl 5 I. Since a [ I, we can write 
a 5 dr, and because a is irreducible, d is a unit or r is a unit. If d is a unit, 
then I 5 D and we may write 1 5 ax 1 by. Then c 5 acx 1 bcy, and 
since a divides both terms on the right, a also divides c.

On the other hand, if r is a unit, then kal 5 kdl 5 I, and, because b [ I, 
there is an element t in D such that at 5 b. Thus, a divides b. 

It is an easy consequence of the respective division algorithms for Z 
and F[x], where F is a field, that Z and F[x] are principal ideal domains 
(see Exercise 43 in Chapter 14 and Theorem 16.3). Our next example 
shows, however, that one of the most familiar rings is not a principal 
ideal domain.

 EXAMPLE 3 We show that Z[x] is not a principal ideal domain. Consider 
the ideal I 5 k2, xl. We claim that I is not of the form kh(x)l. If this were 
so, there would be f(x) and g(x) in Z[x] such that 2 5 h(x)f(x) and x 5 h(x)
g(x), since both 2 and x belong to I. By the degree rule (Exercise 19 in 
Chapter 16), 0 5 deg 2 5 deg h(x) 1 deg f(x), so that h(x) is a constant 
polynomial. To determine which  constant, we observe that 2 5 h(1)f(1). 
Thus, h(1) 5 61 or 62. Since 1 is not in I, we must have h(x) 5 62. But 
then x 5 62g(x), which is nonsense. 

We have previously proved that the integral domains Z and Z[x] have 
important factorization properties: Every integer greater than 1 can be 
uniquely factored as a product of irreducibles (that is, primes), and every 
nonzero, nonunit polynomial can be uniquely factored as a product of 
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irreducible polynomials. It is natural to ask whether all integral domains 
have this property. The question of unique factorization in integral do
mains first arose with the efforts to solve a famous problem in number 
theory that goes by the name Fermat’s Last Theorem.

Historical Discussion 
of Fermat’s Last Theorem

There are infinitely many nonzero integers x, y, z that satisfy the equa
tion x2 1 y2 5 z2. But what about the equation x3 1 y3 5 z3 or, more 
generally, xn 1 yn 5 zn, where n is an integer greater than 2 and x, y, z 
are nonzero integers? Well, no one has ever found a single solution of 
this equation, and for more than three centuries many have tried to 
prove that there is none. The tremendous effort put forth by the likes of 
Euler, Legendre, Abel, Gauss, Dirichlet, Cauchy, Kummer, Kronecker, 
and Hilbert to prove that there are no solutions to this equation has 
greatly influenced the development of ring theory.

About a thousand years ago, Arab mathematicians gave an incorrect 
proof that there were no solutions when n 5 3. The problem lay dor
mant until 1637, when the French mathematician Pierre de Fermat 
(1601–1665) wrote in the margin of a book, “. . . it is impossible to sep
arate a cube into two cubes, a fourth power into two fourth powers, or, 
generally, any power above the second into two powers of the same de
gree: I have discovered a truly marvelous demonstration [of this general 
theorem] which this margin is too narrow to contain.”

Because Fermat gave no proof, many mathematicians tried to prove 
the result. The case where n 5 3 was done by Euler in 1770, although 
his proof was incomplete. The case where n 5 4 is elementary and was 
done by Fermat himself. The case where n 5 5 was done in 1825 by 
Dirichlet, who had just turned 20, and by Legendre, who was past 70. 
Since the validity of the case for a particular integer implies the valid
ity for all multiples of that integer, the next case of interest was n 5 7. 
This case resisted the efforts of the best mathematicians until it was 
done by Gabriel Lamé in 1839. In 1847, Lamé stirred excitement by an
nouncing that he had completely solved the problem. His approach was 
to factor the expression xp 1 yp, where p is an odd prime, into

(x 1 y)(x 1 ay) ? ? ? (x 1 a p21y),

where a is the complex number cos(2p/p) 1 i sin(2p/p). Thus, his fac
torization took place in the ring Z[a] 5 {a0 1 a1a 1 ? ? ? 1 ap21a

p21 | 
ai [ Z}. But Lamé made the mistake of assuming that, in such a ring, 
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factorization into the product of irreducibles is unique. In fact, three 
years earlier, Ernst Eduard Kummer had proved that this is not always 
the case. Undaunted by the failure of unique factorization, Kummer 
began developing a theory to “save” factorization by creating a new 
type of number. Within a few weeks of Lamé’s announcement, Kummer 
had shown that Fermat’s Last Theorem is true for all primes of a special 
type. This proved that the theorem was true for all  exponents less than 
100, prime or not, except for 37, 59, 67, and 74. Kummer’s work has 
led to the theory of ideals as we know it today.

Over the centuries, many proposed proofs have not held up under scru
tiny. The famous number theorist Edmund Landau received so many of 
these that he had a form printed with “On page ____, lines ____ to ____, 
you will find there is a mistake.” Martin Gardner, “Mathematical Games” 
columnist of Scientific American, had postcards printed to decline  requests 
from readers asking him to examine their proofs.

Recent discoveries tying Fermat’s Last Theorem closely to modern 
mathematical theories gave hope that these theories might eventu ally 
lead to a proof. In March 1988, newspapers and scientific publi cations 
worldwide carried news of a proof by Yoichi Miyaoka (see Figure 18.1). 
Within weeks, however, Miyaoka’s proof was shown to be invalid. In 
June 1993, excitement spread through the mathematics community with 
the announcement that Andrew Wiles of Princeton University had 
proved Fermat’s Last Theorem (see Figure 18.2). The Princeton mathe
matics department chairperson was quoted as saying, “When we heard 
it, people starting walking on air.” But guess what. Yes, you guessed it. 
Once again a proof did not hold up under scrutiny. This story does have 
a happy ending. The mathematical community has agreed on the valid
ity of the  revised proof given by Wiles and Richard Taylor in September 
of 1994.

In view of the fact that so many eminent mathematicians were unable 
to prove Fermat’s Last Theorem, despite the availability of the vastly 
powerful theories, it seems highly improbable that Fermat had a correct 
proof. Most likely, he made the error that his successors made of assum
ing that the properties of integers, such as unique factorization, carry 
over to integral domains in general.
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Careful scrutiny of a recently 
proposed proof of Fermat's 

last theorem (SN: 3/19/88, 
p.180) has turned up several 

�aws that cast doubt on the 
proof's validity. Japanese 

mathematician Yoichi 
Miyaoka, who is presently 

working at the Max Planck 
Institute for Mathematics in 

Bonn, West Germany, last 
week admitted that his proof 

has a serious problem. He is 
now studying how to revise 

his proof. 

"That doesn't mean it's 
irreparable," says Barry 

Mazur of the

 

Institut des
Hautes Etudes Scienti�ques 

near Paris, who has been 
discussing the proof with 

Miyaoka. "But it certainly 
means there's more work to 

do. It's a rather complex 
proof. If you change some 

things in one part of the 
proof, then all the other parts 

may be subject to change." 
Fermat's last theorem 

concerns equations of the 
form xn + yn = zn. More 

than 300 years ago, amateur 
mathematician Pierre de 

Fermat stated that such 
equations have no 

positive-integer solutions 
when n is greater than 2, but 

he left no proof of his 
theorem. Ever 

Doubts about Fermat solution.

A curvy path leads to Fermat's 
last theorem. 
After more than 300 years, Fermat's last theorem 

may �nally live up to its common designation as 

a theorem. In a dramatic announcement that 

caught the mathematical community completely 

by surprise, Andrew Wiles of Princeton 

University revealed last week that he had proved 

major parts of a signi�cant conjecture in number 

theory, These results, in turn, establish the truth 

of Fermat's famous, devilishly simple 

conjecture. 

"It's an amazing piece of work," says Peter C. 

Sarnak, one of Wiles' Princeton colleagues. "The 

proof hasn't been totally checked, but it's very 

convincing?" 

Pierre de Fermat's last theorem goes back to the 

17th century, when the French jurist and 

mathematician asserted that for any whole 

number n greater than 2, the equation 

[x.sup.n]+[y.sup.n] = [z.sup.n] has no solution 

for which x, y, and z are all whole numbers 

greater than zero. 

Fermat scribbled his conjecture in the margin of 

a page in a mathematics book he was reading. 

Then, in a tantalizing sentence that was to haunt 

mathematicians for centuries to come, he added 

that although he had a wonderful proof of the 

theorem, he didn't have room to write it. 

After Fermat died, scholars could �nd no trace 

of the proof in any of his papers. Later, 

mathematicians proved the conjecture for the 

exponent n = 3 and solved several other special 

cases. Last year, a massive computer-aided 

effort by J.P. Buhler of Reed College in 

Portland, Ore., and Richard E. Crandall of NeXT 

Computer Inc., in Redwood City, Calif., veri�ed 

Fermat's last theorem for exponents up to 4 

million. 

Meanwhile, mathematicians had picked up some 

valuable hints of a potential avenue to a general 

proof that the conjecture is true. In the 

mid-1980s, Gerhard Frey of the University of 

the Saarlands in Saarbrucken, Germany, 

unexpectedly uncovered an intriguing link 

between Fermat% conjecture and a seemingly 

unrelated branch of mathematics. He found a 

way to express Fermat's last theorem as a 

conjecture about elliptic curves - equations 

generally written in the form [y.sup.2] = 

[X.sup.3] + [ax.sup.2] + bx + c, where a, b, and 

c are constants. 

This brought Fermat's problem into an area of 

mathematics for which mathematicians had 

already developed a wide range of techniques 

for solving problems. A number of 

mathematicians, including Barry Mazur of 

Harvard University and Kenneth A. Ribet of the 

University of California, Berkeley, followed up 

Frey's surprising insight with additional results 

that ultimately tied Fermat's last theorem to a 

central conjecture in number theory (SN: 

6/20/87, p.397). 

Named for Japanese mathematician Yutaka 

Taniyama, this conjecture concerns certain 

characteristics of elliptic curves. A proof of this 

conjecture would automatically imply that 

Fermat's last theorem must be true. 

s Scienti�ques ho has been 
proof with 
t certainly 

work to 
complex 
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n.

is conjecture in the margin of 

matics book he was reading. 

g sentence that was to haunt 

enturies to come, he added 

a wonderful proof of the 

room to write it. 

lars could �nd no trace 

of his papers. Later, 

he conjecture for the 

several other special 

unrelated branch of mathematics. He found a 

way to express Fermat's last theorem as a 

conjecture about elliptic curves - equations 

generally written in the form [y.sup.2] = 

[X.sup.3] + [ax.sup.2] + bx + c, where a, b, and 

c are constants. 

This brought Fermat's problem into an area of 

mathematics for which mathematicians had 

already developed a wide range of techniques 

for solving problems. 

Fermat's last theorem: a promising approach.

The end of a centuries-long search for a proof of Fermat's 

last theorem, one of the most famous unsolved problems 

in mathematics, may at last be in sight. A Japanese 

mathematician, Yoichi Miyaoka of the Tokyo 

Metropolitan University, has proposed a proof for a key 

link in a chain of reasoning that establishes the theorem's 

truth. If Miyaoka's proof survives the mathematical 

community's intense scrutiny, then fermat's conjecture (as 

it ought to be called until a proof is �rmly established) can 

truly be called a theorem. 

Miyaoka's method builds on work done by several 

Russian mathematicians and links important ideas in three 

mathematical �elds: number theory, algebra and 

geometry. Though highly technical, his argument �lls 

fewer than a dozen manuscript pages -- short for such a 

signi�cant mathematical proof. Miyaoka recently 

presented a sketch of his ideas at a seminar at the Max 

Planck Institute for Mathematics in Bonn, 

West Germany. 

"It looks very nice," mathematician Don B. Zagier of the 

Max Planck Institute told Science 
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Figure 18.2 Andrew Wiles

Unique Factorization Domains
We now have the necessary terminology to formalize the idea of  
unique factorization.

Definition Unique Factorization Domain (UFD)
An integral domain D is a unique factorization domain if

 1. every nonzero element of D that is not a unit can be written as a 
product of irreducibles of D; and

 2. the factorization into irreducibles is unique up to associates and the 
order in which the factors appear.

Another way to formulate part 2 of this definition is the following:  
If p1

n1p2
n2 ? ? ? pr

nr and q1
m1q2

m2 ? ? ? qs
ms are two factorizations of some 

ele ment as a product of irreducibles, where no two of the pi’s are associ
ates and no two of the qj’s are associates, then r 5 s, each p i  is an  
associate of one and only one qj, and ni = mj .

Of course, the Fundamental Theorem of Arithmetic tells us that the 
ring of integers is a unique factorization domain, and Theorem 17.6 
says that Z[x] is a unique factorization domain. In fact, as we shall soon 
see, most of the integral domains we have encountered are unique fac
torization domains.

Before proving our next theorem, we need the ascending chain con
dition for ideals.
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 Lemma Ascending Chain Condition for a PID

In a principal ideal domain, any strictly increasing chain of ideals  
I1  ,  I2 , ? ? ? must be finite in length.

PROOF Let I1 , I2 , ? ? ? be a chain of strictly increasing ideals in  
an integral domain D, and let I be the union of all the ideals in this chain. 
We leave it as an exercise (Exercise 3) to verify that I is an ideal of D.

Then, since D is a principal ideal domain, there is an element a in D 
such that I 5 kal. Because a [ I and I 5 <Ik, a belongs to some mem
ber of the chain, say a [ In. Clearly, then, for any member Ii of the 
chain, we have Ii # I 5 kal # In, so that In must be the last member of 
the chain. 

 Theorem 18.3 PID Implies UFD

Every principal ideal domain is a unique factorization domain.
 

PROOF Let D be a principal ideal domain and let a0 be any nonzero non
unit in D. We will show that a0 is a product of irreducibles (the product 
might consist of only one factor). We begin by showing that a0 has at 
least one irreducible factor. If a0 is irreducible, we are done. Thus, we 
may assume that a0 5 b1a1, where neither b1 nor a1 is a unit and a1 is 
nonzero. If a1 is not irreducible, then we can write a1 5 b2a2, where 
neither b2 nor a2 is a unit and a2 is nonzero. Continuing in this fashion, 
we obtain a sequence b1, b2, . . . of elements that are not units in D and 
a sequence a0, a1, a2, . . . of nonzero elements of D with an 5 bn11 an11 
for each n. Hence, ka0l , ka1l , ? ? ? is a strictly increasing chain of 
ideals (see Exercise 5), which, by the preceding lemma, must be finite, 
say, ka0l , ka1l , ? ? ? , karl. In particular, ar is an irre ducible factor of 
a0. This argument shows that every nonzero nonunit in D has at least 
one irreducible factor.

Now write a0 5 p1c1, where p1 is irreducible and c1 is not a unit. If c1 
is not irreducible, then we can write c1 5 p2c2, where p2 is irreducible 
and c2 is not a unit. Continuing in this fashion, we obtain, as before, a 
strictly increasing sequence ka0l , kc1l , kc2l , ? ? ? , which must end 
in a finite number of steps. Let us say that the sequence ends with kcsl. 
Then cs is irreducible and a0 5 p1p2 ? ? ? pscs, where each pi is also irre
ducible. This completes the proof that every nonzero nonunit of a prin
cipal ideal domain is a product of irreducibles.
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It remains to be shown that the factorization is unique up to associ
ates and the order in which the factors appear. To do this, suppose that 
some element a of D can be written

a 5 p1p2 ? ? ? pr 5 q1q2 ? ? ? qs,

where the p’s and q’s are irreducible and repetition is permitted. We use 
induction on r. If r 5 1, then a is irreducible and, clearly, s 5 1 and  
p1 5 q1. So we may assume that any element that can be expressed as a 
product of fewer than r irreducible factors can be so expressed in only 
one way (up to order and associates). Since D is a principal ideal  domain, 
by Theorem 18.2, each irreducible pi in the product p1p2 ? ? ? pr is prime. 
Then because p1 divides q1q2 ? ? ? qs, p1 must divide some qi (see 
 Exercise 33), say p1 | q1. Then, q1 5 up1, where u is a unit of D. Since

up1p2 ? ? ? pr 5 uq1q2 ? ? ? qs 5 q1(uq2) ? ? ? qs

and

up1 5 q1,

we have, by cancellation,

p2 ? ? ? pr 5 (uq2) ? ? ? qs.

The induction hypothesis now tells us that these two factorizations are 
identical up to associates and the order in which the factors appear. Hence, 
the same is true about the two factorizations of a. 

In the existence portion of the proof of Theorem 18.3, the only way 
we used the fact that the integral domain D is a principal ideal domain 
was to say that D has the property that there is no infinite, strictly in
creasing chain of ideals in D. An integral domain with this property is 
called a Noetherian domain, in honor of Emmy Noether, who inaugu
rated the use of chain conditions in algebra. Noetherian domains are 
of the utmost importance in algebraic geometry. One reason for this is 
that, for many important rings R, the polynomial ring R[x] is a  
Noetherian domain but not a principal ideal domain. One such exam
ple is Z[x]. In particular, Z[x] shows that a UFD need not be a PID (see 
Example 3).

As an immediate corollary of Theorem 18.3, we have the follow
ing fact.

Corollary F  [x] Is a UFD

Let F be a field. Then F[x] is a unique factorization domain.
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PROOF By Theorem 16.3, F[x] is a principal ideal domain. So, F[x] is a 
unique factorization domain, as well. 

As an application of the preceding corollary, we give an elegant 
proof, due to Richard Singer, of Eisenstein’s Criterion (Theorem 17.4).

 EXAMPLE 4 Let

f (x) 5 anx
n 1 an21x

n21 1 ? ? ? 1 a0 [ Z[x],

and suppose that p is prime such that

p B an, p | an21, . . . , p | a0    and    p2 B a0.

We will prove that f (x) is irreducible over Q. If f (x) is reducible over Q, 
we know by Theorem 17.2 that there exist elements g(x) and h(x) in Z[x] 
such that f (x) 5 g(x)h(x), 1 # deg g(x) , n, and 1 # deg h(x) , n. Let 
f 1x2, g1x2, and h1x2 be the polynomials in Zp[x] obtained from f(x), g(x), 
and h(x) by reducing all coefficients modulo p. Then, since p divides all 
the coefficients of f (x) except an, we have anx

n 5 f 1x2 5 g1x2 ? h1x2. 
Since Zp is a field, Zp[x] is a unique factorization domain. Thus,  
x | g1x2 and x | h1x2. So, g(0) 5 h(0) 5 0 and, therefore, p | g(0) and p | h(0). 
But then p2 | g(0)h(0) 5 f(0) 5 a0, which is a contradiction. 

Euclidean Domains
Another important kind of integral domain is a Euclidean domain.

Definition Euclidean Domain (ED)
An integral domain D is called a Euclidean domain if there is a  function 
d (called the measure) from the nonzero elements of D to the nonnega-
tive integers such that

 1. d(a) # d(ab) for all nonzero a, b in D; and
 2. if a, b [ D, b 2 0, then there exist elements q and r in D such that  

a 5 bq 1 r, where r 5 0 or d(r) , d(b).

 EXAMPLE 5 The ring Z is a Euclidean domain with d(a) 5 |a| (the  
absolute value of a). 

 EXAMPLE 6 Let F be a field. Then F[x] is a Euclidean domain with  
d(  f (x)) 5 deg f (x) (see Theorem 16.2). 

Examples 5 and 6 illustrate just one of many similarities between the 
rings Z and F[x]. Additional similarities are summarized in Table 18.1.
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Table 18.1 Similarities Between Z and F [x]

 Z F[x]

Euclidean domain: ↔ Euclidean domain:
d(a) 5 |a|  d( f(x)) 5 deg f(x)
Units:  Units:
a is a unit if and only if |a| 5 1  f(x) is a unit if and only if deg f(x) 5 0
Division algorithm: ↔ Division algorithm:
For a, b [ Z, b 2 0, there exist q, r [ Z   For f(x), g(x) [ F[x], g(x) 2 0, there 
  such that a 5 bq 1 r, 0 # r , |b|    exist q(x), r(x) [ F[x] such that 
    f(x) 5 g(x)q(x) 1 r(x), 0 # deg r(x) , 
    deg g(x) or r(x) 5 0
PID: ↔ PID:
Every nonzero ideal I 5 kal, where   Every nonzero ideal I 5 kf(x)l, where 
  a 2 0 and |a| is minimum    deg f(x) is minimum
Prime: ↔ Irreducible:
No nontrivial factors  No nontrivial factors
UFD: ↔ UFD:
Every element is a “unique” product of   Every element is a “unique” product of
  primes    irreducibles

 EXAMPLE 7 The ring of Gaussian integers

Z[i] 5 {a 1 bi | a, b [ Z}

is a Euclidean domain with d(a 1 bi) 5 a2 1 b2. Unlike the previous 
two examples, in this example the function d does not obviously sat isfy 
the necessary conditions. That d(x) # d(xy) for x, y [ Z[i] follows di
rectly from the fact that d(xy) 5 d(x)d(y) (Exercise 7). To verify that 
condition 2 holds, observe that if x, y [ Z[i] and y 2 0, then xy21 [ 
Q[i], the field of quotients of Z[i] (Exercise 57 in Chapter 15). Say 
xy21 5 s 1 ti, where s, t [ Q. Now let m be the integer nearest s, and let 
n be the integer nearest t. (These integers may not be uniquely 
 determined, but that does not matter.) Thus, |m 2 s| # 1/2 and |n 2 t| # 
1/2. Then

xy21 5 s 1 ti 5 (m 2 m 1 s) 1 (n 2 n 1 t)i
5 (m 1 ni) 1 [(s 2 m) 1 (t 2 n)i].

So,

x 5 (m 1 ni)y 1 [(s 2 m) 1 (t 2 n)i]y.

We claim that the division condition of the definition of a Euclidean 
domain is satisfied with q 5 m 1 ni and

r 5 [(s 2 m) 1 (t 2 n)i]y.
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Clearly, q belongs to Z[i], and since r 5 x 2 qy, so does r. Finally,

 d(r) 5 d([(s 2 m) 1 (t 2 n)i])d(y)
 5 [(s 2 m)2 1 (t 2 n)2]d(y)

# a1

4
�

1

4
b d(y) , d(y). 

 Theorem 18.4 ED Implies PID

Every Euclidean domain is a principal ideal domain.
 

PROOF Let D be a Euclidean domain and I a nonzero ideal of D. Among 
all the nonzero elements of I, let a be such that d(a) is a minimum. Then 
I 5 kal. For, if b [ I, there are elements q and r such that b 5 aq 1 r, 
where r 5 0 or d(r) , d(a). But r 5 b 2 aq [ I, so d(r) cannot be less 
than d(a). Thus, r 5 0 and b [ kal. Finally, the zero ideal is k0l. 

Although it is not easy to verify, we remark that there are principal 
ideal domains that are not Euclidean domains. The first such example 
was given by T. Motzkin in 1949. A more accessible account of  
Motzkin’s result can be found in [2].

As an immediate consequence of Theorems 18.3 and 18.4, we have 
the following important result.

 Corollary ED Implies UFD

Every Euclidean domain is a unique factorization domain.
 

We may summarize our theorems and remarks as follows:

    ED ⇒ PID ⇒ UFD;
UFD  /⇒ PID  /⇒ ED.

(You can remember these implications by listing the types alphabetically.)
In Chapter 17, we proved that Z[x] is a unique factorization domain. 

Since Z is a unique factorization domain, the next theorem is a broad 
generalization of this fact. The proof is similar to that of the special 
case, and we therefore omit it.

 Theorem 18.5 D a UFD Implies D [x] a UFD

If D is a unique factorization domain, then D[x] is a unique 
factorization domain.
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We conclude this chapter with an example of an integral domain that 
is not a unique factorization domain.

 EXAMPLE 8 The ring Z[2� 5] 5 {a 1 b2� 5 | a, b [ Z} is an integral 
domain but not a unique factorization domain. It is straightforward that 
Z[2� 5] is an integral domain (see Exercise 11 in Chapter 13). To verify 
that unique factorization does not hold, we mimic the method used in 
Example 1 with N(a 1 b2� 5) 5 a2 1 5b2. Since N(xy) 5 N(x)N(y) and 
N(x) 5 1 if and only if x is a unit (see Exercise 1), it follows that the only 
units of Z[2� 5] are 61.

Now consider the following factorizations:

 46 5 2 ? 23,

46 5 (1 1 32� 5)(1 2 32� 5).

We claim that each of these four factors is irreducible over Z[2� 5]. 
Suppose that, say, 2 5 xy, where x, y [ Z[2� 5] and neither is a unit. 
Then 4 5 N(2) 5 N(x)N(y) and, therefore, N(x) 5 N(y) 5 2, which is 
impossible. Likewise, if 23 5 xy were a nontrivial factorization, then 
N(x) 5 23. Thus, there would be integers a and b such that a2 1 5b2 5 
23. Clearly, no such integers exist. The same argument applies to 1 6  
32� 5. 

In light of Examples 7 and 8, one can’t help but wonder for which d , 0 
is Z[2d] a unique factorization domain. The answer is only when d 5 21 
or 22 (see [1], p. 297). The case where d 5 21 was first proved, naturally 
enough, by Gauss.

Exercises

I tell them that if they will occupy themselves with the study of mathematics 
they will find in it the best remedy against lust of the flesh.

Thomas Mann, The Magic Mountain

  1. For the ring Z[2d] 5 {a 1 b2d | a, b [ Z}, where d 2 1 and d is 
not divisible by the square of a prime, prove that the norm N(a 1  
b2d) 5 |a2 2 db2| satisfies the four assertions made preceding 
Example 1. (This exercise is referred to in this chapter.)

  2. In an integral domain, show that a and b are associates if and only if 
kal 5 kbl.

  3. Show that the union of a chain I1 , I2 , ? ? ? of ideals of a ring R is 
an ideal of R. (This exercise is referred to in this chapter.)
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  4. In an integral domain, show that the product of an irreducible and a 
unit is an irreducible.

  5. Suppose that a and b belong to an integral domain and b 2 0. Show 
that kabl is a proper subset of kbl if and only if a is not a unit. This 
exercise is referred to in this chapter.

  6. Let D be an integral domain. Define a , b if a and b are associates. 
Show that this defines an equivalence relation on D.

  7. In the notation of Example 7, show that d(xy) 5 d(x)d(y).

  8. Let D be a Euclidean domain with measure d. Prove that u is a unit 
in D if and only if d(u) 5 d(1).

  9. Let D be a Euclidean domain with measure d. Show that if a and b 
are associates in D, then d(a) 5 d(b).

 10. Let D be a principal ideal domain and let p [ D. Prove that kpl is a 
max imal ideal in D if and only if p is irreducible.

 11. Trace through the argument given in Example 7 to find q and r in 
Z[i] such that 3 2 4i 5 (2 1 5i)q 1 r and d(r) , d(2 1 5i).

 12. Let D be a principal ideal domain. Show that every proper ideal of 
D is contained in a maximal ideal of D.

 13. In Z[2� 5], show that 21 does not factor uniquely as a product of 
irreducibles.

 14. Show that 1 2 i is an irreducible in Z[i].
 15. Show that Z[2�6] is not a unique factorization domain. (Hint: 

Factor 10 in two ways.) Why does this show that Z[2�6] is not a 
principal ideal domain?

 16. Give an example of a unique factorization domain with a subdo
main that does not have a unique factorization.

 17. In Z[i], show that 3 is irreducible but 2 and 5 are not.
 18. Prove that 7 is irreducible in Z[26], even though N(7) is not prime. 
 19. Prove that if p is a prime in Z that can be written in the form a2 1 b2, 

then a 1 bi is irreducible in Z[i]. Find three primes that have this 
property and the corresponding irreducibles.

 20. Prove that Z[2�3] is not a principal ideal domain.
 21. In Z[2�5], prove that 1 1 32�5 is irreducible but not prime.
 22. In Z[25], prove that both 2 and 1 1 25 are irreducible but not 

prime.
 23. Prove that Z[25] is not a unique factorization domain.
 24. Let F be a field. Show that in F[x] a prime ideal is a maximal ideal.
 25. Let d be an integer less than 21 that is not divisible by the square of 

a prime. Prove that the only units of Z[2d] are 11 and 21.
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 26. In Z[22] 5 {a 1 b22 | a, b [ Z}, show that every element of the 
form (3 1 222)n is a unit, where n is a positive integer.

 27. If a and b belong to Z[2d], where d is not divisible by the square of 
a prime and ab is a unit, prove that a and b are units.

 28. For a commutative ring with unity we may define associates, irre
ducibles, and primes exactly as we did for integral domains. With 
these definitions, show that both 2 and 3 are prime in Z12 but 2 is 
irreducible and 3 is not.

 29. Let n be a positive integer and p a prime that divides n. Prove that p 
is prime in Zn. (See Exercise 28).

 30. Let p be a prime divisor of a positive integer n. Prove that p is irre
ducible in Zn if and only if p2 divides n. (See Exercise 28).

 31. Prove or disprove that if D is a principal ideal domain, then D[x] is 
a principal ideal domain.

 32. Determine the units in Z[i].
 33. Let p be a prime in an integral domain. If p | a1a2 ? ? ? an, prove that 

p divides some ai. (This exercise is referred to in this chapter.)
 34. Show that 3x2 1 4x 1 3 [ Z5[x] factors as (3x 1 2)(x 1 4) and  

(4x 1 1)(2x 1 3). Explain why this does not contradict the corollary 
of Theorem 18.3.

 35. Let D be a principal ideal domain and p an irreducible element of D. 
Prove that D/kpl is a field.

 36. Show that an integral domain with the property that every strictly  
decreasing chain of ideals I1 . I2 . ? ? ? must be finite in length is a 
field.

 37. An ideal A of a commutative ring R with unity is said to be finitely 
generated if there exist elements a1, a2, . . . , an of A such that  
A 5 ka1, a2, . . . , anl. An integral domain R is said to satisfy the as-
cending chain condition if every strictly increasing chain of ideals 
I1 , I2 , ? ? ? must be finite in length. Show that an integral domain 
R satisfies the ascending chain condition if and only if every ideal 
of R is finitely generated.

 38. Prove or disprove that a subdomain of a Euclidean domain is a 
Euclidean domain.

 39. Show that for any nontrivial ideal I of Z[i], Z[i]/I is finite.
 40. Find the inverse of 1 1 22 in Z[22]. What is the multiplicative 

order of 1 1 22?
 41. In Z[2�7], show that N(6 1 22�7) 5 N(1 1 32�7) but 6 1  

22�7 and 1 1 32�7 are not associates.
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 42. Let R 5 Z % Z % ? ? ? (the collection of all sequences of integers 
under componentwise addition and multiplication). Show that R 
has ideals I1, I2, I3, . . . with the property that I1 , I2 , I3 , ? ? ?. 
(Thus R does not have the ascending chain condition.)

 43. Prove that in a unique factorization domain, an element is irreduc
ible if and only if it is prime.

 44. Let F be a field and let R be the integral domain in F 3x4  generated by 
x2 and x3. (That is, R is contained in every integral domain in F 3x4  that 
contains x

2 and x3.) Show that R is not a unique factorization domain.
 45. Prove that for every field F, there are infinitely many irreducible  

elements in F 3x4 .
 46. Prove that Z[2�2] and Z[22] are unique factorization domains. 

(Hint: Mimic Example 7 in Chapter 18.)
 47. Express both 13 and 5 1 i as products of irreducibles from Z[i].
 48. Find a mistake in the statement shown in Figure 18.2.

Computer Exercise

Software for a computer exercise is available at the website:

http://www.d.umn.edu/~jgallian
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One of the very few women to overcome the 
prejudice and discrimination that tended to 
exclude women from the pursuit  
of higher mathematics in her time was 
Sophie Germain.

Sophie Germain was born in Paris on April 1, 
1776. She educated herself by reading the 
works of Newton and Euler in Latin and the 
lecture notes of Lagrange. In 1804, Germain 
wrote to Gauss about her work in number 
 theory but used the pseudonym Monsieur 
LeBlanc because she feared that Gauss would 
not take seriously the efforts of a woman. 
Gauss gave Germain’s results high praise and 
a few years later, upon learning her true iden
tity, wrote to her:

But how to describe to you my admiration 
and astonishment at seeing my esteemed cor
respondent Mr. LeBlanc metamorphose him
self into this illustrious personage who gives 
such a brilliant example of what I would find 
it difficult to believe. A taste for the abstract 
sciences in general and above all the myster
ies of numbers is excessively rare: it is not a 
subject which strikes everyone; the enchant
ing charms of this sublime science reveal 

themselves only to those who have the  
courage to go deeply into it. But when a 
 person of the sex which, according to our cus
toms and prejudices, must encounter  infinitely 
more difficulties than men to  familiarize her
self with these thorny researches, succeeds 
nevertheless in surmounting these obstacles 
and penetrating the most obscure parts of 
them, then without doubt she must have the 
noblest courage, quite extraordinary talents, 
and a superior genius.*

Germain is best known for her work on 
Fermat’s Last Theorem. She died on June 
27, 1831, in Paris.

For more information about Germain, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history
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*Quote from Math’s Hidden Woman, Nova Online, http://www.pbs.org/wgbh/nova/proof/germain.html 
(accessed Nov 5, 2008).

Sophie Germain
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For spectacular contributions to number 
theory and related fields, for major 
 advances on fundamental conjectures, 
and for settling Fermat’s Last Theorem.

Citation for the Wolf Prize

In 1993, Andrew Wiles of Princeton elec
trified the mathematics community by an
nouncing that he had proved Fermat’s Last 
Theorem after seven years of effort. His 
proof, which ran 200 pages, relied heavily 
on ring theory and group theory. Because of 
Wiles’s solid reputation and because his ap
proach was based on deep results that had 
already shed much light on the problem, 
many experts in the field believed that Wiles 
had succeeded where so many others had 
failed. Wiles’s achievement was reported in 
newspapers and magazines around the 
world. The New York Times ran a frontpage 
story on it, and one TV network announced 
it on the evening news. Wiles even made 
People magazine’s list of the 25 most 
 intriguing people of 1993! In San Francisco 
a group of mathematicians rented a 1200
seat movie theater and sold tickets for $5.00 

each for public lectures on the proof. Scalpers 
received as much as $25.00 a ticket for the 
soldout event.

The bubble soon burst when experts had an 
opportunity to scrutinize Wiles’s manuscript. 
By December, Wiles released a statement say
ing he was working to resolve a gap in the 
proof. In September of 1994, a paper by Wiles 
and Richard Taylor, a former student of his, 
circumvented the gap in the original proof. 
Since then, many experts have checked the 
proof and have found no errors. One mathe
matician was quoted as saying, “The exuber
ance is back.” In 1997, Wiles’s proof was the 
subject of a PBS Nova program.

Wiles was born in 1953 in Cambridge, 
England. He obtained his bachelor’s degree 
at Oxford and his doctoral degree at 
Cambridge University in 1980. He was a 
professor at Oxford, where a building is 
named in his honor. Among his many presti
gious awards is the Fermat prize for his re
search on Fermat’s Last Theorem.

To find more information about Wiles, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

Postage stamp issued by the 
Czech Republic in honor of 
 Fermat’s Last Theorem.
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Pierre de Fermat (pronounced Fairmah) 
was born in BeaumontdeLomagne, 
France in August of 1601 and died in 
1665. Fermat obtained a Bachelor’s de
gree in civil law from the University of 
Orleans in 1631. While earning his living 
practicing law he did mathematics as a 
hobby. Rather than proving and publish
ing theorems he sent the statements of 
his results and questions to leading math
ematicians. One of his important obser
vations is that any prime of the form 
4k 1 1 can be written as the sum of two 
squares in one and only one way, whereas 
a prime of the form 4k 2  1 cannot be 
written as the sum of two squares in any 
manner whatever. Mathematics historian 
William Dunham asserts that Fermat’s 
discovery of this dichotomy among 
primes ranks as one of the landmarks of 
number theory. Addressing Fermat’s 
contributions to number theory André 

This theorem [Fermat’s Little Theorem] is 
one of the great tools of modern number 
theory.

WILLIAM DUNHAM

Pierre de Fermat

Weil wrote that “. . . what we possess of 
his methods for dealing with curves of 
genus 1 is remarkably coherent; it is still 
the foundation for the modern theory of 
such curves.” A Wikipedia article on 
Fermat concluded with the statement 
“Fermat essentially created the modern 
theory of numbers.”

Beyond his contributions to number the
ory, Fermat found a law of optics and is con
sidered as one of the founders of analytic 
geometry and probability theory. In 1989 the 
Institut de Mathétiques de Toulousem in 
France established the Fermat prize for 
 research in fields in which Fermat made ma
jors contributions. Among the recipients are 
Andrew Wiles and Richard Taylor.

To find more information about Fermat, 
visit 

https://en.wikipedia.org/wiki/Pierre_de_
Fermat
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For online student resources, visit this textbook’s website at 
www.CengageBrain.com
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Vector Spaces

Still round the corner there may wait  
A new road or a secret gate.

J. R. R. Tolkien, The Fellowship of the Ring

The art of doing mathematics consists in finding that special case 
which contains all the germs of generality.

David Hilbert (1862–1943)

19

Definition and Examples
Abstract algebra has three basic components: groups, rings, and fields. 
Thus far we have covered groups and rings in some detail, and we have 
touched on the notion of a field. To explore fields more deeply, we need 
some rudiments of vector space theory that are covered in a linear alge-
bra course. In this chapter, we provide a concise review of this material.

Definition Vector Space
A set V is said to be a vector space over a field F if V is an Abelian 
group under addition (denoted by 1) and, if for each a [ F and 
v [ V, there is an element av in V such that the following conditions 
hold for all a, b in F and all u, v in V.

 1. a(v 1 u) 5 av 1 au
 2. (a 1 b)v 5 av 1 bv
 3. a(bv) 5 (ab)v
 4. 1v 5 v

The members of a vector space are called vectors. The members of 
the field are called scalars. The operation that combines a scalar a and 
a vector v to form the vector av is called scalar multiplication. In gen-
eral, we will denote vectors by letters from the end of the alphabet, 
such as u, v, w, and scalars by letters from the beginning of the alpha-
bet, such as a, b, c.
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 EXAMPLE 1 The set Rn 5 {(a1, a2, . . . , an) | ai [ R} is a vector space 
over R. Here the operations are the obvious ones:

(a1, a2, . . . , an) 1 (b1, b2, . . . , bn) 5 (a1 1 b1, a2 1 b2, . . . , an 1 bn)

and

 b(a1, a2, . . . , an) 5 (ba1, ba2, . . . , ban). 

 EXAMPLE 2 The set M2(Q) of 2 3 2 matrices with entries from Q is a 
vector space over Q. The operations are

ca1 a2

a3 a4
d � cb1 b2

b3 b4
d � ca1 � b1 a2 � b2

a3 � b3 a4 � b4
d

and

 
b ca1 a2

a3 a4
d � cba1 ba2

ba3 ba4
d. 

 EXAMPLE 3 The set Zp[x] of polynomials with coefficients from Zp is a 
vector space over Zp, where p is a prime. 

 EXAMPLE 4 The set of complex numbers C 5 {a 1 bi | a, b [ R} is a 
vector space over R. The vector addition and scalar multiplication are 
the usual addition and multiplication of complex numbers. 

The next example is a generalization of Example 4. Although it 
appears rather trivial, it is of the utmost importance in the theory of 
fields.

 EXAMPLE 5 Let E be a field and let F be a subfield of E. Then E is a 
vector space over F. The vector addition and scalar multiplication are the 
operations of E. 

Subspaces
Of course, there is a natural analog of subgroup and subring.

Definition Subspace
Let V be a vector space over a field F and let U be a subset of V. We say 
that U is a subspace of V if U is also a vector space over F under the  
operations of V.

 EXAMPLE 6 The set {a2x
2 1 a1x 1 a0 | a0, a1, a2 [ R} is a subspace of 

the vector space of all polynomials with real coefficients over R. 
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 EXAMPLE 7 Let V be a vector space over F and let v1, v2, . . . , vn be (not 
necessarily distinct) elements of V. Then the subset

kv1, v2, . . . , vnl 5 {a1v1 1 a2v2 1 ? ? ? 1 anvn | a1, a2, . . . , an [ F}

is called the subspace of V spanned by v1, v2, . . . , vn. Any sum of  
the form a1v1 1 a2v2 1 ? ? ? 1 anvn is called a linear combination of 
v1, v2, . . . , vn. If kv1, v2, . . . , vnl 5 V, we say that {v1, v2, . . . , vn} 
spans V. 

Linear Independence
The next definition is the heart of the theory.

Definition Linearly Dependent, Linearly Independent
A set S of vectors is said to be linearly dependent over the field F if 
there are vectors v1, v2, . . . , vn from S and elements a1, a2, . . . , an from 
F, not all zero, such that a1v1 1 a2v2 1 ? ? ? 1 anvn 5 0. A set of vectors 
that is not linearly dependent over F is called linearly independent 
over F.

In other words, a set of vectors is linearly dependent over F if there is 
a nontrivial linear combination of them over F equal to 0.

 EXAMPLE 8 In R3 the vectors (1, 0, 0), (1, 0, 1), and (1, 1, 1) are linearly 
independent over R. To verify this, assume that there are real numbers  
a, b, and c such that a(1, 0, 0) 1 b(1, 0, 1) 1 c(1, 1, 1) 5 (0, 0, 0).  
Then (a 1 b 1 c, c, b 1 c) 5 (0, 0, 0). From this we see that  
a 5 b 5 c 5 0. 

Certain kinds of linearly independent sets play a crucial role in the 
theory of vector spaces.

Definition Basis
Let V be a vector space over F. A subset B of V is called a basis for V  
if B is linearly independent over F and every element of V is a linear 
combination of elements of B.

The motivation for this definition is twofold. First, if B is a basis for 
a vector space V, then every member of V is a unique linear combination 
of the elements of B (see Exercise 19). Second, with every vector space 
spanned by finitely many vectors, we can use the notion of basis to 
 associate a unique integer that tells us much about the vector space. (In 
fact, this integer and the field completely determine the vector space up 
to isomorphism—see Exercise 31.)
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 EXAMPLE 9 The set V 5 e c a a � b

a � b b
d ` a, b [ R f

is a vector space over R (see Exercise 17). We claim that the set

B � e c1 1

1 0
d , c0 1

1 1
d f  is a basis for V over R. To prove that the set

B is linearly independent, suppose that there are real numbers a and b 
such that

a c1 1

1 0
d � b c0 1

1 1
d � c0 0

0 0
d .

This gives c a a � b

a � b b
d � c0  0

0 0
d , so that a 5 b 5 0. On the other 

hand, since every member of V has the form

c a a � b

a � b b
d � a c1 1

1 0
d � b c0 1

1 1
d ,

we see that B spans V. 

We now come to the main result of this chapter.

 Theorem 19.1 Invariance of Basis Size

If {u1, u2, . . . , um} and {w1, w2, . . . , wn} are both bases of a vector 
space V over a field F, then m 5 n.

PROOF Suppose that m 2 n. To be specific, let us say that m , n. Con-
sider the set {w1, u1, u2, . . . , um}. Since the u’s span V, we know that w1 
is a linear combination of the u’s, say, w1 5 a1u1 1 a2u2 1 ? ? ? 1 amum, 
where the a’s belong to F. Clearly, not all the a’s are 0. For convenience, 
say a1 2 0. Then {w1, u2, . . . , um} spans V (see Exercise 21). Next, con-
sider the set {w1, w2, u2, . . . , um}. This time, w2 is a linear combination of 
w1, u2, . . . , um, say, w2 � b1w1 � b2u2 �  . . . 1 bmum, where the b’s  
belong to F. Then at least one of b2, . . . , bm is nonzero, for otherwise the 
w’s are not linearly independent. Let us say b2 2 0. Then w1, w2, u3, . . . , 
um span V. Continuing in this fashion, we see that {w1, w2, . . . , wm} spans 
V. But then wm11 is a linear combination of w1, w2, . . . , wm and, there-
fore, the set {w1, . . . , wn} is not  linearly independent. This contradiction 
finishes the proof. 

Theorem 19.1 shows that any two finite bases for a vector space have 
the same size. Of course, not all vector spaces have finite bases. However, 
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there is no vector space that has a finite basis and an infinite basis (see 
Exercise 25).

Definition Dimension
A vector space that has a basis consisting of n elements is said  
to have dimension n. For completeness, the trivial vector space {0} is 
said to be spanned by the empty set and to have dimension 0.

Although it requires a bit of set theory that is beyond the scope of 
this text, it can be shown that every vector space has a basis. A vector 
space that has a finite basis is called finite dimensional; otherwise, it is 
called infinite dimensional.

Exercises

Somebody who thinks logically is a nice contrast to the real world.
The Law of Thumb

  1. Verify that each of the sets in Examples 1–4 satisfies the axioms for 
a vector space. Find a basis for each of the vector spaces in  
Examples 1–4.

  2. (Subspace Test) Prove that a nonempty subset U of a vector space V 
over a field F is a subspace of V if, for every u and u9 in U and ev-
ery a in F, u 1 u9 [ U and au [ U. (In words, a nonempty set U is 
a subspace of V if it is closed under the two operations of V.)

  3. Verify that the set in Example 6 is a subspace. Find a basis for this 
subspace. Is {x2 1 x 1 1, x 1 5, 3} a basis?

  4. Verify that the set kv1, v2, . . . , vnl defined in Example 7 is a sub-
space.

  5. Determine whether or not the set {(2, 21, 0), (1, 2, 5), (7, 21, 5)} is 
linearly independent over R.

  6. Determine whether or not the set

e c2 1

1 0
d , c0 1

1 2
d , c1 1

1 1
d f

  is linearly independent over Z5.
  7. If {u, v, w} is a linearly independent subset of a vector space, show 

that {u, u 1 v, u 1 v 1 w} is also linearly independent.
  8. If {v1, v2, . . . , vn} is a linearly dependent set of vectors, prove that 

one of these vectors is a linear combination of the other.
  9. (Every spanning collection contains a basis.) If {v1, v2, . . . , vn} spans 

a vector space V, prove that some subset of the v’s is a basis for V.
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 10. (Every independent set is contained in a basis.) Let V be a finite- 
dimensional vector space and let {v1, v2, . . . , vn} be a linearly 
 independent subset of V. Show that there are vectors w1, w2, . . . , wm 
such that {v1, v2, . . . , vn, w1, . . . , wm} is a basis for V.

 11. If V is a vector space over F of dimension 5 and U and W are sub-
spaces of V of dimension 3, prove that U > W 2 {0}. Generalize.

 12. Show that the solution set to a system of equations of the form

a11x1 1 ? ? ? 1 a1nxn 5 0
 a21x1 1 ? ? ? 1 a2nxn 5 0

  ? ? ?
  ? ? ?
  ? ? ?
 am1x1 1 ? ? ? 1 amnxn 5 0,

  where the a’s are real, is a subspace of Rn.
 13. Let V be the set of all polynomials over Q of degree 2 together with 

the zero polynomial. Is V a vector space over Q?
 14. Let V 5 R3 and W 5 {(a, b, c) [ V | a2 1 b2 5 c2}. Is W a sub-

space of V? If so, what is its dimension?
 15. Let V 5 R3 and W 5 {(a, b, c) [ V | a 1 b 5 c}. Is W a subspace 

of V? If so, what is its dimension?

 16. Let V 5 e ca b

b c
d ` a, b, c [ Q f . Prove that V is a vector space 

  over Q, and find a basis for V over Q.
 17. Verify that the set V in Example 9 is a vector space over R.
 18. Let P 5 {(a, b, c) | a, b, c [ R, a 5 2b 1 3c}. Prove that P is a sub-

space of R3. Find a basis for P. Give a geometric description of P.
 19. Let B be a subset of a vector space V. Show that B is a basis for V if 

and only if every member of V is a unique linear combination of the 
elements of B. (This exercise is referred to in this chapter and in 
Chap ter  20.)

 20. If U is a proper subspace of a finite-dimensional vector space V, 
show that the dimension of U is less than the dimension of V.

 21. Referring to the proof of Theorem 19.1, prove that {w1, u2, . . . , um} 
spans V.

 22. If V is a vector space of dimension n over the field Zp, how many 
elements are in V?

 23. Let S 5 {(a, b, c, d) | a, b, c, d [ R, a 5 c, d 5 a 1 b}. Find a  basis 
for  S.
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 24. Let U and W be subspaces of a vector space V. Show that U > W is 
a subspace of V and that U 1 W 5 {u 1 w | u [ U, w [ W} is a 
subspace of V.

 25. If a vector space has one basis that contains infinitely many ele-
ments, prove that every basis contains infinitely many elements. 
(This exercise is referred to in this chapter.)

 26. Let u 5 (2, 3, 1), v 5 (1, 3, 0), and w 5 (2, 23, 3). Since (1/2)u 2  
(2/3)v 2 (1/6)w 5 (0, 0, 0), can we conclude that the set {u, v, w} is 
linearly depen dent over Z7?

 27. Define the vector space analog of group homomorphism and ring 
homomorphism. Such a mapping is called a linear transformation. 
Define the vector space analog of group isomorphism and ring iso-
morphism.

 28. Let T be a linear transformation from V to W. Prove that the image 
of V under T is a subspace of W.

 29. Let T be a linear transformation of a vector space V. Prove that  
{v [ V | T(v) 5 0}, the kernel of T, is a subspace of V.

 30. Let T be a linear transformation of V onto W. If {v1, v2, . . . , vn} 
spans V, show that {T(v1), T(v2), . . . , T(vn)} spans W.

 31. If V is a vector space over F of dimension n, prove that V is isomor-
phic as a vector space to Fn 5 {(a1, a2, . . . , an) | ai [ F}. (This ex-
ercise is referred to in this chapter.)

 32. Show that it is impossible to find a basis for the vector space of  
n 3 n (n . 1) matrices such that each pair of elements in the  basis 
commutes under multiplication.

 33. Let Pn 5 {anx
n 1 an21x

n21 1 ? ? ? 1 a1x 1 a0 | each ai is a real 
number}. Is it possible to have a basis for Pn such that every ele-
ment of the basis has x as a factor?

 34. Find a basis for the vector space { f [ P3 | f (0) 5 0}. (See Exercise 33 
for notation.)

 35. Given that f is a polynomial of degree n in Pn, show that { f, f 9,  
f 0, . . . , f (n)} is a basis for Pn. ( f (k) denotes the kth derivative of f.)

 36. Prove that for a vector space V over a field that does not have char-
acteristic 2, the hypothesis that V is commutative under addition is 
redundant.

 37. Let V be a vector space over an infinite field. Prove that V is not the 
union of finitely many proper subspaces of V.
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Emil Artin was one of the leading mathe-
maticians of the 20th century and a major 
contributor to linear algebra and abstract  
algebra. Artin was born on March 3, 1898, 
in Vienna, Austria, and grew up in what was 
recently known as Czechoslovakia. He 
 received a Ph.D. in 1921 from the University 
of Leipzig. Artin was a professor at the 
University of Hamburg from 1923 until he 
was barred from employment in Nazi 
Germany in 1937 because his wife had a 
Jewish grandparent. His family  emigrated 
to the United States where he spent one year 
at Notre Dame then eight years at Indiana 
University. In 1946 he moved to Princeton, 
where he stayed until 1958. The last four 
years of his career were spent where it 
began, at Hamburg. 

Artin’s mathematics is both deep and 
broad. He made contributions to number the-
ory, group theory, ring theory, field theory, 
Galois theory, geometric algebra, algebraic 
topology, and the theory of braids—a field 
he invented. Artin received the American 

For Artin, to be a mathematician meant to 
participate in a great common effort, to con-
tinue work begun thousands of years ago, 
to shed new light on old discoveries, to seek 
new ways to prepare the developments of 
the future. Whatever standards we use, he 
was a great mathematician.

richard brauer,  
Bulletin of the American 

Mathematical Society

Mathematical Society’s Cole Prize in num-
ber theory, and he solved one of the 23  
famous problems posed by the eminent 
mathematician David Hilbert in 1900.

Eminent mathematician Hermann Weyl 
said of Artin “I look upon his early work in 
algebra and number theory as one of the few 
big mathematical events I have witnessed in 
my lifetime. A genius, aglow with the fire of 
ideas—that was the impression he gave in 
those years.”

Artin was an outstanding teacher of 
mathematics at all levels, from freshman 
calculus to seminars for colleagues. Many  
of his Ph.D. students as well as his son  
Michael have become leading mathemati-
cians. Through his research, teaching, and 
books, Artin exerted great influence among 
his contemporaries. He died of a heart  
attack, at the age of 64, in 1962.

For more information about Artin, visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Olga Taussky-Todd was born on August 30, 
1906, in Olmütz in the Austro-Hungarian 
Empire. Taussky-Todd received her doctoral 
degree in 1930 from the University of Vienna. 
In the early 1930s she was hired as an assistant 
at the University of Göttingen to edit books on 
the work of David Hilbert. She also edited 
lecture notes of Emil Artin and assisted 
Richard Courant. She spent 1934 and 1935 
at Bryn Mawr and the next two years at 
Girton College in Cambridge, England. In 
1937, she taught at the University of 
London. In 1947, she moved to the United 
States and took a job at the National Bureau 
of Standards’ National Applied Mathematics 
Laboratory. In 1957, she became the first 
woman to teach at the California Institute of 
Technology as well as the first woman to  
receive tenure and a full professorship in 
mathematics, physics, or  astronomy there. 
Thirteen Caltech Ph.D. students wrote their 
Ph.D. theses under her direction.

“Olga Taussky-Todd was a distinguished 
and prolific mathematician who wrote about 
300 papers.”

edith luchins and mary ann mcloughlin,  
Notices of the American  

Mathematical Society, 1996

In addition to her influential contributions to 
linear algebra, Taussky-Todd did important 
work in number theory.

Taussky-Todd received many honors and 
awards. She was elected a Fellow of the 
American Association for the Advancement 
of Science and vice president of the American  
Mathematical Society. In 1990, Caltech 
 established an instructorship named in her 
honor. Taussky-Todd died on October 7, 1995,  
at the age of 89.

For more information about Taussky-Todd,  
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history

http://www.agnesscott 
.edu/lriddle/women/women.htm
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Extension Fields

Viewed with perfect hindsight, there were many occasions during 
the history of algebra when new number systems had to be created, 
or constructed, in order to provide roots for certain polynomials.

Norman J. Block, Abstract Algebra with Applications

In many respects this [Kronecker’s Theorem] is the fundamental 
theorem of algebra.

Richard A. Dean, Elements of Abstract Algebra

20

The Fundamental Theorem 
of Field Theory

In our work on rings, we came across a number of fields, both finite and 
infinite. Indeed, we saw that Z3[x]/kx2 1 1l is a field of order 9, whereas 
R[x]/kx2 1 1l is a field isomorphic to the complex numbers. In  
the next three chapters, we take up, in a systematic way, the subject of 
fields.

Definition Extension Field
A field E is an extension field of a field F if F # E and the operations of 
F are those of E restricted to F.

Cauchy’s observation in 1847 that R[x]/kx2 1 1l is a field that con-
tains a zero of x2 1 1 prepared the way for the following sweeping gen-
eralization of that fact.

 Theorem 20.1 Fundamental Theorem of Field Theory  
(Kronecker’s  Theorem, 1887)

Let F be a field and let f (x) be a nonconstant polynomial in F[x]. 
Then there is an extension field E of F in which f (x) has a zero.
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PROOF Since F[x] is a unique factorization domain, f (x) has an irreduc-
ible factor, say, p(x). Clearly, it suffices to construct an extension field E 
of F in which p(x) has a zero. Our candidate for E is F[x]/kp(x)l. We al-
ready know that this is a field from Corollary 1 of Theorem 17.5. Also, 
since the mapping of f: F S E given by f(a) 5 a 1 kp(x)l is  
one-to-one and preserves both operations, E has a subfield isomorphic to 
F. We may think of E as containing F if we simply identify the coset a 1 
kp(x)l with its unique coset representative a that belongs to F [that is, think 
of a 1 kp(x)l as just a and vice versa; see Exercise 37 in Chapter 17].

Finally, to show that p(x) has a zero in E, write

p(x) 5 anx
n 1 an21x

n21 1 ? ? ? 1 a0.

Then, in E, x 1 kp(x)l is a zero of p(x), because

p(x 1 kp(x)l) 5 an(x 1 kp(x)l)n 1 an21(x 1 kp(x)l)n21 1 ? ? ? 1 a0
5 an(x

n 1 kp(x)l) 1 an21(x
n21 1 kp(x)l) 1 ? ? ? 1 a0

5 anx
n 1 an21x

n21 1 ? ? ? 1 a0 1 kp(x)l
5 p(x) 1 kp(x)l 5 0 1 kp(x)l. 

 EXAMPLE 1 Let f (x) 5 x2 1 1 [ Q[x]. Then, viewing f (x) as an  element 
of E[x] 5 (Q[x]/kx2 1 1l)[x], we have

 f (x 1 kx2 1 1l) 5 (x 1 kx2 1 1l)2 1 1
 5 x2 1 kx2 1 1l 1 1
 5 x2 1 1 1 kx2 1 1l
 5 0 1 kx2 1 1l.

Of course, the polynomial x2 1 1 has the complex number 2�1 as a 
zero, but the point we wish to emphasize here is that we have con-
structed a field that contains the rational numbers and a zero for the 
polynomial x2 1 1 by using only the rational numbers. No knowledge 
of complex numbers is necessary. Our method utilizes only the field we 
are given. 

 EXAMPLE 2 Let f (x) 5 x5 1 2x2 1 2x 1 2 [ Z3[x]. Then, the irreduc-
ible factorization of f (x) over Z3 is (x2 1 1)(x3 1 2x 1 2). So, to find an 
extension E of Z3 in which f(x) has a zero, we may take E 5 Z3[x]/ 
kx2 1 1l, a field with nine elements, or E 5 Z3[x]/kx3 1 2x 1 2l, a field 
with 27 elements. 

Since every integral domain is contained in its field of quotients 
(Theorem 15.6), we see that every nonconstant polynomial with coef-
ficients from an integral domain always has a zero in some field con-
taining the ring of coefficients. The next example shows that this is not 
true for commutative rings in general.
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 EXAMPLE 3 Let f(x) 5 2x 1 1 [ Z4[x]. Then f(x) has no zero in any ring 
containing Z4 as a subring, because if b were a zero in such a ring,  
then 0 5 2b 1 1, and therefore 0 5 2(2b 1 1) 5 2(2b) 1 2 5 
(2 ? 2)b 1 2 5 0 ? b 1 2 5 2. But 0 2 2 in Z4. 

Splitting Fields
To motivate the next definition and theorem, let’s return to Example 1 for a 
moment. For notational convenience, in Q[x]/kx2 1 1l, let a 5  
x 1 kx2 1 1l. Then, since a and 2a are both zeros of x2 1 1 in (Q[x]/ 
kx2 1 1l)[x], it should be the case that x2 1 1 5 (x 2 a)(x 1 a). Let’s 
check this out. First note that

(x 2 a)(x 1 a) 5 x2 2 a2 5 x2 2 (x2 1 kx2 1 1l).

At the same time,

x2 1 kx2 1 1l 5 21 1 kx2 1 1l

and we have agreed to identify 21 and 21 1 kx2 1 1l, so

(x 2 a)(x 1 a) 5 x2 2 (21) 5 x2 1 1.

This shows that x2 1 1 can be written as a product of linear factors in 
some extension of Q. That was easy and you might argue coincidental. 
The polynomial given in Example 2 presents a greater challenge. Is 
there an extension of Z3 in which that polynomial factors as a product of 
linear factors? Yes, there is. But first some notation and a definition.

Let F be a field and let a1, a2, . . . , an be elements of some exten-
sion E of F. We use F(a1,a2, . . . , an) to denote the smallest subfield of 
E that contains F and the set {a1, a2, . . . , an}. We leave it as an exer-
cise (Exercise 37) to show that F(a1, a2, . . . , an) is the intersection of 
all subfields of E that contain F and the set {a1, a2, . . . , an}.

Definition Splitting Field
Let E be an extension field of F and let f(x) [ F[x] with degree at least 
1. We say that f(x) splits in E if there are elements a [ F and a1, a2, . . . , 
an [ E such that

f(x) 5 a(x 2 a1)(x 2 a2) . . . (x 2 an).

We call E a splitting field for f(x) over F if

E 5 F(a1, a2, . . . , an).

Note that a splitting field of a polynomial over a field depends not 
only on the polynomial but on the field as well. Indeed, a splitting field 
of f (x) over F is just a smallest extension field of F in which f(x) splits. 
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The next example illustrates how a splitting field of a polynomial f (x) 
over field F depends on F.

 EXAMPLE 4 Consider the polynomial f (x) 5 x2 1 1 [ Q[x]. Since  
x2 1 1 5 (x 1 2�1)(x 2 2�1), we see that f(x) splits in C, but a splitting 
field over Q is Q(i) 5 {r 1 si | r, s [ Q}. A splitting field for x2 1 1 over 
R is C. Likewise, x2 2 2 [ Q[x] splits in R, but a splitting field over Q is 
Q(22) 5 {r 1 s 22 | r, s [ Q}. 

There is a useful analogy between the definition of a splitting field and 
the definition of an irreducible polynomial. Just as it makes no sense to 
say “f(x) is irreducible,” it makes no sense to say “E is a splitting field for 
f(x).” In each case, the underlying field must be specified; that is, one must 
say “f(x) is irreducible over F” and “E is a splitting field for f(x) over F.”

Our notation in Example 4 appears to be inconsistent with the nota-
tion that we used in earlier chapters. For example, we denoted the set  
{a 1 b22 | a, b [ Z} by Z[22] and the set {a 1 b22 | a, b [ Q} by  
Q(22). The difference is that Z[22] is merely a ring, whereas Q(22) is 
a field. In general, parentheses are used when one wishes to indicate that 
the set is a field, although no harm would be done by using, say,  
Q[22] to denote {a 1 b22 | a, b [ Q} if we were concerned with its 
ring properties only. Using parentheses rather than brackets simply con-
veys a bit more information about the set.

 Theorem 20.2 Existence of Splitting Fields

Let F be a field and let f(x) be a nonconstant element of F[x]. Then 
there exists a splitting field E for f (x) over F.

PROOF We proceed by induction on deg f (x). If deg f (x) 5 1, then f (x) 
is linear. Now suppose that the statement is true for all fields and all 
polynomials of degree less than that of f (x). By Theorem 20.1,  
there is an  extension E of F in which f(x) has a zero, say, a1. Then we 
may write f (x) 5 (x 2 a1)g(x), where g(x) [ E[x]. Since deg g(x) , 
deg f (x), by induction, there is a field K that contains E and all the  
zeros of g(x), say, a2, . . . , an. Clearly, then, a splitting field for f (x) 
over F is F(a1, a2, . . . , an). 

 EXAMPLE 5 Consider

f (x) 5 x4 2 x2 2 2 5 (x2 2 2)(x2 1 1)

over Q. Obviously, the zeros of f(x) in C are 622 and 6i. So a splitting 
field for f (x) over Q is
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Q(22, i) 5 Q(22)(i) 5 {a 1 bi | a, b [ Q(22)}

 5 {(a 1 b 22) 1 (c 1 d22)i | a, b, c, d [ Q}.  

 EXAMPLE 6 Consider f (x) 5 x2 1 x 1 2 over Z3. Then Z3(i) 5 
{a 1 bi | a, b [ Z3} (see Example 9 in Chapter 13) is a splitting field for 
f (x) over Z3 because

f (x) 5 [x 2 (1 1 i)][x 2 (1 2 i)].

At the same time, we know by the proof of Kronecker’s Theorem that 
the element x 1 kx2 1 x 1 2l of

F 5 Z3[x]/kx2 1 x 1 2l

is a zero of f (x). Since f (x) has degree 2, it follows from the Factor 
Theorem (Corollary 2 of Theorem 16.2) that the other zero of f (x) must 
also be in F. Thus, f (x) splits in F, and because F is a two-dimensional 
vector space over Z3, we know that F is also a splitting field of f(x) over 
Z3. But how do we factor f(x) in F? Factoring f(x) in F is confusing be-
cause we are using the symbol x in two distinct ways: It is used as a 
placeholder to write the polynomial f(x), and it is used to create the coset 
representatives of the elements of F. This confusion can be avoided by 
simply identifying the coset 1 1 kx2 1 x 1 2l with the element 1 in Z3 and 
denoting the coset x 1 kx2 1 x 1 2l by b. With this identification, the field 
Z3[x]/kx2 1 x 1 2l can be represented as {0, 1, 2, b, 2b, b 1 1, 2b 1 1,  
b 1 2, 2b 1 2}. These elements are added and multiplied just as polyno-
mials are, except that we use the observation that x2 1 x 1 2 1 kx2 1  
x 1 2l 5 0 implies that b2 1 b 1 2 5 0, so that b2 5 2b 2 2 5 2b 1 1. 
For example, (2b 1 1)(b 1 2) 5 2b2 1 5b 1 2 5 2(2b 1 1) 1 5b 1 2 5 
9b 1 4 5 1. To obtain the factorization of f (x) in F, we simply long  
divide, as follows:

  x 1 (b 1 1)

qx2 1 x 1 2                  
  x2 2 bx                       
(b 1 1)x 1 2
(b 1 1)x 2 (b 1 1)b

(b 1 1)b 1 2 5 b2 1 b 1 2 5 0.

x 2 b

So, x2 1 x 1 2 5 (x 2 b)(x 1 b 1 1). Thus, we have found two split-
ting fields for x2 1 x 1 2 over Z3, one of the form F(a) and one of the 
form F[x]/kp(x)l [where F 5 Z3 and p(x) 5 x2 1 x 1 2]. 

The next theorem shows how the fields F(a) and F[x]/kp(x)l are 
 related in the case where p(x) is irreducible over F and a is a zero of 
p(x) in some extension of F.
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 Theorem 20.3 F (a) < F [x]/kp(x)l

Let F be a field and let p(x) [ F[x] be irreducible over F. If a is a  
zero of p(x) in some extension E of F, then F(a) is isomorphic to 
F[x] / kp(x)l. Furthermore, if deg p(x) 5 n, then every member of F(a) 
can be uniquely expressed in the form

cn21a
n21 1 cn22a

n22 1 ? ? ? 1 c1a 1 c0,

where c0, c1, . . . , cn21 [ F.

PROOF Consider the function f from F[x] to F(a) given by f( f (x)) 5 
f(a). Clearly, f is a ring homomorphism. We claim that Ker f 5 kp(x)l. 
(This is Exercise 35 in Chapter 17.) Since p(a) 5 0, we have kp(x)l #  
Ker f. On the other hand, we know by Theorem 17.5 that kp(x)l is a max-
imal ideal in F[x]. So, because Ker f 2 F[x] [it does not contain the con-
stant polynomial f (x) 5 1], we have Ker f 5 kp(x)l. At this point it fol-
lows from the First Isomorphism Theorem for Rings and Corollary 1 of 
Theorem 17.5 that f(F[x]) is a subfield of F(a). Noting that f(F[x]) con-
tains both F and a and recalling that F(a) is the small est such field, we 
have F[x]/kp(x)l < f(F[x]) 5 F(a).

The final assertion of the theorem follows from the fact that every ele-
ment of F[x]/kp(x)l can be expressed uniquely in the form

cn21x
n21 1 ? ? ? 1 c0 1 kp(x)l,

where c0, . . . , cn21 [ F (see Exercise 25 in Chapter 16), and the 
natural isomorphism from F[x]/kp(x)l to F(a) carries ckx

k 1 kp(x)l  
to cka

k. 

As an immediate corollary of Theorem 20.3, we have the following 
attractive result.

 Corollary F (a) < F (b)

Let F be a field and let p(x) [ F[x] be irreducible over F. If a is a  
zero of p(x) in some extension E of F and b is a zero of p(x) in some 
extension E9 of F, then the fields F(a) and F(b) are isomorphic.

PROOF From Theorem 20.3, we have

 F(a) < F[x]/kp(x)l < F(b). 
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Recall that a basis for an n-dimensional vector space over a field F  
is a set of n vectors v1, v2, . . . , vn with the property that every member 
of the vector space can be expressed uniquely in the form a1v1 1  
a2v2 1 ? ? ? 1 anvn, where the a’s belong to F (Exercise 19 in Chapter 19). 
So, in the language of vector spaces, the latter portion of Theorem 20.3  
says that if a is a zero of an irreducible polynomial over F of degree n, then 
the set {1, a, . . . , an21} is a basis for F(a) over F.

Theorem 20.3 often provides a convenient way of describing the 
 elements of a field.

 EXAMPLE 7 Consider the irreducible polynomial f (x) 5 x6 2 2 over Q. 
Since 26 2 is a zero of f(x), we know from Theorem 20.3 that the set {1, 
21/6, 22/6, 23/6, 24/6, 25/6} is a basis for Q(26 2) over Q. Thus,

Q(26 2) 5 {a0 1 a12
1/6 1 a22

2/6 1 a32
3/6 1 a42

4/6 1 a52
5/6 | ai [ Q}.

This field is isomorphic to Q[x]/kx6 2 2l. 

In 1882, Ferdinand von Lindemann (1852–1939) proved that p is not 
the zero of any polynomial in Q[x]. Because of this important result, 
Theorem 20.3 does not apply to Q(p) (see Exercise 11). Fields of the 
form F(a) where a is in some extension field of F but not the zero of an 
element of F(x) are discussed in the next chapter.

In Example 6, we produced two splitting fields for the polynomial  
x2 1 x 1 2 over Z3. Likewise, it is an easy exercise to show that both Q[x]/
kx2 1 1l and Q(i) 5 {r 1 si | r, s [ Q} are splitting fields of the polyno-
mial x2 1 1 over Q. But are these different-looking splitting fields alge-
braically different? Not really. We conclude our discussion of splitting 
fields by proving that splitting fields are unique up to isomorphism. To 
make it easier to apply induction, we will prove a more general result.

We begin by observing first that any ring isomorphism f from F 
to  F9 has a natural extension from F[x] to F9[x] given by cnx

n 1 
cn21x

n21 1 ? ? ? 1 c1x 1 c0 S f(cn)x
n 1 f(cn21)x

n21 1 ? ? ? 1 
f(c1)x 1 f(c0). Since this mapping agrees with f on F, it is conve-
nient and natural to use f to denote this mapping as well.

 Lemma

Let F be a field, let p(x) [ F[x] be irreducible over F, and let a be a 
zero of p(x) in some extension of F. If f is a field isomorphism from 
F to F9 and b is a zero of f(p(x)) in some extension of F9, then there 
is an isomorphism from F(a) to F9(b) that agrees with f on F and 
carries a to b.
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PROOF First observe that since p(x) is irreducible over F, f(p(x)) is irre-
ducible over F9. It is straightforward to check that the mapping from F[x]/
kp(x)l to F9[x]/kf(p(x))l given by

 f (x) 1 kp(x)l S f( f (x)) 1 kf(p(x))l

is a field isomorphism. By a slight abuse of notation, we denote this 
mapping by f also. (If you object, put a bar over the f.) From the 
proof of Theorem 20.3, we know that there is an isomorphism a from 
F(a) to F[x]/kp(x)l that is the identity on F and carries a to x 1 kp(x)l. 
Similarly, there is an isomorphism b from F9[x]/kf(p(x))l to F9(b) that 
is the identity on F9 and carries x 1 kf(p(x))l to b. Thus, bfa is the 
desired mapping from F1a2 to F�1b2. See Figure 20.1. 

φ

φ

φ

βα

F F'

F(a) F[x]/ p(x) F'[x]/ ( p (x)) F'(b)

Figure 20.1

 Theorem 20.4 Extending f: F S F 9

Let f be an isomorphism from a field F to a field F9 and let 
 f (x) [ F[x]. If E is a splitting field for f (x) over F and E9 is a 
splitting field for f( f (x)) over F9, then there is an isomorphism  
from E to E9 that agrees with f on F.

PROOF We use induction on deg f (x). If deg f (x) 5 1, then E 5 F and 
E9 5 F9, so that f itself is the desired mapping. If deg f (x) . 1, let p(x) 
be an irreducible factor of f (x), let a be a zero of p(x) in E, and let b be 
a zero of f(p(x)) in E9. By the preceding lemma, there is an isomor-
phism a from F(a) to F9(b) that agrees with f on F and carries a to b. 
Now write f (x) 5 (x 2 a)g(x), where g(x) [ F(a)[x]. Then E is a   
splitting field for g(x) over F(a) and E9 is a splitting field for a(g(x)) 
over F9(b). Since deg g(x) , deg f (x), there is an isomorphism from E 
to E9 that agrees with a on F(a) and therefore with f on F. 
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 Corollary Splitting Fields Are Unique

Let F be a field and let f (x) [ F[x]. Then any two splitting fields  
of f (x) over F are isomorphic.

PROOF Suppose that E and E9 are splitting fields of f (x) over F. The re-
sult follows immediately from Theorem 20.4 by letting f be the identity 
from F to F. 

In light of the corollary above, we may refer to “the” splitting field of 
a polynomial over F without ambiguity.

Even though x6 2 2 has a zero in Q(26 2), it does not split in Q(26 2). 
The splitting field is easy to obtain, however.

 EXAMPLE 8 The Splitting Field of xn – a over Q
Let a be a positive rational number and let v be a primitive nth root of 
unity (see Example 2 in Chapter 16). Then each of

a1/n, va1/n, v2a1/n, . . . , vn21a1/n

is a zero of xn 2 a in Q(2n a, v). 

Zeros of an Irreducible Polynomial
Now that we know that every nonconstant polynomial over a field  
splits in some extension, we ask whether irreducible polynomials must 
split in some special way. Yes, they do. To discover how, we borrow 
something whose origins are in calculus.

Definition Derivative
Let f (x) 5 anxn 1 an21x

n21 1 ? ? ? 1 a1x 1 a0 belong to F[x]. The 
 derivative of f (x), denoted by f 9(x), is the polynomial nanxn21 1 
(n 2 1)an21x

n22 1 ? ? ? 1 a1 in F[x].

Notice that our definition does not involve the notion of a limit. The 
standard rules for handling sums and products of functions in calculus 
carry over to arbitrary fields as well.

 Lemma Properties of the Derivative

Let f (x) and g(x) [ F[x] and let a [ F. Then

1. ( f (x) 1 g(x))9 5 f 9(x) 1 g9(x).
2. (af (x))9 5 af 9(x).
3. ( f (x)g(x))9 5 f (x)g9(x) 1 g(x)f 9(x).
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PROOF Properties 1 and 2 follow from straightforward applications of the 
definition. Using property 1 and induction on deg f(x), property 3  reduces 
to the special case in which f(x) 5 anx

n. This also follows directly from 
the  definition. 

Before addressing the question of the nature of the zeros of an irre-
ducible polynomial, we establish a general result concerning zeros of 
multiplicity greater than 1. Such zeros are called multiple zeros.

 Theorem 20.5 Criterion for Multiple Zeros

A polynomial f (x) over a field F has a multiple zero in some 
extension E if and only if f (x) and f 9(x) have a common factor of 
positive degree in F[x].

PROOF If a is a multiple zero of f (x) in some extension E, then there 
is a g(x) in E[x] such that f (x) 5 (x 2 a)2g(x). Since f 9(x) 5  
(x 2 a)2g9(x) 1 2(x 2 a)g(x), we see that f 9(a) 5 0. Thus, x 2 a is a fac-
tor of both f (x) and f 9(x) in the extension E of F. Now if f (x) and f 9(x) 
have no common divisor of positive degree in F[x], there are polynomials 
h(x) and k(x) in F[x] such that f(x)h(x) 1 f 9(x)k(x) 5 1 (see Exercise 23 in 
Chapter 16). Viewing f(x)h(x) 1 f 9(x)k(x) as an element of E[x], we see 
also that x 2 a is a factor of 1. Since this is nonsense, f(x) and f 9(x) must 
have a common divisor of positive degree in F[x].

Conversely, suppose that f(x) and f 9(x) have a common factor of posi-
tive degree. Let a be a zero of the common factor. Then a is a zero of f(x) 
and f 9(x). Since a is a zero of f (x), there is a polynomial q(x) such that 
f (x) 5 (x 2 a)q(x). Then f 9(x) 5 (x 2 a)q9(x) 1 q(x) and 0 5 f 9(a) 5 
q(a). Thus, x 2 a is a factor of q(x) and a is a multiple zero of f(x). 

 Theorem 20.6 Zeros of an Irreducible

Let f (x) be an irreducible polynomial over a field F. If F has 
characteristic 0, then f (x) has no multiple zeros. If F has charac-
teristic p 2 0, then f (x) has a multiple zero only if it is of the  
form f (x) 5 g(xp) for some g(x) in F[x].

PROOF If f(x) has a multiple zero, then, by Theorem 20.5, f (x) and f 9(x) 
have a common divisor of positive degree in F[x]. Since the only divisor 
of positive degree of f (x) in F[x] is f (x) itself (up to associates), we see 
that f(x) divides f 9(x). Because a polynomial over a field  cannot divide a 
polynomial of smaller degree, we must have f 9(x) 5 0.
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Now what does it mean to say that f 9(x) 5 0? If we write f(x) 5 anx
n 1 

an21x
n21 1 ? ? ? 1 a1x 1 a0, then f9(x) 5 nanx

n21 1 (n 2 1)an21x
n22 1 ? ? ? 1  

a1. Thus, f 9(x) 5 0 only when kak 5 0 for k 5 1, . . . , n.
So, when char F 5 0, we have f (x) 5 a0, which is not an irreducible 

polynomial. This contradicts the hypothesis that f(x) is irreducible over F. 
Thus, f(x) has no multiple zeros.

When char F 5 p 2 0, we have ak 5 0 when p does not divide k. 
Thus, the only powers of x that appear in the sum anx

n 1 ? ? ? 1 a1x 1 
a0 are those of the form xpj 5 (xp)  j. It follows that f (x) 5 g(xp) for some  
g(x) [ F[x]. [For example, if f(x) 5 x4p 1 3x2p 1 xp 1 1, then g(x) 5 x4 1  
3x2 1 x 1 1.] 

Theorem 20.6 shows that an irreducible polynomial over a field of 
characteristic 0 cannot have multiple zeros. The desire to extend this re-
sult to a larger class of fields motivates the following definition.

Definition Perfect Field
A field F is called perfect if F has characteristic 0 or if F has 
 characteristic p and Fp 5 {ap | a [ F} 5 F.

The most important family of perfect fields of characteristic p is the 
finite fields.

 Theorem 20.7 Finite Fields Are Perfect

Every finite field is perfect.

PROOF Let F be a finite field of characteristic p. Consider the mapping f 
from F to F defined by f(x) 5 xp for all x [ F. We claim that  
f is a field automorphism. Obviously, f(ab) 5 (ab)p 5 a pb p 5

f(a)f(b). Moreover, f(a 1 b) 5 (a 1 b)p 5 ap 1 ap
1
b ap21b 1

ap
2
b ap22b2 1 ? ? ? 1 a p

p � 1
 b ab p21 1 b p 5 a p 1 b p, since each 

ap
i
b is divisible by p. Finally, since xp 2 0 when x 2 0, Ker f 5 {0}.

Thus, f is one-to-one and, since F is finite, f is onto. This proves that  
Fp 5 F. 
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 Theorem 20.8 Criterion for No Multiple Zeros

If f(x) is an irreducible polynomial over a perfect field F, then f(x) has 
no multiple zeros.

PROOF The case where F has characteristic 0 has been done. So  
let us assume that f(x) [ F[x] is irreducible over a perfect field F of char-
acteristic p and that f(x) has multiple zeros. From Theorem 20.6 we know 
that f(x) 5 g(xp) for some g(x) [ F[x], say, g(x) 5 anx

n 1 an21x
n21 1 ? ? ? 1  

a1x 1 a0. Since Fp 5 F, each ai in F can be written in the form b
i

p for 
some bi in F. So, using Exercise 49a in Chapter 13, we have

f (x) 5 g(xp) 5 bn
px pn 1 bn21

pxp(n21) 1 ? ? ? 1 b1
pxp 1 b0

p

            5 (bnxn 1 bn21x
n21 1 ? ? ? 1 b1x 1 b0)

p 5 (h(x))p,

where h(x) [ F[x]. But then f(x) is not irreducible. 

The next theorem shows that when an irreducible polynomial does 
have multiple zeros, there is something striking about the multiplicities.

 Theorem 20.9 Zeros of an Irreducible over a Splitting Field

Let f (x) be an irreducible polynomial over a field F and let E be a 
splitting field of f (x) over F. Then all the zeros of f (x) in E have the 
same multiplicity.

PROOF Let a and b be distinct zeros of f (x) in E. If a has multiplicity m, 
then in E[x] we may write f(x) 5 (x 2 a)mg(x). It follows from the lemma 
preceding Theorem 20.4 and from Theorem 20.4 that there is a field iso-
morphism f from E to itself that carries a to b and acts as the identity on 
F. Thus,

f (x) 5 f( f (x)) 5 (x 2 b)mf(g(x)),

and we see that the multiplicity of b is greater than or equal to the multi-
plicity of a. By interchanging the roles of a and b, we observe that the 
multiplicity of a is greater than or equal to the multiplicity of b. So, we 
have proved that a and b have the same multiplicity. 

As an immediate corollary of Theorem 20.9 we have the following 
appealing result.
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 Corollary Factorization of an Irreducible over a Splitting Field

Let f (x) be an irreducible polynomial over a field F and let E be a 
splitting field of f (x). Then f (x) has the form

a(x 2 a1)
n(x 2 a2)

n ? ? ? (x 2 at)
n,

where a1, a2, . . . , at are distinct elements of E and a [ F.

We conclude this chapter by giving an example of an irreducible 
polynomial over a field that does have a multiple zero. In particular, 
notice that the field we use is not perfect.

 EXAMPLE 9 Let F 5 Z2(t) be the field of quotients of the ring Z2[t] of 
polynomials in the indeterminate t with coefficients from Z2. (We must 
introduce a letter other than x, since the members of F are going to be 
our coefficients for the elements in F[x].) Consider f(x) 5 x2 2 t [ F[x]. 
To see that f (x) is irreducible over F, it suffices to show that it has no 
zeros in F. Well, suppose that h(t)/k(t) is a zero of f(x). Then (h(t)/k(t))2 5 t,  
and therefore (h(t))2 5 t(k(t))2. Since h(t), k(t) [ Z2[t], we then have h(t2) 
5 tk(t2) (see Exercise 49 in Chapter 13). But deg h(t2) is even, whereas 
deg tk(t2) is odd. So, f(x) is irreducible over F.

Finally, since t is a constant in F[x] and the characteristic of F is 2, we 
have f9(x) 5 0, so that f9(x) and f(x) have f(x) as a common factor. So, by 
Theorem 20.5, f(x) has a multiple zero in some extension of F. (Indeed, it 
has a single zero of multiplicity 2 in K 5 F[x]/kx2 2 tl.) 

Exercises

I have yet to see any problem, however complicated, which, when you looked 
at it in the right way, did not become still more complicated.

Paul Anderson, New Scientist

  1. Describe the elements of Q(13 5).
  2. Show that Q(22, 23) 5 Q(22 1 23).
  3. Find the splitting field of x3 2 1 over Q. Express your answer in the 

form Q(a).
  4. Find the splitting field of x4 1 1 over Q.
  5. Find the splitting field of

x4 1 x2 1 1 5 (x2 1 x 1 1)(x2 2 x 1 1)

  over Q.
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  6. Let a, b [ R with b 2 0. Show that R(a 1 bi) 5 C.
  7. Let F be a field, and let a and b belong to F with a 2 0. If c   

belongs to some extension of F, prove that F(c) 5 F(ac 1 b).  
(F “absorbs” its own elements.) 

  8. Let F 5 Z2 and let f (x) 5 x3 1 x 1 1 [ F[x]. Suppose that a is a 
zero of f(x) in some extension of F. How many elements does F(a) 
have? Express each member of F(a) in terms of a. Write out a com-
plete multiplication table for F(a).

  9. Let F(a) be the field described in Exercise 8. Express each of a5, 
a22, and a100 in the form c2a

2 1 c1a 1 c0.
 10. Let F(a) be the field described in Exercise 8. Show that a2 and a2 1 a 

are zeros of x3 1 x 1 1.
 11. Describe the elements in Q(p).
 12. Let F 5 Q(p3). Find a basis for F(p) over F.
 13. Write x7 2 x as a product of linear factors over Z3. Do the same for  

x10 2 x.
 14. Find all ring automorphisms of Q(13 5).
 15. Let F be a field of characteristic p and let f (x) 5 xp 2 a [ F[x]. 

Show that f (x) is irreducible over F or f (x) splits in F.
 16. Suppose that b is a zero of f (x) 5 x4 1 x 1 1 in some extension 

field E of Z2. Write f (x) as a product of linear factors in E[x].
 17. Find a, b, c in Q such that

(1 1 13 4)/(2 2 13 2) 5 a 1 b13 2 1 c13 4.

 Note that such a, b, c exist, since

(1 1 13 4)/(2 2 13 2) [ Q(13 2) 5 {a 1 b13 2 1 c13 4 | a, b, c [ Q}.

 18. Express (3 1 422)21 in the form a 1 b22, where a, b [ Q.
 19. Show that Q(4 2 i) 5 Q(1 1 i), where i 5 2�1.
 20. Find a polynomial p(x) in Q[x] such that Q(21 � 25) is ring- 

isomorphic to Q[x]/kp(x)l. 
 21. Let f (x) [ F[x] and let a [ F. Show that f (x) and f (x 1 a) have the 

same splitting field over F.
 22. Recall that two polynomials f (x) and g(x) from F[x] are said to be 

relatively prime if there is no polynomial of positive degree in F[x] 
that divides both f (x) and g(x). Show that if f (x) and g(x) are rela-
tively prime in F[x], they are relatively prime in K[x], where K is 
any extension of F.

 23. Determine all of the subfields of Q(22).
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 24. Describe the elements of the extension Q(24 2) over the field Q(22).
 25. What is the order of the splitting field of  

x5 1 x4 1 1 5 (x2 1 x 1 1) ? (x3 1 x 1 1) over Z2?
 26. Let E be an extension of F and let a and b belong to E. Prove that  

F(a, b) 5 F(a)(b) 5 F(b)(a).
 27. Write x3 1 2x 1 1 as a product of linear polynomials over some 

extension field of Z3.
 28. Express x8 2 x as a product of irreducibles over Z2.
 29. Prove or disprove that Q(23) and Q(2�3) are ring-isomorphic.
 30. For any prime p, find a field of characteristic p that is not perfect.
 31. If b is a zero of x2 1 x 1 2 over Z5, find the other zero.
 32. Show that x4 1 x 1 1 over Z2 does not have any multiple zeros in 

any extension field of Z2.
 33. Show that x21 1 2x8 1 1 does not have multiple zeros in any 

 extension of Z3.
 34. Show that x19 1 x8 1 1 has multiple zeros in some extension of Z3.
 35. Let F be a field of characteristic p 2 0. Show that the polynomial 

f(x) 5 xpn 2 x over F has distinct zeros.
 36. Find the splitting field for f (x) 5 (x2 1 x 1 2)(x2 1 2x 1 2) over 

Z3[x]. Write f (x) as a product of linear factors.
 37. Let F be a field and E an extension field of F that contains a1,  

a2, . . . , an. Prove that F(a1, a2, . . . , an) is the intersection of all  
subfields of E that contain F and the set {a1, a2, . . . , an}. (This ex-
ercise is referred to in this chapter.)

 38. Find the splitting field x4 2 x2 2 2 over Z3.
 39. Suppose that f1x2 is a fifth-degree polynomial that is irreducible 

over Z2. Prove that every nonidentity element is a generator of the 
cyclic group 1Z23x4/k f1x2l2*.

 40. Show that Q(27, i) is the splitting field for x4 2 6x2 27.
 41. Suppose that p(x) is a quadratic polynomial with rational coeffi-

cients and is irreducible over Q. Show that p(x) has two zeros in 
Q[x]/kp(x)l.

 42. If p(x) [ F[x] and deg p(x) 5 n, show that the splitting field for p(x) 
over F has degree at most n!.

 43. Let p be a prime, F 5 Zp(t) (the field of quotients of the ring Zp[x]) 
and f(x) 5 xp 2 t. Prove that f(x) is irreducible over F and has a 
multiple zero in K 5 F[x]/kxp 2 tl.

 44. Let f(x) be an irreducible polynomial over a field F. Prove that the 
number of distinct zeros of f(x) in a splitting field divides deg f(x).
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Leopold Kronecker was born on December 
7, 1823, in Liegnitz, Prussia. As a schoolboy, 
he received special instruction from the great 
algebraist Kummer. Kronecker entered the 
University of Berlin in 1841 and completed 
his Ph.D. dissertation in 1845 on the units in a 
certain ring.

Kronecker devoted the years 1845–1853 to 
business affairs, relegating mathematics to a 
hobby. Thereafter, being well-off financially, 
he spent most of his time doing research in al-
gebra and number theory. Kronecker was one 
of the early advocates of the abstract approach 
to algebra. He  innovatively applied rings and 
fields in his investigations of algebraic num-
bers, established the Fundamental Theorem of 
Finite Abelian Groups, and was the first math-
ematician to master Galois’s theory of fields.

Kronecker advocated constructive meth-
ods for all proofs and definitions. He believed 

He [Kronecker] wove together the three 
strands of his greatest interests—the  theory 
of numbers, the theory of  equations and el-
liptic functions—into  
one beautiful pattern.

e. t. bell

that all mathematics should be based on rela-
tionships among integers. He went so far as 
to say to Lindemann, who proved that p is 
transcendental, that irrational numbers do 
not exist. His most famous remark on the 
matter was “God made the integers, all the 
rest is the work of man.” Henri Poincaré  
once remarked that Kronecker was able to 
produce fine work in number theory and 
 algebra only by temporarily forgetting his 
own philosophy.

Kronecker died on December 29, 1891, 
at the age of 68.

For more information about Kronecker, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

Leopold Kronecker
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21

Characterization of Extensions
In Chapter 20, we saw that every element in the field Q(22) has the 
particularly simple form a 1 b22, where a and b are rational. On the 
other hand, the elements of Q(p) have the more complicated form

(anp
n 1 an21p

n21 1 ? ? ? 1 a0)/(bmpm 1 bm21p
m21 1 ? ? ? 1 b0),

where the a’s and b’s are rational. The fields of the first type have a great 
deal of algebraic structure. This structure is the subject of this chapter.

Definition Types of Extensions
Let E be an extension field of a field F  and let a [ E. We call a 
 al gebraic over F if a is the zero of some nonzero polynomial in F[x]. If a 
is not  algebraic over F, it is called transcendental over F. An extension 
E of F is called an algebraic extension of F if every element of E is 
 algebraic over F. If E is not an algebraic extension of F, it is called a 
transcendental extension of F. An extension of F of the form F(a) is 
called a simple extension of F.

Leonhard Euler used the term transcendental for numbers that are 
not algebraic because “they transcended the power of algebraic meth-
ods.” Although Euler made this distinction in 1744, it wasn’t until 1844 
that the existence of transcendental numbers over Q was proved by  
Joseph Liouville. Charles Hermite proved that e is transcendental over 
Q in 1873, and Lindemann showed that p is transcendental over Q in 
1882. To this day, it is not known whether p 1 e is transcendental over Q. 

Algebraic Extensions

All things are difficult before they are easy. 
Thomas Fuller

Banach once told me, “Good mathematicians see analogies be-
tween theorems or theories, the very best ones see analogies be-
tween analogies.”

S. M. Ulam, Adventures of a Mathematician
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With a precise definition of “almost all,” it can be shown that almost all 
real numbers are transcendental over Q.

Theorem 21.1 shows why we make the distinction between elements 
that are algebraic over a field and elements that are transcendental over 
a field. Recall that F(x) is the field of quotients of F[x]; that is,

F(x) 5 {f (x)/g(x) | f (x), g(x) [ F[x], g(x) 2 0}.

 Theorem 21.1 Characterization of Extensions

Let E be an extension field of the field F and let a [ E. If a is 
transcendental over F, then F(a) < F(x). If a is algebraic over F, then 
F(a) < F[x]/kp(x)l, where p(x) is a polynomial in F[x] of minimum 
degree such that p(a) 5 0. Moreover, p(x) is irreducible over F.

Proof Consider the homomorphism f: F[x] S F(a) given by 
f (x) S f (a). If a is transcendental over F, then Ker f 5 {0}, and so  
we may extend f to an isomorphism f: F(x) S F(a) by defining  
f( f(x)/g(x)) 5 f(a)/g(a).

If a is algebraic over F, then Ker f 2 {0}; and, by Theorem 16.5, 
there is a polynomial p(x) in F[x] such that Ker f 5 kp(x)l and p(x) has 
minimum degree among all nonzero elements of Ker f. Thus, p(a) 5 0 
and, since p(x) is a polynomial of minimum degree with this property, it 
is irreducible over F. 

The proof of Theorem 21.1 can readily be adapted to yield the next 
two results also. The details are left to the reader (see Exercise 1).

 Theorem 21.2 Uniqueness Property

If a is algebraic over a field F, then there is a unique monic irreduci-
ble polynomial p(x) in F[x] such that p(a) 5 0.

The polynomial with the property specified in Theorem 21.2 is called 
the minimal polynomial for a over F.

 Theorem 21.3 Divisibility Property

Let a be algebraic over F, and let p(x) be the minimal polynomial for 
a over F. If f(x) [ F[x] and f(a) 5 0, then p(x) divides f(x) in F[x].

If E is an extension field of F, we may view E as a vector space over F 
(that is, the elements of E are the vectors and the elements of F are the 
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scalars). We are then able to use such notions as dimension and basis in 
our discussion.

Finite Extensions
Definition Degree of an Extension
Let E be an extension field of a field F. We say that E has degree n 
over F and write [E:F] 5 n if E has dimension n as a vector space 
over F. If [E:F] is finite, E is called a finite extension of F; otherwise, we 
say that E is an infinite extension of F.

Figure 21.1 illustrates a convenient method of depicting the de gree  
of a field extension over a field.

Q(√2) Q(√2)
3

Q(√2)
6

[Q(√2):Q] = 6
6

[Q(√2):Q] = 3
3

[Q(√2):Q] = 2

E

Q FQQ

[E:F] = n

2 3 6 n

figure 21.1

 ExamPlE 1 The field of complex numbers has degree 2 over the reals, 
since {1, i} is a basis. The field of complex numbers is an infinite exten-
sion of the rationals. 

 ExamPlE 2 If a is algebraic over F and its minimal polynomial over F 
has degree n, then, by Theorem 20.3, we know that {1, a, . . . , an21} is a 
basis for F(a) over F; and, therefore, [F(a):F] 5 n. In this case, we say 
that a has degree n over F. 

 Theorem 21.4 Finite Implies Algebraic

If E is a finite extension of F, then E is an algebraic extension of F.
 

Proof Suppose that [E:F] 5 n and a [ E. Then the set {1, a, . . . , an} is 
linearly dependent over F; that is, there are elements c0, c1, . . . , cn in F, 
not all zero, such that

cna
n 1 cn21a

n21 1 ? ? ? 1 c1a 1 c0 5 0.

Clearly, then, a is a zero of the nonzero polynomial

 f (x) 5 cnx
n 1 cn21x

n21 1 ? ? ? 1 c1x 1 c0. 
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The converse of Theorem 21.4 is not true, for otherwise, the degrees 
of the elements of every algebraic extension of E over F would be 
bounded. But Q(22, 23 2, 24 2, . . .) is an algebraic extension of Q that 
contains elements of every degree over Q (see Exercise 3).

The next theorem is the field theory counterpart of Lagrange’s Theo-
rem for finite groups. Like all counting theorems, it has far-reaching 
consequences.

 Theorem 21.5 [K:F ] 5 [K:E ][E:F ]

Let K be a finite extension field of the field E and let E be a finite 
extension field of the field F. Then K is a finite extension field  
of F and [K:F] 5 [K:E][E:F].

Proof Let X 5 {x1, x2, . . . , xn} be a basis for K over E, and let 
Y 5 {y1, y2, . . . , ym} be a basis for E over F. It suffices to prove that

YX 5 {yj xi | 1 # j # m, 1 # i # n}

is a basis for K over F. To do this, let a [ K. Then there are elements b1, 
b2, . . . , bn [ E such that

a 5 b1x1 1 b2x2 1 ? ? ? 1 bnxn

and, for each i 5 1, . . . , n, there are elements ci1, ci2, . . . , cim [ F  
such that

bi 5 ci1y1 1 ci2y2 1 ? ? ? 1 cimym.

Thus,

a � g
n

i�1
 bixi � g

n

i�1
a g

m

j�1
 cijyjb xi � g

i, j
 cij1yjxi2.

This proves that YX spans K over F.
Now suppose there are elements cij in F such that

0 � g
i,j

cij(yjxi) � g
i
1g

j
(cijyj)2xi.

Then, since eachg
j

cijyj  [ E and X is a basis for K over E, we have

g
j

 
cijyj � 0

for each i. But each cij [ F and Y is a basis for E over F, so each cij 5 0. 
This proves that the set YX is linearly independent over F. 

Using the fact that for any field extension L of a field J, [L:J] 5 n if 
and only if L is isomorphic to Jn as vector spaces (see Exercise 39),  
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we may give a concise conceptual proof of Theorem 21.5, as follows. 
Let [K:E] 5 n and [E:F] 5 m. Then K < En and E < Fm, so that K <  
En < (Fm)n < Fmn. Thus, [K:F] 5 mn.

The content of Theorem 21.5 can be pictured as in Figure 21.2. Ex-
amples 3, 4, and 5 show how Theorem 21.5 is often utilized.

 ExamPlE 3 Since {1, 23} is a basis for Q(23, 25) over Q(25)  
(see Exercise 7) and {1, 25} is a basis for Q(25) over Q, the proof of Theo-
rem 21.5 shows that {1, 23, 25, 215} is a basis for Q(23, 25) over Q. 
(See Figure 21.3.) 

 ExamPlE 4 Consider Q(23 2, 24 3). Then [Q(23 2, 24 3):Q] 5 12. For, clearly, 
[Q(23 2, 24 3):Q] 5 [Q(23 2, 24 3):Q(23 2)][Q(23 2):Q] and [Q(23 2,  
24 3):Q] 5 [Q(23 2, 24 3):Q(24 3)][Q(24 3):Q] show that both 3 5 [Q(23 2): 
Q] and 4 5 [Q(24 3):Q] divide [Q(23 2, 24 3):Q]. Thus, [Q(23 2, 24 3):Q]  
$ 12. On the other hand, [Q(23 2, 24 3):Q(23 2)] is at most 4, since 24 3 is a  
zero of x4 2 3 [ Q(23 2)[x]. Therefore, [Q(23 2, 24 3):Q] 5 [Q(23 2, 24 3): 
Q(23 2)][Q(23 2):Q] # 4 ? 3 5 12. (See Figure 21.4.) 

Q(√3,√5 )

Q(√3) Q(√5)

2 2

2 2

4

Q

Q(√2, √3)

Q(√2) Q(√3)

4 3

3 4

12

Q

4

43

3

figure 21.3 figure 21.4

nm

n

m

K

E

F

[K:F ]  =  [K:E ][E:F ]

figure 21.2
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Theorem 21.5 can sometimes be used to show that a field does not 
contain a particular element. 

 ExamPlE 5 Recall from Example 7 in Chapter 17 that h(x) 5 15x4 2 
10x2 1 9x 1 21 is irreducible over Q. Let b be a zero of h(x) in some ex-
tension of Q. Then, even though we don’t know what b is, we can still 
prove that 23 2 is not an element of Q(b). For, if so, then Q , Q(23 2) # 
Q(b) and 4 5 [Q(b):Q] 5 [Q(b):Q(23 2)][Q(23 2):Q] implies that 3   
divides 4. Notice that this argument cannot be used to show that 22 is not 
contained in Q(b). 

 ExamPlE 6 Consider Q(23, 25). We claim that Q(23, 25) 5 
Q(23 1 25). The inclusion Q(23 1 25) # Q(23, 25) is clear.  
Now note that since 

(23 1 25)21 5 
1

23 � 25
  .  
23 � 25

23 � 25
 5 �

1

2 
(23 2 25), 

we know that 23 2 25 belongs to Q (23 1 25). It follows that  
[(23 1 25) 1 (23 2 25)]/2 5 23 and [(23 1 25 ) 2 (23 2 25)]/2 
5 25 both belong to Q(23 1 25), and therefore Q(23, 25) #  
Q(23 1 25). 

 ExamPlE 7 It follows from Example 6 and Theorem 20.3 that the min-
imal polynomial for 23 1 25 over Q has degree 4. How can we find 
this polynomial? We begin with x 5 23 1 25. Then x2 5 3 1  
2215 1 5. From this we obtain x2 2 8 5 2215 and, by squaring both 
sides, x4 2 16x 1 64 5 60. Thus, 23 1 25 is a zero of x4 2 16x 1 4. 
We know that this is the minimal polynomial of 23 1 25 over Q since 
it is monic and has degree 4. 

Example 6 shows that an extension obtained by ad joining two ele-
ments to a field can sometimes be obtained by adjoining a single  
element to the field. Our next theorem shows that, under certain condi-
tions, this can always be done.

 Theorem 21.6 Primitive Element Theorem (Steinitz, 1910)

If F is a field of characteristic 0, and a and b are algebraic over F, 
then there is an element c in F(a, b) such that F(a, b) 5 F(c).

Proof Let p(x) and q(x) be the minimal polynomials over F for a and b, 
respectively. In some extension K of F, let a1, a2, . . . , am and b1, b2,  
. . . , bn be the distinct zeros of p(x) and q(x), respectively, where a 5 a1 
and b 5 b1. Among the infinitely many elements of F, choose an  element 
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d not equal to (ai 2 a)/(b 2 bj) for all i $ 1 and all j . 1. In particular, ai 
2 a 1 d(b 2 bj) for j . 1.

We shall show that c 5 a 1 db has the property that F(a, b) 5 F(c). 
Certainly, F(c) # F(a, b). To verify that F(a, b) # F(c), it suffices to prove 
that b [ F(c), for then b, c, and d belong to F(c) and a 5 c 2 bd. Consider 
the polynomials q(x) and r(x) 5 p(c 2 dx) [that is, r(x) is  obtained by sub-
stituting c 2 dx for x in p(x)] over F(c). Since both q(b) 5 0 and r(b) 5 
p(c 2 db) 5 p(a) 5 0, both q(x) and r (x) are divisible by the minimal 
polynomial s(x) for b over F(c) (see Theorem 21.3). Because s(x) [ F(c)[x],  
we may complete the proof by proving that s(x) 5 x 2 b. Since s(x) is a 
common divisor of q(x) and r(x), the only possible zeros of s(x) in K are 
the zeros of q(x) that are also zeros of r(x). But r(bj) 5 p(c 2 dbj) 5 p(a 1 
db 2 dbj) 5 p(a 1 d(b 2 bj)) and d was chosen such that a 1  
d(b 2 bj) 2 ai for j . 1. It follows that b is the only zero of s(x) in K[x] 
and, therefore, s(x) 5 (x 2 b)u. Since s(x) is irreducible and F has charac-
teristic 0, Theorem 20.6 guarantees that u 5 1. 

In the terminology introduced earlier, it follows from Theorem 21.6 
and induction that any finite extension of a field of characteristic 0 is a 
simple extension. An element a with the property that E 5 F(a) is called 
a primitive element of E.

Properties of Algebraic Extensions
 Theorem 21.7 Algebraic over Algebraic Is Algebraic

If K is an algebraic extension of E and E is an algebraic extension  
of F, then K is an algebraic extension of F.

Proof Let a [ K. It suffices to show that a belongs to some finite exten-
sion of F. Since a is algebraic over E, we know that a is the zero of some 
irreducible polynomial in E[x], say, p(x) 5 bnx

n 1 ? ? ? 1 b0. Now we 
construct a tower of extension fields of F, as follows:

F0 5 F(b0),

F1 5 F0(b1), . . . , Fn 5 Fn21(bn).

In particular,

Fn 5 F(b0, b1, . . . , bn),

so that p(x) [ Fn[x]. Thus, [Fn(a):Fn] 5 n; and, because each bi is alge-
braic over F, we know that each [Fi11:Fi] is finite. So,

[Fn(a):F ] 5 [Fn(a):Fn][Fn:Fn21] ? ? ? [F1:F0][F0:F ]

is finite. (See Figure 21.5.) 
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 Corollary Subfield of Algebraic Elements

Let E be an extension field of the field F. Then the set of all elements 
of E that are algebraic over F is a subfield of E.

Proof Suppose that a, b [ E are algebraic over F and b 2 0. To show 
that a 1 b, a 2 b, ab, and a/b are algebraic over F, it suffices to show that 
[F(a, b):F] is finite, since each of these four elements belongs to F(a, b). 
But note that

[F(a, b):F ] 5 [F(a, b):F(b)][F(b):F ].

Also, since a is algebraic over F, it is certainly algebraic over F(b). Thus, 
both [F(a, b):F(b)] and [F(b):F] are finite. 

For any extension E of a field F, the subfield of E of the elements 
that are algebraic over F is called the algebraic closure of F in E.

One might wonder if there is such a thing as a maximal algebraic 
 extension of a field F—that is, whether there is an algebraic extension E 
of F that has no proper algebraic extensions. For such an E to exist, it is 
necessary that every polynomial in E[x] splits in E. Otherwise, it follows 
from Kronecker’s Theorem that E would have a proper algebraic exten-
sion. This condition is also sufficient. If every member of E[x] splits in E, 
and K is an algebraic extension of E, then every member of K is a zero of 
some element of E[x]. But the zeros of elements of E[x] are in E. A field 
that has no proper algebraic extension is called algebraically closed. In 
1910, Ernst Steinitz proved that every field F has a unique (up to isomor-
phism) algebraic extension that is algebraically closed. This field is called 
the algebraic closure of F. A proof of this result requires a sophisticated 
set theory background.

K

Fn(a)

Fn

F1

F0

F

Fn 21

E

figure 21.5
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In 1799, Gauss, at the age of 22, proved that C is algebraically  
closed. This fact was considered so important at the time that it was 
called the Fundamental Theorem of Algebra. Over a 50-year period, 
Gauss found three additional proofs of the Fundamental Theorem.  
Today more than 100 proofs exist. In view of the ascendancy of abstract 
algebra in the 20th century, a more appropriate phrase for Gauss’s result 
would be the Fundamental Theorem of Classical Algebra.

Exercises

It matters not what goal you seek
Its secret here reposes:
You’ve got to dig from week to week 
To get Results or Roses.

Edgar Guest

  1. Prove Theorem 21.2 and Theorem 21.3.
  2. Let E be the algebraic closure of F. Show that every polynomial in 

F[x] splits in E.

  3. Prove that Q(22, 23 2, 24 2, . . .) is an algebraic extension of Q but 
not a finite extension of Q. (This exercise is referred to in this 
 chapter.)

  4. Let E be an algebraic extension of F. If every polynomial in F[x] 
splits in E, show that E is algebraically closed.

  5. Suppose that F is a field and every irreducible polynomial in F[x] is 
linear. Show that F is algebraically closed.

  6. Suppose that f (x) and g(x) are irreducible over F and that deg f (x) 
and deg g(x) are relatively prime. If a is a zero of f (x) in some ex-
tension of F, show that g(x) is irreducible over F(a).

  7. Let a and b belong to Q with b 2 0. Show that Q(2a) 5 Q(2b) if 
and only if there exists some c [ Q such that a 5 bc2.

  8. Find the degree and a basis for Q(23 1 25) over Q(215). Find 
the degree and a basis for Q(22, 23 2, 24 2) over Q.

  9. Suppose that E is an extension of F of prime degree. Show that, for 
every a in E, F(a) 5 F or F(a) 5 E.

 10. If [F(a):F] 5 5, find [F(a3):F]. Does your argument apply equally 
well if a3 is replaced with a2 or a4?

 11. Without using the Primitive Element Theorem, prove that if [K:F] 
is prime, then K has a primitive element.

 12. Let a be a complex number that is algebraic over Q. Show that  
2a is algebraic over Q. 
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 13. Let b be a zero of f(x) 5 x5 1 2x 1 4 (see Example 8 in Chapter 17). 
Show that none of 22, 23 2, 24 2 belongs to Q(b).

 14. Prove that Q(22, 23 2) 5 Q(26 2).
 15. Let a and b be rational numbers. Show that Q(2a, 2b) 5  

Q(2a 1 2b).

 16. Find the minimal polynomial for 23 2 1 23 4 over Q.

 17. Let K be an extension of F. Suppose that E1 and E2 are contained in 
K and are extensions of F. If [E1:F ] and [E2:F ] are both prime, 
show that E1 5 E2 or E1 > E2 5 F.

 18. Let a be a nonzero algebraic element over F of degree n. Show that 
a21 is also algebraic over F of degree n.

 19. Suppose that a is algebraic over a field F. Show that a and 1 1 a21 

have the same degree over F.
 20. If ab is algebraic over F and b 2 0, prove that a is algebraic over F(b).
 21. Let E be an algebraic extension of a field F. If R is a ring and E $  

R $ F, show that R must be a field.
 22. Prove that p2 2 1 is algebraic over Q(p3).
 23. If a is transcendental over F, show that every element of F(a) that is 

not in F is transcendental over F.
 24. Suppose that E is an extension of F and a, b [ E. If a is algebraic 

over F of degree m, and b is algebraic over F of degree n, where m 
and n are relatively prime, show that [F(a, b):F ] 5 mn.

 25. Let K be a field extension of F and let a [ K. Show that  
[F(a):F(a3)] # 3. Find examples to illustrate that [F(a):F(a3)] can 
be 1, 2, or 3.

 26. Find an example of a field F and elements a and b from some  
extension field such that F(a, b) 2 F(a), F(a, b) 2 F(b), and [F(a, b):F]  
, [F(a):F ][F(b):F ].

 27. Let E be a finite extension of R. Use the fact that C is algebraically 
closed to prove that E 5 C or E 5 R.

 28. Suppose that [E:Q] 5 2. Show that there is an integer d such that  
E 5 Q(2d) where d is not divisible by the square of any prime.

 29. Suppose that p(x) [ F[x] and E is a finite extension of F. If p(x) is 
irreducible over F, and deg p(x) and [E:F ] are relatively prime, 
show that p(x) is irreducible over E.

 30. Let E be an extension field of F. Show that [E:F ] is finite if and only 
if E 5 F(a1, a2, . . . , an), where a1, a2, . . . , an are algebraic over F.

 31. If a and b are real numbers and a and b are transcendental over Q, 
show that either ab or a 1 b is also transcendental over Q.
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 32. Let f (x) be a nonconstant element of F[x]. If a belongs to some 
 extension of F and f (a) is algebraic over F, prove that a is algebraic 
over F.

 33. Let f (x) 5 ax2 1 bx 1 c [ Q[x]. Find a primitive element for the 
splitting field for f (x) over Q.

 34. Let f (x) and g(x) be irreducible polynomials over a field F and let  
a and b belong to some extension E of F. If a is a zero of f (x) and  
b is a zero of g(x), show that f (x) is irreducible over F(b) if and only 
if g(x) is irreducible over F(a).

 35. Let f (x) [ F[x]. If deg f (x) 5 2 and a is a zero of f (x) in some 
 extension of F, prove that F(a) is the splitting field for f (x) over F.

 36. Let a be a complex zero of x2 1 x 1 1 over Q. Prove that  
Q(2a) 5 Q(a).

 37. If F is a field and the multiplicative group of nonzero elements of F 
is cyclic, prove that F is finite.

 38. Let a be a complex number that is algebraic over Q and let r be a 
rational number. Show that ar is algebraic over Q.

 39. Prove that, if K is an extension field of F, then [K:F ] 5 n if and 
only if K is isomorphic to Fn as vector spaces. (See Exercise 27 in  
Chapter 19 for the appropriate definition. This exercise is referred 
to in this chapter.)

 40. Let a be a positive real number and let n be an integer greater than 1. 
Prove or disprove that [Q(a1/n):Q] 5 n.

 41. Let a and b belong to some extension field of F and let b be alge-
braic over F. Prove that [F(a, b):F(a)] # [F(a, b):F].

 42. Let F, K, and L be fields with F 8 K 8 L. If L is a finite extension of F 
and [L:F] 5 [L:K], prove that F � K.

 43. Let F be a field and K a splitting field for some nonconstant polyno-
mial over F. Show that K is a finite extension of F.

 44. Prove that C is not the splitting field of any polynomial in Q[x].
 45. Prove that 22 is not an element of Q1p2.
 46. Let a �  cos 

2p
7 � i sin 

2p
7  and b �  cos 

2p
5 � i sin 

2p
5 . Prove that b  

is not in Q1a2.
 47. Let m be a positive integer. If a is transcendental over a field F, 

prove that am is transcendental over F.
 48. Suppose K is an extension of F of degree n. Prove that K can be 

written in the form F(x1, x2, ), xn) for some x1, x2, ), xn in K.
 49. Prove that there are no positive integers m and n such that 22

m
 5 pn.
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Suggested Readings

R. L. Roth, “On Extensions of Q by Square Roots,” American Mathemati-
cal Monthly 78 (1971): 392–393.

In this paper, it is proved that if p1, p2, . . . , pn are distinct primes, then 
[Q(2p1,2p2, . . . , 2pn):Q] 5 2n.

Paul B. Yale, “Automorphisms of the Complex Numbers,” Mathematics  
Magazine 39 (1966): 135–141.

This award-winning expository paper is devoted to various results on  
automorphisms of the complex numbers.
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One cannot overestimate the importance of 
this paper [by Steinitz]. The appearance of 
this paper marks a turning point in the his-
tory of algebra of the 20th century.
 bartel van der waerden

Ernst Steinitz was born in Laurahtte, 
Silesia, Germany (now in Poland) on June 13, 
1871. He received a Ph.D. at the University of 
Breslau in 1894. Steinitz’s seminal work was 
a 1910 paper in which he was the first to give 
an abstract definition of the concept of a 
“field.” Among the concepts he introduced 
there are: prime field, perfect fields, degree of 
an extension, and algebraic closure. In his 
classic textbook on Modern Algebra Van der 
Waerden wrote: “Almost all the notions and 
facts about fields which we teach our students 
in such a course, are contained in Steinitz’s 
paper.” Hulmut Hasse wrote in his textbook 
on “Higher Algebra”: “Every algebraist 
should have read at least once this basic origi-
nal paper on field theory.” In their book on the 

Ernst Steinitz

history of mathematics Bourbaki describe 
Steinitz’s paper on fields as “a  fundamental 
work which may be considered as the origin 
of today’s concept of algebra.”

In addtion to field theory Steinitz made 
important contributions to theory of polyhe-
dra, module theory, linear algebra, algebraic 
geometry and graph theory. Two of his fa-
mous theorems are the “Steinitz replacement 
theorem” for vector spaces and the “Primitive 
Element Theorem.” He died on September 
29, 1928 in Kiel, Germany.

To find more information about Steinitz, 
visit

www.rzuser.uni-heidelberg.de/ ̃ ci3/
STEINITZ.pdf
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Finite Fields

Even though these numerical systems [finite fields] look very dif-
ferent from the numerical systems we are used to, such as the 
rational numbers, they have the same salient properties.

Edward Frenkel, Love and Math

This theory [of finite fields] is of considerable interest in its own 
right and it provides a particularly beautiful example of how the 
general theory of the preceding chapters fits together to provide a 
rather  detailed description of all finite fields.

Richard A. Dean, Elements of Abstract Algebra

22

Classification of Finite Fields
In this, our final chapter on field theory, we take up one of the most beau-
tiful and important areas of abstract algebra—finite fields. Finite fields 
were first introduced by Galois in 1830 in his proof of the unsolvability 
of the general quintic equation. When Cayley invented matrices a few 
decades later, it was natural to investigate groups of matrices over  finite 
fields. To this day, matrix groups over finite fields are among the most 
important classes of groups. In the past 60 years, there have been impor-
tant applications of finite fields in computer science, coding theory, in-
formation theory, and cryptography. But, besides the many uses of finite 
fields in pure and applied mathematics, there is yet another good reason 
for studying them. They are just plain fun!

The most striking fact about finite fields is the restricted nature of their 
order and structure. We have already seen that every finite field has prime-
power order (Exercise 51 in Chapter 13). A converse of sorts is also true.

 Theorem 22.1 Classification of Finite Fields

For each prime p and each positive integer n, there is, up to 
isomorphism, a unique finite field of order pn.
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PROOF Consider the splitting field E of f (x) 5 xpn 2 x over Zp. We  
will show that |E| 5 pn. Since f(x) splits in E, we know that f(x) has ex-
actly pn zeros in E, counting multiplicity. Moreover, by Theorem 20.5, 
every zero of f(x) has multiplicity 1. Thus, f(x) has pn distinct zeros in E. 
On the other hand, the set of zeros of f (x) in E is closed under addition, 
subtraction, multiplication, and division by nonzero elements (see Exer-
cise 39), so that the set of zeros of f (x) is itself an extension field of  
Zp in which f (x) splits. Thus, the set of zeros of f (x) is E and, therefore, 
|E| 5 pn.

To show that there is a unique field for each prime-power, suppose 
that K is any field of order pn. Then K has a subfield isomorphic to Zp 
(generated by 1), and, because the nonzero elements of K form a 
 multiplicative group of order pn 2 1, every element of K is a zero of f (x) 
5 xpn 2 x (see Exercise 29). So, K must be a splitting field for f(x) over 
Zp. By the corollary to Theorem 20.4, there is only one such field up to 
 isomorphism. 

The existence portion of Theorem 22.1 appeared in the works of 
Galois and Gauss in the first third of the 19th century. Rigorous proofs 
were given by Dedekind in 1857 and by Jordan in 1870 in his classic 
book on group theory. The uniqueness portion of the theorem was 
proved by E. H. Moore in an 1893 paper concerning finite groups. The 
mathematics historian E. T. Bell once said that this paper by Moore 
marked the beginning of abstract algebra in America.

Because there is only one field for each prime-power pn, we may un-
ambiguously denote it by GF( pn), in honor of Galois, and call it the 
Galois field of order pn.

Structure of Finite Fields
The next theorem tells us the additive and multiplicative group structure 
of a field of order pn.

 Theorem 22.2 Structure of Finite Fields

As a group under addition, GF(pn) is isomorphic to

Zp % Zp % . . . % Zp.

n factors

As a group under multiplication, the set of nonzero elements of 
GF( pn) is isomorphic to Zpn21 (and is, therefore, cyclic).
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PROOF Since GF( pn) has characteristic p (Theorem 13.3), every  
nonzero element of GF( pn) has additive order p. Then by the Funda-
mental Theorem of Finite Abelian Groups, GF( pn) under addition is 
isomorphic to a direct product of n copies of Zp.

To see that the multiplicative group GF( pn)* of nonzero elements of 
GF(pn) is cyclic, we first note that by the Fundamental Theorem of  
Finite Abelian Groups (Theorem 11.1), GF(pn)* is isomorphic to a di-
rect product of the form Zn1

 % Zn2
 % ? ? ? % Znm

. If the orders of these 
components are pairwise relatively prime, then it follows from Corollary 
1 of Theorem 8.2 that GF(pn)* is cyclic. Hence we  may assume that 
there is an integer d . 1 that divides the orders of two of the compo-
nents. From the Fundamental Theorem of Cyclic Groups (Theorem 4.3) 
we know that each of these components has a subgroup of order d. This 
means that GF(pn)* has two distinct subgroups of order d, call them 
H and K. But then  every element of H and K is a zero of xd 2 1, which 
contradicts the fact that a polynomial of degree d over a field can have at 
most d zeros (Corollary 3 of Theorem 16.2).  

Some students misinterpret Theorem 22.2 to mean that Zp % Zp  
% ? ? ? % Zp is a field of order pn. Since any element of Zp % Zp % ? ? ? % 

Zp that has at least one coordinate equal to 0 cannot have an inverse, it is 
not a field.

Since Zp % Zp % ? ? ? % Zp is a vector space over Zp with {(1, 0, 
. . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)} as a basis, we have the 
 following useful and aesthetically appealing formula.

 Corollary 1

[GF(pn):GF(p)] 5 n

 Corollary 2 GF(pn) Contains an Element of Degree n

Let a be a generator of the group of nonzero elements of GF( pn) 
under multiplication. Then a is algebraic over GF( p) of degree n.

PROOF Observe that [GF( p)(a):GF( p)] 5 [GF( pn):GF( p)] 5 n. 

 EXAMPLE 1 Let’s examine the field GF(16) in detail. Since x4 1  
x 1 1 is irreducible over Z2, we know that

GF(16) < {ax3 1 bx2 1 cx 1 d 1 kx4 1 x 1 1l | a, b, c, d [ Z2}.

Thus, we may think of GF(16) as the set

F 5 {ax3 1 bx2 1 cx 1 d | a, b, c, d [ Z2},
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where addition is done as in Z2[x], but multiplication is done modulo  
x4 1 x 1 1. For example,

(x3 1 x2 1 x 1 1)(x3 1 x) 5 x3 1 x2,

since the remainder upon dividing

(x3 1 x2 1 x 1 1)(x3 1 x) 5 x6 1 x5 1 x2 1 x

by x4 1 x 1 1 in Z2[x] is x3 1 x2. An easier way to perform the same 
calculation is to observe that in this context x4 1 x 1 1 is 0, so

x4 5 2x 2 1 5 x 1 1,
 x5 5 x2 1 x,

x6 5 x3 1 x2.

Thus,

x6 1 x5 1 x2 1 x 5 (x3 1 x2) 1 (x2 1 x) 1 x2 1 x 5 x3 1 x2.

Another way to simplify the multiplication process is to make use of 
the fact that the nonzero elements of GF(16) form a cyclic group of 
order 15. To take advantage of this, we must first find a generator of this 
group. Since any element F* must have a multiplicative order that di-
vides 15, all we need to do is find an element a in F* such that a3 2 1 and 
a5 2 1. Obviously, x has these properties. So, we may think of GF(16) 
as the set {0, 1, x, x2, . . . , x14}, where x15 5 1. This makes multiplica-
tion in F trivial, but, unfortunately, it makes addition more difficult. For 
example, x10 ? x7 5 x17 5 x2, but what is x10 1 x7? So, we face a di-
lemma. If we write the elements of F* in the additive form ax3 1 bx2 1 
cx 1 d, then addition is easy and multiplication is hard. On the other 
hand, if we write the elements of F* in the multiplicative form xi, then 
multiplication is easy and addition is hard. Can we have the best of 
both? Yes, we can. All we need to do is use the relation x4 5 x 1 1 to 
make a two-way conversion table, as in Table 22.1.

So, we see from Table 22.1 that

x10 1 x7 5 (x2 1 x 1 1)  1 (x3 1 x 1 1)
 5 x3 1 x2 5 x6

and

 (x3 1 x2 1 1)(x3 1 x2 1 x 1 1) 5 x13 ? x12

  5 x25 5 x10 5 x2 1 x 1 1. 

Don’t be misled by the preceding example into believing that the 
 element x is always a generator for the cyclic multiplicative group  
of nonzero elements. It is not. (See Exercise 21.) Although any two
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Table 22.1  Conversion Table for Addition and Multiplication in GF(16)

 Multiplicative Additive Form to
 Form to  Multiplicative
 Additive Form Form

1 1 1 1
x x x x
x2 x2 x 1 1 x4

x3 x3 x2 x2

x4 x 1 1 x2 1 x x5

x5 x2 1 x x2 1 1 x8

x6 x3 1 x2 x2 1 x 1 1 x10

x7 x3 1 x 1 1 x3 x3

x8 x2 1 1 x3 1 x2 x6

x9 x3 1 x x3 1 x x9

x10 x2 1 x 1 1 x3 1 1 x14

x11 x3 1 x2 1 x x3 1 x2 1 x x11

x12 x3 1 x2 1 x 1 1 x3 1 x2 1 1 x13

x13 x3 1 x2 1 1 x3 1 x 1 1 x7

x14 x3 1 1 x3 1 x2 1 x 1 1 x12

irreducible polynomials of the same degree over Zp[x] yield isomorphic 
fields, some are better than others for computational purposes.

 EXAMPLE 2 Consider f(x) 5 x3 1 x2 1 1 over Z2. We will show how to 
write f(x) as the product of linear factors. Let F 5 Z2[x]/kf(x)l and let a be a 
zero of f(x) in F. Then |F| 5 8 and |F*| 5 7. So, by Corollary 2 to Theorem 
7.1, we know that |a| 5 7. Thus, by Theorem 20.3,

 F 5 {0, 1, a, a2, a3, a4, a5, a6}
  5 {0, 1, a, a 1 1, a2, a2 1 a 1 1, a2 1 1, a2 1 a}.

We know that a is one zero of f(x), and we can test the other elements 
of F to see if they are zeros. We can simplify the calculations by using the 
fact that a3 1 a2 1 1 5 0 to make a conversion table for the two forms of 
writing the elements of F. Because char F 5 2, we know that  
a3 5 a2 1 1. Then,

a4 5 a3 1 a 5 (a2 1 1) 1 a 5 a2 1 a 1 1,
a5 5 a3 1 a2 1 a 5 (a2 1 1) 1 a2 1 a 5 a 1 1,
a6 5 a2 1 a,  
a7 5 1.

Now let’s see whether a2 is a zero of f(x).

f (a2) 5 (a2)3 1 (a2)2 1 1 5 a6 1 a4 1 1
     5 (a2 1 a) 1 (a2 1 a 1 1) 1 1 5 0.
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So, yes, it is. Next we try a3.

 f (a3) 5 (a3)3 1 (a3)2 1 1 5 a9 1 a6 1 1
  5 a2 1 (a2 1 a) 1 1 5 a 1 1 2 0.

Now a4.

 f (a4) 5 (a4)3 1 (a4)2 1 1 5 a12 1 a8 1 1 
 5 a5 1 a 1 1 5 (a 1 1) 1 a 1 1 5 0.

So, a4 is our remaining zero. Thus, f(x) 5 (x 2 a)(x 2 a2)(x 2 a4) 5  
(x 1 a)(x 1 a2)(x 1 a4), since char F 5 2.

We may check this factorization by expanding the product and using 
a conversion table to obtain f(x) 5 x3 1 x2 1 1. 

Subfields of a Finite Field
Theorem 22.1 gives us a complete description of all finite fields. The 
following theorem gives us a complete description of all the subfields of 
a finite field. Notice the close analogy between this theorem and Theo-
rem 4.3, which describes all the subgroups of a finite cyclic group.

 Theorem 22.3 Subfields of a Finite Field

For each divisor m of n, GF( pn) has a unique subfield of order pm. 
Moreover, these are the only subfields of GF( pn).

PROOF To show the existence portion of the theorem, suppose that m di-
vides n. Then, since

pn 2 1 5 ( pm 2 1)( pn2m 1 pn22m 1 ? ? ? 1 pm 1 1),

we see that pm 2 1 divides pn 2 1. For simplicity, write pn 2 1 5  
(pm 2 1)t. Let K 5 {x [ GF(pn) | xpm 5 x}. We leave it as an easy exer-
cise for the reader to show that K is a subfield of GF(pn) (Exercise 27). 
Since the polynomial x pm 2 x has at most pm zeros in GF(pn), we have 
|K| # pm. Let kal 5 GF(pn)*. Then |at| 5 pm 2 1, and since (at)pm21 5 1, 
it follows that at [ K. So, K is a subfield of GF(pn) of order pm. 

The uniqueness portion of the theorem follows from the observation 
that if GF(pn) had two distinct subfields of order pm, then the polynomial 
x pm 2 x would have more than pm zeros in GF(pn). This contradicts Cor-
ollary 3 of Theorem 16.2.
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Finally, suppose that F is a subfield of GF( pn). Then F is isomorphic 
to GF( pm) for some m and, by Theorem 21.5,

 n 5 [GF( pn):GF( p)]
 5 [GF( pn):GF( pm)][GF( pm):GF( p)]
 5 [GF( pn):GF( pm)]m.

Thus, m divides n. 

Theorems 22.2 and 22.3, together with Theorem 4.3, make the task of 
finding the subfields of a finite field a simple exercise in arithmetic.

 EXAMPLE 3 Let F be the field of order 16 given in Example 1. Then 
there are exactly three subfields of F, and their orders are 2, 4, and 16. 
Obviously, the subfield of order 2 is {0, 1} and the subfield of order 16 
is F itself. To find the subfield of order 4, we merely observe that the 
three nonzero elements of this subfield must be the cyclic subgroup of 
F* 5 kxl of order 3. So the subfield of order 4 is

 {0, 1, x5, x10} 5 {0, 1, x2 1 x, x2 1 x 1 1}. 

 EXAMPLE 4 If F is a field of order 36 5 729 and a is a generator of F*, 
then the subfields of F are

 1. GF(3) 5 {0} < ka364l 5 {0, 1, 2},
 2. GF(9) 5 {0} < ka91l,
 3. GF(27) 5 {0} < ka28l,
 4. GF(729) 5 {0} < kal. 

 EXAMPLE 5 The subfield lattice of GF(224) is the following.

 

GF(28)

GF(24)

GF(22)

GF(23)

GF(26)

GF(212)

GF(224)

GF(2)  
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Exercises

No pressure, no diamonds.
Mary Case

  1. Find [GF(729):GF(9)] and [GF(64):GF(8)].
  2. If m divides n, show that [GF(pn):GF( pm)] 5 n/m.
  3. Draw the lattice of subfields of GF(64).
  4. Let a be a zero of x3 1 x2 1 1 in some extension field of Z2. Find 

the multiplicative inverse of a 1 1 in Z2[a].
  5. Let a be a zero of x3 1 x2 1 1 in some extension field of Z2. Solve 

the equation (a 1 1) x 1 a 5 a2 1 1 for x.
  6. Prove that every non-identity element in GF(32)*  is a generator of 

GF(32)*.
  7. Let a be a zero of f (x) 5 x2 1 2x 1 2 in some extension field of Z3. 

Find the other zero of f (x) in Z3[a].
  8. Let a be a zero of f (x) 5 x3 1 x 1 1 in some extension field of Z2. 

Find the other zeros of f (x) in Z2[a].
  9. Let K be a finite extension field of a finite field F. Show that there is 

an element a in K such that K 5 F(a).
 10. How many elements of the cyclic group GF(81)* are generators?
 11. Let f (x) be a cubic irreducible over Z2. Prove that the splitting field 

of f (x) over Z2 has order 8.
 12. Prove that the rings Z3[x]/kx2 1 x 1 2l and Z3[x]/kx2 1 2x 1 2l are  

isomorphic.
 13. Show that the Frobenius mapping f: GF(pn) S GF( pn), given by  

a S ap, is a ring automorphism of order n (that is, fn is the identity 
mapping). (This exercise is referred to in Chapter 32.)

 14. Determine the possible finite fields whose largest proper subfield  
is GF(25).

 15. Prove that the degree of any irreducible factor of x 8 2 x over Z2 is  
1 or 3.

 16. Find the smallest field that has exactly 6 subfields.
 17. Find the smallest field of characteristic 2 that contains an element 

whose multiplicative order is 5 and the smallest field of characteris-
tic 3 that contains an element whose multiplicative order is 5.

 18. Verify that the factorization for f (x) 5 x3 1 x2 1 1 over Z2 given in 
Example 2 is correct by expanding.

 19. Show that x is a generator of the cyclic group (Z3[x]/kx3 1 2x 1 1l)*.
 20. Suppose that f (x) is a fifth-degree polynomial that is irreducible over 

Z2. Prove that x is a generator of the cyclic group (Z2[x]/k f (x)l)*.
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 21. Show that x is not a generator of the cyclic group (Z3[x]/kx3 1  
2x 1 2l)*. Find one such generator.

 22. If f (x) is a cubic irreducible polynomial over Z3, prove that either x 
or 2x is a generator for the cyclic group (Z3[x]/kf (x)l)*.

 23. Prove the uniqueness portion of Theorem 22.3 using a group 
 theoretic argument.

 24. Suppose that a and b belong to GF(81)*, with |a| 5 5 and |b| 5 16. 
Show that ab is a generator of GF(81)*.

 25. Construct a field of order 9 and carry out the analysis as in Exam - 
ple 1, including the conversion table.

 26. Show that any finite subgroup of the multiplicative group of a field 
is cyclic.

 27. Show that the set K in the proof of Theorem 22.3 is a subfield.
 28. If g(x) is irreducible over GF( p) and g(x) divides x pn

 2 x, prove that 
deg g(x) divides n.

 29. Use a purely group theoretic argument to show that if F is a field  
of order pn, then every element of F* is a zero of x pn

 2 x. (This exer-
cise is referred to in the proof of Theorem 22.1.)

 30. Draw the subfield lattices of GF(318) and of GF(230).
 31. How does the subfield lattice of GF(230) compare with the subfield 

lattice of GF(330)?
 32. If p(x) is a polynomial in Zp[x] with no multiple zeros, show that 

p(x) divides xpn 2 x for some n.
 33. Suppose that p is a prime and p 2 2. Let a be a nonsquare in  

GF(p)—that is, a does not have the form b2 for any b in GF(p). Show 
that a is a nonsquare in GF(pn) if n is odd and that a is a  
square in GF(pn) if n is even.

 34. Let f (x) be a cubic irreducible over Zp, where p is a prime. Prove 
that the splitting field of f (x) over Zp has order p3 or p6.

 35. Show that every element of GF(pn) can be written in the form ap for 
some unique a in GF( pn).

 36. Suppose that F is a field of order 1024 and F* 5 kal. List the ele-
ments of each subfield of F.

 37. Suppose that F is a field of order 125 and F* 5 kal. Show that  
a62 5 21.

 38. Show that no finite field is algebraically closed.
 39. Let E be the splitting field of f (x) 5 x pn

 2 x over Zp. Show that the 
set of zeros of f (x) in E is closed under addition, subtraction, multi-
plication, and division (by nonzero elements). (This exercise is re-
ferred to in the proof of Theorem 22.1.)
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 40. Suppose that L and K are subfields of GF(pn). If L has ps elements 
and K has pt elements, how many elements does L > K have?

 41. Let a be a non-zero element of GF(pn). Prove that the number of 
solutions of x p–1 5 a is 0 or p – 1. 

 42. Let a be a zero of an irreducible quadratic polynomial over Z5. Prove 
that there are elements a and b in Z5[a] such that (3a 1 2)(aa 1 b) 
5 4a 1 1.

 43. Show that a finite extension of a finite field is a simple extension.
 44. Let F be a finite field of order q and let a be a nonzero element in F. 

If n divides q 2 1, prove that the equation xn 5 a has either no solu-
tions in F or n distinct solutions in F.

 45. Give an example to show that the mapping a S ap need not be an 
automorphism for arbitrary fields of prime characteristic p.

 46. In the field GF(pn), show that for every positive divisor d of n, 
xpn

� x has an irreducible factor over GF(p) of degree d.
 47. Let a be a primitive element for the field GF(pn), where p is an odd 

prime and n is a positive integer. Find the smallest positive integer k 
such that ak 5 p 2 1.

 48. Let a be a primitive element for the field GF(5n), where n is a posi-
tive integer. Find the smallest positive  integer k such that ak 5 2.

 49. Let p be a prime such that p mod 4 5 1. How many elements of 
order 4 are in GF(pn)*?

 50. Let p be a prime such that p mod 4 5 3. How many elements of 
order 4 are in GF(pn)*?

Computer Exercises

Software for the computer exercises in this chapter is available at the website:

http://www.d.umn.edu/~jgallian

Suggested Reading

Judy L. Smith and J. A. Gallian, “Factoring Finite Factor Rings,” 
 Mathematics Magazine 58 (1985): 93–95.

This paper gives an algorithm for finding the group of units of the ring 
F[x]/kg(x)ml.
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One of the books [written by L. E.  Dickson] is 
his major, three-volume History of the 
Theory of Numbers which would be a life’s 
work by  itself for a more ordinary man. 

a. a. albert,  
Bulletin of the American  

Mathematical Society

Leonard Eugene Dickson was born in 
Independence, Iowa, on January 22, 1874. In 
1896, he received the first Ph.D. to be 
awarded in mathematics at the University of 
Chicago. After spending a few years at the 
University of California and the University 
of Texas, he was appointed to the faculty at 
Chicago and remained there until his retire-
ment in 1939.

Dickson was one of the most prolific 
mathematicians of the 20th century, writing 
267 research papers and 18 books. His prin-
cipal interests were matrix groups, finite 
fields, algebra, and number theory.

Dickson had a disdainful attitude toward 
applicable mathematics; he would often say, 
“Thank God that number theory is unsullied 
by any applications.” He also had a sense of 
humor. Dickson would often mention his 

L .E. Dickson

honeymoon: “It was a great success,” he 
said, “except that I only got two research 
 papers written.”

Dickson received many honors in his 
 career. He was the first to be awarded the 
prize from the American Association for the 
Advancement of Science for the most  notable 
contribution to the advancement of science, 
and the first to receive the Cole Prize in alge-
bra from the American Mathematical Society. 
The University of Chicago has research in-
structorships named after him. Dickson died 
on January 17, 1954.

For more information about Dickson, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Geometric Constructions

At the age of eleven, I began Euclid. . . . This was one of the great 
events of my life, as dazzling as first love.

Bertrand Russell

Meton: With the straight ruler I set to work to make the circle four-
cornered.

Aristophanes (ca 444–380 BC)

Historical Discussion 
of Geometric Constructions

The ancient Greeks were fond of geometric constructions. They were 
 especially interested in constructions that could be achieved using only a 
straightedge without markings and a compass. They knew, for example, 
that any angle can be bisected, and they knew how to construct an equi-
lateral triangle, a square, a regular pentagon, and a regular hexagon. But 
they did not know how to trisect every angle or how to construct a regular 
seven-sided polygon (heptagon). Another problem that they attempted 
was the duplication of the cube—that is, given any cube, they tried to 
construct a new cube having twice the volume of the given one using 
only an unmarked straightedge and a compass. Legend has it that the 
ancient Athenians were told by the oracle at Delos that a plague would 
end if they constructed a new altar to Apollo in the shape of a cube with 
double the volume of the old altar, which was also a cube. Besides 
“ doubling the cube,” the Greeks also attempted to “square the circle”—to 
construct a square with area equal to that of a given circle. They knew how 
to solve all these problems using other means, such as a compass and a 
straightedge with two marks, or an unmarked straightedge and a spiral, 
but they could not achieve any of the constructions with a compass and an 
unmarked straightedge alone. These problems vexed mathematicians for 
over 2000 years. The resolution of these perplexities was made possible 
when they were transferred from questions of geometry to questions of 
algebra in the 19th century.

23
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The first of the famous problems of antiquity to be solved was that of 
the construction of regular polygons. It had been known since  Euclid that 
regular polygons with a number of sides of the form 2k, 2k ? 3, 2k ? 5, and 
2k ? 3 ? 5 could be constructed, and it was believed that no others were 
possible. In 1796, while still a teenager, Gauss proved that the  
17-sided regular polygon is constructible. In 1801, Gauss asserted that a 
regular polygon of n sides is constructible if and only if n has the form 
2kp1p2 ? ? ? pi, where the p’s are distinct primes of the form 22s

 1 1. We 
provide a proof of this statement in  Theorem 33.5.

Thus, regular polygons with 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, and 20 
sides are possible to construct, whereas those with 7, 9, 11, 13, 14, 18, 
and 19 sides are not. How these constructions can be effected is another 
matter. One person spent 10 years trying to determine a way to construct 
the 65,537-sided polygon.

Gauss’s result on the constructibility of regular n-gons eliminated 
another of the famous unsolved problems, because the ability to trisect 
a 60° angle enables one to construct a regular 9-gon. Thus, there is no 
method for trisecting a 60° angle with an unmarked straightedge and a 
compass. In 1837, Wantzel proved that it was not possible to double the 
cube. The problem of the squaring of a circle resisted all attempts until 
1882, when Ferdinand Lindemann proved that p is transcendental, 
since, as we will show, all constructible numbers are algebraic.

Constructible Numbers
With the field theory we now have, it is an easy matter to solve the follow-
ing problem: Given an unmarked straightedge, a compass, and a unit 
length, what other lengths can be constructed? To begin, we call a real 
number a constructible if, by means of an unmarked straightedge, a com-
pass, and a line segment of length 1, we can construct a line segment of 
length |a| in a finite number of steps. It follows from plane geometry that if 
a and b (b 2 0) are constructible numbers, then so are a 1 b, a 2 b, a ? b, 
and a/b. (See the  exercises for hints.) Thus, the set of constructible num-
bers contains Q and is a subfield of the real numbers. What we desire is an 
algebraic characterization of this field. To derive such a characterization, let 
F be any subfield of the  reals. Call the subset {(x, y) [ R2 |  x, y [ F} of the 
real plane the plane of F, call any line joining two points in the plane of F a 
line in F, and call any circle whose center is in the plane of F and whose 
radius is in F a circle in F. Then a line in F has an equation of the form

ax 1 by 1 c 5 0,    where a, b, c [ F,

and a circle in F has an equation of the form

x2 1 y2 1 ax 1 by 1 c 5 0,    where a, b, c [ F.

37923 | Geometric Constructions
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In particular, note that to find the point of intersection of a pair of lines 
in F or the points of intersection of a line in F and a circle in F, one 
need only solve a linear or quadratic equation in F. We now come to the 
crucial question. Starting with points in the plane of some field F, which 
points in the real plane can be obtained with an unmarked straightedge 
and a compass? Well, there are only three ways to construct points, 
starting with points in the plane of F.

 1. Intersect two lines in F.
 2. Intersect a circle in F and a line in F.
 3. Intersect two circles in F.

In case 1, we do not obtain any new points, because two lines in F inter-
sect in a point in the plane of F. In case 2, the point of intersection is the 
solution to either a linear equation in F or a quadratic equation in  
F. So, the point lies in the plane of F or in the plane of F(2a), where  
a [ F and a is positive. In case 3, no new points are obtained, because, 
if the two circles are given by x2 1 y2 1 ax 1 by 1 c 5 0 and  
x2 1 y2 1 a9x 1 b9y 1 c9 5 0, then we have (a 2 a9)x 1 (b 2 b9)y 1  
(c 2 c9) 5 0, which is a line in F. So, the points of intersection are in F.

It follows, then, that the only points in the real plane that can be 
constructed from the plane of a field F are those whose coordinates lie 
in fields of the form F(2a), where a [ F and a is positive. Of course, 
we can start over with F1 5 F(2a) and construct points whose coor-
dinates lie in fields of the form F2 5 F1(2b), where b [ F1 and b is 
positive. Continuing in this fashion, we see that a real number c is 
 constructible if and only if there is a series of fields Q 5 F1 # F2 # 
? ? ? # Fn # R such that Fi11 5 Fi(2ai), where ai [ Fi and c [ Fn. 
Since [Fi11:Fi] 5 1 or 2, we see by Theorem 21.5 that if c is construct-
ible, then [Q(c):Q] 5 2k for some nonnegative integer k.

We now dispatch the problems that plagued the Greeks. Consider dou-
bling the cube of volume 1. The enlarged cube would have an edge of 
length 23 2. But [Q(23 2):Q] 5 3, so such a cube cannot be constructed. 

Next consider the possibility of trisecting a 60° angle. If it were 
 possible to trisect an angle of 60°, then cos 20° would be constructible. 
(See Figure 23.1.) In particular, [Q(cos 20°):Q] 5 2k for some k. Now, 

Figure 23.1

(0, 0) (1, 0)

(cos 20°, sin 20°)
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using the trigonometric identity cos 3u 5 4 cos3 u 2 3 cos u, with u  5 20°,  
we see that 1/2 5 4 cos3 20° 2 3 cos 20°, so that cos 20° is a zero of 
8x3 2 6x 2 1. But, since 8x3 2 6x 2 1 is irreducible over Q (see Exercise 13),  
we must also have [Q(cos 20°):Q] 5 3. This contradiction shows that 
trisecting a 60° angle is impossible.

The remaining problems are relegated to the reader as Exercises 14, 
15, and 17.

Angle-Trisectors and Circle-Squarers
Down through the centuries, hundreds of people have claimed to have 
achieved one or more of the impossible constructions. In 1775, the Paris 
Academy, so overwhelmed with these claims, passed a resolution to no 
longer examine these claims or claims of machines purported to exhibit 
perpetual motion. Although it has been more than 100 years since the last 
of the constructions was shown to be impossible, there continues to be a 
steady parade of people who claim to have done one or more of them. 
Most of these people have heard that this is impossible but have refused 
to believe it. One person insisted that he could trisect any angle with a 
straightedge alone [2, p. 158]. Another found his trisection in 1973 after 
12,000 hours of work [2, p. 80]. One got his from God [2, p. 73]. In 1971, 
a person with a Ph.D. in mathematics asserted that he had a valid trisec-
tion method [2, p. 127]. Many people have claimed the hat trick: trisect-
ing the angle, doubling the cube, and squaring the circle. Two men who 
did this in 1961 succeeded in having their accomplishment noted in the 
Congressional Record [2, p. 110]. Occasionally, newspapers and maga-
zines have run stories about “doing the impossible,” often giving the im-
pression that the construction may be valid. Many angle-trisectors and 
circle-squarers have had their work published at their own expense and 
distributed to colleges and universities. One had his printed in four lan-
guages! There are two delightful books written by mathematicians about 
their encounters with these people. The books are full of wit, charm, and 
humor ([1] and [2]).

Exercises

Only prove to me that it is impossible, and I will set about it this very  
evening.

Spoken by a member of the audience after De Morgan gave a 
lecture on the impossibility of squaring the circle.

  1. If a and b are constructible numbers and a $ b . 0, give a geomet-
ric proof that a 1 b and a 2 b are constructible.
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  2. If a and b are constructible, give a geometric proof that ab is con-
structible. (Hint: Consider the following figure. Notice that all seg-
ments in the figure can be made with an unmarked straightedge and a 
compass.)

b

a

1

  3. Prove that if c is a constructible number, then so is 2|c|. (Hint: 
Consider the following semicircle with diameter 1 1 |c|.) (This ex-
ercise is referred to in Chapter 33.)

α

α

d

c1

  4. If a and b (b 2 0) are constructible numbers, give a geometric proof 
that a/b is constructible. (Hint: Consider the following figure.)

a

b

0
1

  5. Prove that sin u is constructible if and only if cos u is constructible.
  6. Prove that an angle u is constructible if and only if sin u is con-

structible.
  7. Prove that cos 2u is constructible if and only if cos u is con-

structible.
  8. Prove that 30° is a constructible angle.
  9. Prove that a 45° angle can be trisected with an unmarked straight-

edge and a compass.
 10. Prove that a 40° angle is not constructible.
 11. Show that the point of intersection of two lines in the plane of a 

field F lies in the plane of F.
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 12. Show that the points of intersection of a circle in the plane of a field 
F and a line in the plane of F are points in the plane of F or in the 
plane of F(2a), where a [ F and a is positive. Give an example  
of a circle and a line in the plane of Q whose points of intersection 
are not in the plane of Q.

 13. Prove that 8x3 2 6x 2 1 is irreducible over Q.
 14. Use the fact that 8 cos3(2p/7) 1 4 cos2(2p/7) 2 4 cos(2p/7) 2 1 5 0 

to prove that a regular seven-sided polygon is not constructible with an 
unmarked straightedge and a compass.

 15. Show that a regular 9-gon cannot be constructed with an unmarked 
straightedge and a compass.

 16. Show that if a regular n-gon is constructible, then so is a regular 
 2n-gon.

 17. (Squaring the Circle) Show that it is impossible to construct, with 
an unmarked straightedge and a compass, a square whose area 
equals that of a circle of radius 1. You may use the fact that p is 
transcendental over Q.

 18. Use the fact that 4 cos2(2p/5) 1 2 cos(2p/5) 2 1 5 0 to prove that 
a regular pentagon is constructible.

 19. Can the cube be “tripled”?
 20. Can the cube be “quadrupled”?
 21. Can the circle be “cubed”?
 22. If a, b, and c are constructible, show that the real roots of ax2 1 bx 1 c  

are constructible.
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Suggested Website

http://en.wikipedia.org/wiki/Squaring_the_circle

This website provides an excellent account of efforts to square the  
circle, and links for articles about trisecting the angle and doubling 
the cube.
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Sylow Theorems

Generally these three results are implied by the expression “Sylow’s 
Theorem.” All of them are of fundamental importance. In fact, if the 
theorems of group theory were arranged in order of their importance 
Sylow’s Theorem might reasonably occupy the second place—coming 
next to Lagrange’s Theorem in such an arrangement.

G. A. Miller, Theory and Application of Finite Groups

It is impossible to overstate the importance of Sylow’s Theorem in 
the study of finite groups. Without it the subject would not get off 
the ground.

I. N. Herstein, Abstract Algebra, 3rd ed.

24

Conjugacy Classes
In this chapter, we derive several important arithmetic relationships 
 between a group and certain of its subgroups. Recall from Chapter 7 that 
Lagrange’s Theorem was proved by showing that cosets of a subgroup 
partition the group. Another fruitful method of partitioning the elements 
of a group is by way of conjugacy classes.

Definition Conjugacy Class of a
Let a and b be elements of a group G. We say that a and b are  conjugate 
in G (and call b a conjugate of a) if xax21 5 b for some x in G. The 
 conjugacy class of a is the set cl(a) 5 {xax21 | x [ G}.

We leave it to the reader (Exercise 1) to prove that conjugacy is an 
equivalence relation on G, and that the conjugacy class of a is the equiva-
lence class of a under conjugacy. Thus, we may partition any group into 
disjoint conjugacy classes. Let’s look at one example. In D4 we have

cl(H) 5 {R0HR0
21, R90HR90

21, R180HR180
21, R270HR270

21,
 HHH21, VHV21, DHD21, D9HD921} 5 {H, V}.
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Similarly, one may verify that

     cl(R0) 5 {R0},
 cl(R90) 5 {R90, R270} 5 cl(R270),
 cl(R180) 5 {R180},
  cl(V) 5 {V, H} 5 cl(H),
  cl(D) 5 {D, D9} 5 cl(D9).

Theorem 24.1 gives an arithmetic relationship between the size of 
the conjugacy class of a and the size of C(a), the centralizer of a.

 Theorem 24.1 Number of Conjugates of a

Let G be a finite group and let a be an element of G. Then,  
|cl(a)| 5 |G:C(a)|.

PROOF Consider the function T that sends the coset xC(a) to the  conjugate 
xax21 of a. A routine calculation shows that T is well-defined, is one-to-
one, and maps the set of left cosets onto the conjugacy class of a. Thus, the 
number of conjugates of a is the index of the centralizer of a. 

 Corollary 1 |cl(a)| Divides |G |

In a finite group, |cl(a)| divides |G|.

The Class Equation
Since the conjugacy classes partition a group, the following important 
counting principle is a corollary to Theorem 24.1.

 Corollary 2 Class Equation

For any finite group G,

|G| 5 S|G:C(a)|,

where the sum runs over one element a from each conjugacy class of G.

In finite group theory, counting principles such as this corollary are 
powerful tools.† Theorem 24.2 is the single most important fact about 

†“Never underestimate a theorem that counts something.” John Fraleigh, A First Course 
in Abstract Algebra.
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finite groups of prime-power order (a group of order pn, where p is a 
prime, is called a p-group).

 Theorem 24.2 p-Groups Have Nontrivial Centers

Let G be a nontrivial finite group whose order is a power of a prime p. 
Then Z(G) has more than one element.

PROOF First observe that cl(a) 5 {a} if and only if a [ Z(G) (see 
 Exercise 4). Thus, by culling out these elements, we may write the class 
equation in the form

|G| 5 |Z(G)| 1 S|G:C(a)|,

where the sum runs over representatives of all conjugacy classes with 
more than one element (this set may be empty). But |G:C(a)| 5 |G|/|C(a)|, 
so each term in S|G:C(a)| has the form pk with k $ 1. Hence,

|G| 2 S|G:C(a)| 5 |Z(G)|,

where each term on the left is divisible by p. It follows, then, that p also 
divides |Z(G)|, and hence |Z(G)| 2 1. 

 Corollary Groups of Order p 2 Are Abelian

If |G| 5 p2, where p is prime, then G is Abelian.

PROOF By Theorem 24.2 and Lagrange’s Theorem, |Z(G)| 5 p or p2. If 
|Z(G)| 5 p2, then G 5 Z(G) and G is Abelian. If |Z(G)| 5 p, then 
|G/Z(G)| 5 p, so that G/Z(G) is cyclic. But, then, by Theorem 9.3, G is 
Abelian. 

The Sylow Theorems
Now to the Sylow theorems. Recall that the converse of Lagrange’s 
Theorem is false; that is, if G is a group of order m and n divides m, 
G need not have a subgroup of order n. Our next theorem is a partial 
converse of Lagrange’s Theorem. It, as well as Theorem 24.2, was first 
proved by the Norwegian mathematician Ludwig Sylow (1832–1918). 
Sylow’s Theorem and Lagrange’s Theorem are the two most important 
results in finite group theory.† The first gives a sufficient condition for 
the existence of subgroups, and the second gives a necessary condition.

†My candidate for the third most important result is the Fundamental Theorem of  
Finite Abelian Groups.
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  Theorem 24.3 Existence of Subgroups of Prime-Power Order  
(Sylow’s First Theorem, 1872)

Let G be a finite group and let p be a prime. If pk divides |G|, then G 
has at least one subgroup of order pk.

PROOF We proceed by induction on |G|. If |G| 5 1, Theorem 24.3 is 
trivially true. Now assume that the statement is true for all groups of 
order less than |G|. If G has a proper subgroup H such that pk divides 
|H|, then, by our inductive assumption, H has a subgroup of order pk 
and we are done. Thus, we may henceforth assume that pk does not 
 divide the order of any proper subgroup of G. Next, consider the class 
equation for G in the form

|G| 5 |Z(G)| 1 S|G:C(a)|,

where we sum over a representative of each conjugacy class cl(a), where 
a o Z(G). Since pk divides |G| 5 |G:C(a)||C(a)| and pk does not divide 
|C(a)|, we know that p must divide |G:C(a)| for all a o Z(G). It then fol-
lows from the class equation that p divides |Z(G)|. The Fundamental The-
orem of Finite Abelian Groups (Theorem 11.1), or Theorem 9.5, then 
guarantees that Z(G) contains an element of order p, say x. Since x is in 
the center of G, kxl is a normal subgroup of G, and we may form the fac-
tor group G/kxl. Now observe that pk21 divides |G/kxl|. Thus, by the 
 induction hypothesis, G/kxl has a subgroup of order pk21 and, by Exercise 
51 in Chapter 10, this subgroup has the form H/kxl, where H is a sub-
group of G. Finally, note that |H/kxl| 5 pk21 and |kxl| 5 p imply that 
|H| 5 pk. Thus, we have produced a subgroup of order pk, which contra-
dicts our assumption that no such subgroup exists. Therefore, we must 
have originally had a subgroup of order pk, and we can apply the induc-
tion hypothesis to that subgroup. 

Let’s be sure we understand exactly what Sylow’s First Theorem 
means. Say we have a group G of order 23 ? 32 ? 54 ? 7. Then Sylow’s 
First Theorem says that G must have at least one subgroup of each 
of the following orders: 2, 4, 8, 3, 9, 5, 25, 125, 625, and 7. On the other 
hand, Sylow’s First Theorem tells us nothing about the possible 
 existence of subgroups of order 6, 10, 15, 30, or any other divisor of |G| 
that has two or more distinct prime factors. Because certain subgroups 
guaranteed by Sylow’s First Theorem play a central role in the theory of 
finite groups, they are given a special name.
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Definition Sylow p-Subgroup
Let G be a finite group and let p be a prime. If pk divides |G| and pk11 
does not divide |G|, then any subgroup of G of order pk is called a  
Sylow p-subgroup of G.†

So, returning to our group G of order 23 ? 32 ? 54 ? 7, we call any sub-
group of order 8 a Sylow 2-subgroup of G, any subgroup of or- 
der 625 a Sylow 5-subgroup of G, and so on. Notice that a Sylow  
p-subgroup of G is a subgroup whose order is the largest power of 
p consistent with Lagrange’s Theorem.

Since any subgroup of order p is cyclic, we have the following gener-
alization of Theorem 9.5, first proved by Cauchy in 1845. His proof ran 
nine pages!

 Corollary Cauchy’s Theorem

Let G be a finite group and let p be a prime that divides the order 
of G. Then G has an element of order p.

Sylow’s First Theorem is so fundamental to finite group theory that 
many different proofs of it have been published over the years [our proof 
is essentially the one given by Georg Frobenius (1849–1917) in 1895]. 
Likewise, there are scores of generalizations of Sylow’s Theorem.

Observe that the corollary to the Fundamental Theorem of Finite 
Abelian Groups and Sylow’s First Theorem show that the converse of 
Lagrange’s Theorem is true for all finite Abelian groups and all finite 
groups of prime-power order.

There are two more Sylow theorems that are extremely valuable tools 
in finite group theory. But first we introduce a new term.

Definition Conjugate Subgroups
Let H and K be subgroups of a group G. We say that H and K are 
 conjugate in G if there is an element g in G such that H 5 gKg21.

Recall from Chapter 7 that if G is a finite group of permutations on a 
set S and i [ S, then orbG(i) 5 {f(i) | f [ G} and |orbG(i)| divides |G|.

†Note that it follows from Sylow’s First Theorem and the definition that the trivial sub-
group {e} is a Sylow p-subgroup of G if and only if p does not divide |G|.
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 Theorem 24.4 Sylow’s Second Theorem

If H is a subgroup of a finite group G and |H| is a power of a prime p, 
then H is contained in some Sylow p-subgroup of G.

PROOF Let K be a Sylow p-subgroup of G and let C 5 {K1, K2, . . . , Kn} 
with K 5 K1 be the set of all conjugates of K in G. Since conjugation is an 
automorphism, each element of C is a Sylow p-subgroup of G. Let SC 
denote the group of all permutations of C. For each g [ G, define  
fg: C S C by fg(Ki) 5 gKig

21. It is easy to show that each fg [ SC.
Now define a mapping T: G S SC by T(g) 5 fg. Since fgh(Ki) 5 

(gh)Ki(gh)21 5  g(hKih
21)g21 5  gfh(Ki)g21 5  fg(fh(Ki)) 5  

(fgfh)(Ki), we have fgh 5 fgfh, and therefore T is a homomorphism 
from G to SC.

Next consider T(H), the image of H under T. Since |H| is a power  
of p, so is |T(H)| (see property 6 of Theorem 10.2). Thus, by the  Orbit- 
Stabilizer Theorem (Theorem 7.3), for each i, |orbT(H)(Ki)| divides 
|T(H)|, so that |orbT(H)(Ki)| is a power of p. Now we ask: Under what 
condition does |orbT(H)(Ki)| 5 1? Well, |orbT(H)(Ki)| 5 1 means that 
fg(Ki) 5 gKig

21 5 Ki for all g [ H; that is, |orbT(H)(Ki)| 5 1 if and 
only if H # N(Ki). But the only elements of N(Ki) that have orders that 
are powers of p are those of Ki (see Exercise 17). Thus, |orbT(H)(Ki)| 5 1 
if and only if H # Ki.

So, to complete the proof, all we need to do is show that for some i, 
|orbT(H)(Ki)| 5 1. Analogous to Theorem 24.1, we have |C| 5 |G:N(K)| 
(see Exercise 9). And since |G:K| 5 |G:N(K)||N(K):K| is not divisible 
by p, neither is |C|. Because the orbits partition C, |C| is the sum of 
powers of p. If no orbit has size 1, then p divides each summand and, 
therefore, p divides |C|, which is a contradiction. Thus, there is an orbit 
of size 1, and the proof is complete. 

 Theorem 24.5 Sylow’s Third Theorem

Let p be a prime and let G be a group of order pkm, where p does not 
divide m. Then the number n of Sylow p-subgroups of G is equal to 
1 modulo p and divides m. Furthermore, any two Sylow p-subgroups 
of G are conjugate.

PROOF Let K be any Sylow p-subgroup of G and let C 5 {K1, 
K2, . . . , Kn}, with K 5 K1, be the set of all conjugates of K in G. We first 
prove that n mod p 5 1.
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Let SC and T be as in the proof of Theorem 24.4. This time  
we consider T(K), the image of K under T. As before, we have  
|orbT(K)(Ki)| is a power of p for each i and |orbT(K)(Ki)| 5 1 if and only  
if K # Ki. Thus, |orbT(K)(K1)| 5 1 and |orbT(K)(Ki)| is a power of p greater 
than 1 for all i 2 1. Since the orbits partition C, it follows that, modulo 
p, n 5 |C| 5 1.

Next we show that every Sylow p-subgroup of G belongs to C. To do 
this, suppose that H is a Sylow p-subgroup of G that is not in C. Let  
SC and T be as in the proof of Theorem 24.4, and this time consider 
T(H). As in the previous paragraph, |C| is the sum of the orbits’ sizes 
under the action of T(H). However, no orbit has size 1, since H is not  
in C. Thus, |C| is a sum of terms each divisible by p, so that, modulo p, 
n 5 |C| 5 0. This contradiction proves that H belongs to C, and that n is 
the number of Sylow p-subgroups of G.

Finally, that n divides m follows directly from the fact that n 5 
|G:N(K)| (see Exercise 9) and n is relatively prime to p. 

It is convenient to let np denote the number of Sylow p-subgroups of 
a group. Observe that the first portion of Sylow’s Third Theorem is a 
counting principle.† As an important consequence of Sylow’s Third 
Theorem, we have the following corollary.

 Corollary A Unique Sylow p-Subgroup Is Normal

A Sylow p-subgroup of a finite group G is a normal subgroup of G if 
and only if it is the only Sylow p-subgroup of G.

We illustrate Sylow’s Third Theorem with two examples.

 EXAMPLE 1 Consider the Sylow 2-subgroups of S3. They are  
{(1), (12)}, {(1), (23)}, and {(1), (13)}. According to Sylow’s Third 
Theorem, we should be able to obtain the latter two of these from the 
first by conjugation. Indeed,

(13){(1), (12)}(13)21 5 {(1), (23)},
 (23){(1), (12)}(23)21 5 {(1), (13)}. 

†“Whenever you can, count.” Sir Francis Galton (1822–1911), The World of 
 Mathematics.
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 EXAMPLE 2 Consider the Sylow 3-subgroups of A4. They are {a1, a5, 
a9}, {a1, a6, a11}, {a1, a7, a12}, and {a1, a8, a10}. (See Table 5.1.) Then,

a2{a1, a5, a9}a2  
21 5 {a1, a7, a12},

a3{a1, a5, a9}a3  
21 5 {a1, a8, a10},

a4{a1, a5, a9}a4  
21 5 {a1, a6, a11}.

Thus, the number of Sylow 3-subgroups is 1 modulo 3, and the four 
Sylow 3-subgroups are conjugate. 

Figure 24.1 shows the subgroup lattices for S3 and A4. We have con-
nected the Sylow p-groups with dashed circles to indicate that they belong 
to one orbit under conjugation. Notice that the three subgroups of order 2 in 
A4 are contained in a Sylow 2-group, as required by Sylow’s Second 
 Theorem. As it happens, these three subgroups also belong to one orbit un-
der conjugation, but this is not a consequence of Sylow’s Third Theorem.

In contrast to the two preceding examples, observe that the dihedral 
group of order 12 has seven subgroups of order 2, but that conjugating 
{R0, R180} does not yield any of the other six. (Why?)

A3 = <(123)>

S3

<(1)>

<(12)>

<(23)>

<(13)>

A4

   2α 

   1α 

  3α 

   4α 

   7α 

   6α 

   5α 

   8α {  1,    2,    3,   4}α    α     α     α  

<     >

<     >

<      >

<      >

<      >

<      >

<     >

<      >

Figure 24.1 Lattices of subgroups for S3 and A4.
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Applications of Sylow Theorems
A few numerical examples will make the Sylow theorems come to life.

 EXAMPLE 3 Say G is a group of order 40. What do the Sylow theorems 
tell us about G? A great deal! Since 1 is the only divisor of 40 that is 
congruent to 1 modulo 5, we know that G has exactly one subgroup of 
order 5, and therefore it is normal. Similarly, G has either one or five 
subgroups of order 8. If there is only one subgroup of order 8, it is nor-
mal. If there are five subgroups of order 8, none is normal and all five can 
be obtained by starting with any particular one, say H, and computing 
xHx21 for various x’s. Finally, if we let K denote the normal subgroup 
of order 5 and let H denote any subgroup of order 8, then G 5 HK. (See 
Example 5 in Chapter 9.) If H happens to be normal, we can say even 
more: G 5 H 3 K. 

 EXAMPLE 4 Consider a group of order 30. By Sylow’s Third Theorem, 
it must have either one or six subgroups of order 5 and one or 10 sub-
groups of order 3. However, G cannot have both six subgroups of order 
5 and 10 subgroups of order 3 (for then G would have more than 30 ele-
ments). Thus, the subgroup of order 3 is unique or the subgroup of order 
5 is unique (or both are unique) and therefore is normal in G. It follows, 
then, that the product of a subgroup of order 3 and one of order 5 is a 
group of order 15 that is both cyclic (Exercise 35) and normal (Exercise 9 
in Chapter 9) in G. [This, in turn, implies that both the subgroup of order 3 
and the subgroup of order 5 are normal in G (Exercise 59 in Chapter 9).] 
So, if we let y be a generator of the cyclic subgroup of order 15 and let x 
be an element of order 2 (the existence of which is guaranteed by 
Cauchy’s Theorem), we see that

 G 5 {xiy j | 0 # i # 1, 0 # j # 14}. 

 EXAMPLE 5 We show that any group G of order 72 must have a proper, 
nontrivial normal subgroup. Our arguments are a preview of those in 
Chapter 25. By Sylow’s Third Theorem, the number of Sylow 3-sub-
groups of G is equal to 1 mod 3 and divides 8. Thus, the number is 1 or 
4. If there is only one, then it is normal by the corollary of Sylow’s Third 
Theorem. Otherwise, let H and H9 be two distinct Sylow 3-subgroups. 
By Theorem 7.2, we have that |H H9| 5 |H||H9|/|H  y  H9| 5 81/|H  y  H9|. 
Since |G| 5 72 and |H  y  H9| is a subgroup of H and H9, we know that 
|H  y  H9| 5 3. By the corollary to Theorem 24.2, N(H  y  H9) contains 
both H and H9. Thus, |N(H  y  H9)| divides 72, is divisible by 9, and has 
at least |H H9|9 5 27 elements. This leaves only 36 or 72 for |N(H  y  H9)|. 
In the first case, we have from Exercise 9 of Chapter 9 that N(H  y  H9) is 
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normal in G. In the second case, we have by definition that H  y  H9 is 
normal in G. 

Note that in these examples we were able to deduce all of this informa-
tion from knowing only the order of the group—so many conclusions 
from one assumption! This is the beauty of finite group theory.

In Chapter 7 we saw that the only group (up to isomorphism) of 
prime order p is Zp. As a further illustration of the power of the Sylow 
theorems, we next give a sufficient condition that guarantees that a 
group of order pq, where p and q are primes, must be Zpq.

 Theorem 24.6 Cyclic Groups of Order pq

If G is a group of order pq, where p and q are primes, p , q, and p does 
not divide q 2 1, then G is cyclic. In particular, G is isomorphic to Zpq.

PROOF Let H be a Sylow p-subgroup of G and let K be a Sylow  
q-subgroup of G. Sylow’s Third Theorem states that the number of Sylow 
p-subgroups of G is of the form 1 1 kp and divides q. So 1 1 kp 5 1  
or 1 1 kp 5 q. Since p does not divide q 21, we have that k 5 0 and there-
fore H is the only Sylow  p-subgroup of G.

Similarly, there is only one Sylow q-subgroup of G (see Exercise 25). 
Thus, by the corollary to Theorem 24.5, H and K are normal subgroups 
of G. This, together with G 5 HK and H > K 5 kel, means that G 5  
H 3 K. Finally, by Theorem 9.6 and Theorem 8.2, G < Zp  % Zp < Zpq.

Theorem 24.6 demonstrates the power of the Sylow theorems in clas-
sifying the finite groups whose orders have small numbers of prime fac-
tors. Similar results exist for groups of orders p2q, p2q2, p3, and p4, where 
p and q are prime.

For your amusement, Figure 24.2 lists the number of nonisomorphic 
groups with order at most 100. Note in particular the large number of 
groups of order 64. Also observe that, generally speaking, it is not the 
size of the group that gives rise to a large number of groups of that size 
but the number of prime factors involved. In all, there are 1047 noniso-
morphic groups with 100 or fewer elements. Contrast this with the fact 
that there are 49,487,365,422 groups of order 1024 5 210. The number 
of groups of any order less than 2048 is given at http://oeis.org/
A000001/b000001.txt.

As a final application of the Sylow theorems, you might enjoy seeing 
a determination of the groups of order 99, 66, and 255. In fact, our ar-
guments serve as a good review of much of our work in group theory.
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Order

Number

Order

Number

Order

Number

Order

Number

Order

Number

1 2 3 4 5 6 7 8 9 10

1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1 5 1 5

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

2 2 1 15 2 2 5 4 1 4 1 51 1 2 1 14 1 2 2 14

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

1 6 1 4 2 2 1 52 2 5 1 5  1 15 2 13 2 2 1 13

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

1 2 4 267 1 4 1 5 1 4 1 50 1 2 3 4 1 6 1 52

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

15 2 1 15 1 2 1 12 1 10 1 4 2 2 1 230 1 5 2 16

91 92 93 94 95 96 97 98 99 100

Figure 24.2 The number of groups of a given order up to 100.

 EXAMPLE 6 Determination of the Groups of Order 99
Suppose that G is a group of order 99. Let H be a Sylow 3-subgroup of G 
and let K be a Sylow 11-subgroup of G. Since 1 is the only positive divi-
sor of 99 that is equal to 1 modulo 11, we know from Sylow’s Third 
Theorem and its corollary that K is normal in G. Similarly, H is normal 
in G. It follows, by the argument used in the proof of  Theorem 24.6, that 
elements from H and K commute, and therefore G 5 H 3 K. Since 
both H and K are Abelian, G is also Abelian. Thus, G is isomorphic to 
Z99 or Z3 % Z33. 

 EXAMPLE 7 Determination of the Groups of Order 66
Suppose that G is a group of order 66. Let H be a Sylow 3-subgroup of 
G and let K be a Sylow 11-subgroup of G. Since 1 is the only positive 
divisor of 66 that is equal to 1 modulo 11, we know that K is normal in  
G. Thus, HK is a subgroup of G of order 33 (see Example 5 in Chapter 
9 and Theorem 7.2). Since any group of order 33 is cyclic (Theorem 
24.6), we may write HK 5 kxl. Next, let y [ G and |y| 5 2. Since kxl 
has index 2 in G, we know it is normal. So yxy21 5 xi for some i from 1 
to 32. Then, yx 5 xiy and, since every member of G is of the form xsyt, 
the structure of G is completely determined by the value of i. We claim 
that there are only four possibilities for i. To prove this, observe that  
|xi| 5 |x|. Thus, i and 33 are relatively prime. But also, since y has order 2,

 x 5 y21( yxy21)y 5 y21xiy 5 yxiy21 5 (yxy21)i 5 (xi)i 5 x i2.

So xi221 5 e and therefore 33 divides i2 2 1. From this it follows that 11 
divides i 6 1, and therefore i 5 0 6 1, i 5 11 6 1, i 5 22 6 1, or  
i 5 33 6 1. Putting this together with the other information we have 
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about i, we see that i 5 1, 10, 23, or 32. This proves that there are at 
most four groups of order 66.

To prove that there are exactly four such groups, we simply observe 
that Z66, D33, D11 % Z3, and D3 % Z11 each has order 66 and that no  
two are isomorphic. For example, D11 % Z3 has 11 elements of order 2, 
whereas D3 % Z11 has only three elements of order 2. 

 EXAMPLE 8 The Only Group of Order 255 is Z255
Let G be a group of order 255 5 3 ? 5 ? 17, and let H be a Sylow 17-sub-
group of G. By Sylow’s Third Theorem, H is the only Sylow 17-subgroup 
of G, so N(H) 5 G. By Example 16 in Chapter 10, |N(H)/C(H)| divides 
|Aut(H)| 5 |Aut(Z17)|. By Theorem 6.5, |Aut(Z17)| 5 |U(17)| 5 16. Since 
|N(H)/C(H)| must divide 255 and 16, we have |N(H)/C(H)| 5 1. Thus, 
C(H) 5 G. This means that every element of G commutes with every ele-
ment of H, and, therefore, H # Z(G). Thus, 17 divides |Z(G)|, which in turn 
divides 255. So |Z(G)| is equal to 17, 51, 85, or 255 and |G/Z(G)| is equal 
to 15, 5, 3, or 1. But the only groups of order 15, 5, 3, or 1 are the cyclic 
ones, so we know that G/Z(G) is cyclic. Now the G/Z Theorem (Theorem 
9.3) shows that G is Abelian, and the Fundamental Theorem of Finite 
 Abelian Groups tells us that G is cyclic. 

Exercises

I have always grown from my problems and challenges, from the things that 
don’t work out. That’s when I’ve really learned.

Carol Burnett

  1. Show that conjugacy is an equivalence relation on a group.
  2. If a is a group element, prove that every element in cl(a) has the 

same order as a.
  3. Let a be a group element of even order. Prove that a2 is not in cl(a).
  4. Calculate all conjugacy classes for the quaternions (see Exercise 54, 

Chapter 9).
  5. Show that the function T defined in the proof of Theorem 24.1 is 

well-defined, is one-to-one, and maps the set of left cosets onto the 
conjugacy class of a.

  6. Show that cl(a) 5 {a} if and only if a [ Z(G).
  7. Show that Z2 is the only group that has exactly two conjugacy classes.
  8. What can you say about the number of elements of order 7 in a 

group of order 168 5 8 ? 3 ? 7?
  9. Let H be a subgroup of a group G. Prove that the number of con-
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jugates of H in G is |G:N(H)|. (This exercise is referred to in this 
chapter.)

 10. Let H be a proper subgroup of a finite group G. Show that G is not 
the union of all conjugates of H.

 11. If G is a group of odd order and x [ G, show that x21 is not in cl(x).
 12. Determine the class equation for non-Abelian groups of orders 39 

and 55.
 13. Determine which of the equations below could be the class equation 

given in the proof of Theorem 24.2. For each part, provide your 
reasoning.

 a. 9 5 3 1 3 1 3
 b. 21 5 1 1 1 1 3 1 3 1 3 1 3 1 7
 c. 10 5 1 1 2 1 2 1 5
 d. 18 5 1 1 3 1 6 1 8
 14. Exhibit a Sylow 2-subgroup of S4. Describe an isomorphism from 

this group to D4.
 15. Suppose that G is a group of order 48. Show that the intersection of 

any two distinct Sylow 2-subgroups of G has order 8.
 16. Find all the Sylow 3-subgroups of S4.
 17. Let K be a Sylow p-subgroup of a finite group G. Prove that if x [ 

N(K) and the order of x is a power of p, then x [ K. (This exercise 
is referred to in this chapter.)

 18. Suppose that G is a group of order pnm, where p is prime and p does 
not divide m. Show that the number of Sylow p-subgroups divides m.

 19. Suppose that G is a group and UGU 5 pnm, where p is prime and  
p 7 m. Prove that a Sylow p-subgroup of G must be normal in G.

 20. Let H be a Sylow p-subgroup of G. Prove that H is the only Sylow  
p-subgroup of G contained in N(H).

 21. Suppose that G is a group of order 168. If G has more than one 
 Sylow 7-subgroup, exactly how many does it have?

 22. Show that every group of order 56 has a proper nontrivial normal  
subgroup.

 23. What is the smallest composite (that is, nonprime and greater than 1) 
integer n such that there is a unique group of order n?

 24. Let G be a noncyclic group of order 21. How many Sylow 3-  
subgroups does G have?

 25. Let G be a group of order pq where p and q are distinct primes and 
p , q. Prove that the Sylow q-subgroup is normal in G. (This exer-
cise is referred to in this chapter.)

 26. How many Sylow 5-subgroups of S5 are there? Exhibit two.
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 27. How many Sylow 3-subgroups of S5 are there? Exhibit five.
 28. What are the possibilities for the number of elements of order 5 in a 

group of order 100?
 29. What do the Sylow theorems tell you about any group of order 100?
 30. Prove that a group of order 175 is Abelian.
 31. Let G be a group with UGU 5 595 5 5 ? 7 ? 17. Show that the Sylow 

5-subgroup of G is normal in G and is contained in Z(G).
 32. Determine the number of Sylow 2-subgroups of D2m, where m is an 

odd integer at least 3.
 33. Generalize the argument given in Example 6 to obtain a theorem 

about groups of order p2q, where p and q are distinct primes.
 34. Prove that a group of order 375 has a subgroup of order 15.
 35. Without using Theorem 24.6, prove that a group of order 15 is  

cyclic. (This exercise is referred to in the discussion about groups of 
order 30.)

 36. Prove that a group of order 105 contains a subgroup of order 35.
 37. Prove that a group of order 595 has a normal Sylow 17-subgroup.
 38. Let G be a group of order 60. Show that G has exactly four elements 

of order 5 or exactly 24 elements of order 5. Which of these cases 
holds for A5?

 39. Show that the center of a group of order 60 cannot have order 4.
 40. Suppose that G is a group of order 60 and G has a normal subgroup 

N of order 2. Show that
  a. G has normal subgroups of orders 6, 10, and 30.

  b. G has subgroups of orders 12 and 20.

  c. G has a cyclic subgroup of order 30.
 41. Let G be a group of order 60. If the Sylow 3-subgroup is normal, 

show that the Sylow 5-subgroup is normal.
 42. Show that if G is a group of order 168 that has a normal subgroup of 

order 4, then G has a normal subgroup of order 28.
 43. Suppose that p is prime and |G| 5 pn. Show that G has normal sub-

groups of order pk for all k between 1 and n (inclusive).
 44. Suppose that G is a group of order pn, where p is prime, and G has 

exactly one subgroup for each divisor of pn. Show that G is cyclic.
 45. Suppose that p is prime and |G| 5 pn. If H is a proper subgroup of G, 

prove that N(H) . H. (This exercise is referred to in Chapter 25.)
 46. If H is a finite subgroup of a group G and x [ G, prove that  

|N(H )| 5 |N(xHx21)|.
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 47. Let H be a Sylow 3-subgroup of a finite group G and let K be a Sylow 
5-subgroup of G. If 3 divides |N(K)|, prove that 5 divides |N(H)|.

 48. If H is a normal subgroup of a finite group G and |H| 5 pk for some 
prime p, show that H is contained in every Sylow p- subgroup of G.

 49. Suppose that G is a finite group and G has a unique Sylow p-subgroup 
for each prime p. Prove that G is the internal direct product of its  
nontrivial Sylow p-subgroups. If each Sylow p-subgroup is cyclic, is 
G cyclic? If each Sylow p-subgroup is Abelian, is G Abelian?

 50. Suppose that G is a finite group and G has exactly one subgroup for 
each divisor of |G|. Prove that G is cyclic.

 51. Let G be a finite group and let H be a normal Sylow p-subgroup 
of G. Show that a(H) 5 H for all automorphisms a of G.

 52. If H is a Sylow p-subgroup of a group, prove that N(N(H)) = N(H).
 53. Let p be a prime and H and K be Sylow p-subgroups of a group G. 

Prove that |N(H)| 5 |N(K)|.
 54. Let G be a group of order p2q2, where p and q are distinct primes,  

q B p2 2 1, and p B q2 2 1. Prove that G is Abelian. List three pairs 
of primes that satisfy these conditions.

 55. Let H be a normal subgroup of a group G. Show that H is the union 
of the conjugacy classes in G of the elements of H. Is this true when 
H is not normal in G?

 56. Let G be a finite group and p be a prime that divides |G|. If H is a 
Sylow p-subgroup of N(H), prove that H is a Sylow p-subgroup of G.

 57. Show that a group of order 12 cannot have nine elements of order 2.
 58. If |G| 5 36 and G is non-Abelian, prove that G has more than one 

Sylow 2-subgroup or more than one Sylow 3-subgroup.
 59. Let G be a non-Abelian group of order pq where p and q are primes 

and p , q. Prove that G has exactly q 1 1 nontrivial proper subgroups.
 60. Determine the groups of order 45.
 61. Explain why a group of order 4m where m is odd must have a sub-

group isomorphic to Z4 or Z2 % Z2 but cannot have both a subgroup 
isomorphic to Z4 and a subgroup isomorphic to Z2 % Z2. Show that 
S4 has a subgroup isomorphic to Z4 and a subgroup isomorphic to  
Z2 % Z2.

 62. Let p be the smallest prime that divides the order of a finite group G. If 
H is a Sylow p-subgroup of G and is cyclic, prove that N(H) 5 C(H).

 63. Let G be a group of order 715 5 5 ? 11 ? 13. Let H be a Sylow 
13- subgroup of G and K be a Sylow 11-subgroup of G. Prove that H 
is contained in Z(G). Can the argument you used to prove that H is 
contained in Z(G) also be used to show that K is contained in Z(G)?
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Computer Exercises

Software for the computer exercises in this chapter is available at the website:

http://www.d.umn.edu/~jgallian

Suggested Reading

J. A. Gallian and D. Moulton, “When Is Zn the Only Group of Order n?” 
Elemente der Mathematik 48 (1993): 118–120.

It is shown that Zn is the only group of order n if and only if n and f(n) 
are relatively prime. The article can be downloaded at http://www 
.d.umn.edu/~jgallian/pq.pdf.

402 Special Topics

57960_ch24_ptg01_385-403.indd   402 10/24/15   1:08 PM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sylow’s Theorem is 100 years old. In the 
course of a century this remarkable theo-
rem has been the basis for the construction 
of numerous theories.

l. a. shemetkov

Ludwig Sylow (pronounced “SEE-loe”) 
was born on December 12, 1832, in Chris-
tiania (now Oslo), Norway. While a student at 
Christiania University, Sylow won a gold 
medal for competitive problem solving. In 
1855, he became a high school teacher; de-
spite the long hours required by his teaching 
duties, Sylow found time to study the papers 
of Abel. During the school year 1862–1863, 
Sylow received a temporary appointment at 
Christiania University and gave lectures 
on  Galois theory and permutation groups. 
Among his students that year was the great 
mathematician Sophus Lie (pronounced 
“Lee”), after whom Lie algebras and Lie 
groups are named. From 1873 to 1881, Sylow, 
with some help from Lie, prepared a new edi-
tion of Abel’s works. In 1902, Sylow and 
Elling Holst published Abel’s  correspondence.

Matematisk Unstitutt/Univer-
sitetet I Oslo Ludwig Sylow

Sylow’s spectacular theorems came in 
1872. Upon learning of Sylow’s discovery, 
C. Jordan called it “one of the essential 
points in the theory of permutations.” The re-
sults took on greater importance when the 
theory of abstract groups flowered in the late 
19th century and early 20th century.

In 1869, Sylow was offered a professor-
ship at Christiania University but turned it 
down. Upon Sylow’s retirement from high 
school teaching at age 65, Lie mounted a 
successful campaign to establish a chair for 
Sylow at Christiania University. Sylow held 
this position until his death on September 7, 
1918.

To find more information about Sylow, 
visit:

http://www-groups.dcs.st-and 
.ac.uk/~history
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Finite Simple Groups

It is a widely held opinion that the problem of classifying finite 
simple groups is close to a complete solution. This will certainly 
be one of the great achievements of mathematics of this century.

Nathan Jacobson

It’s supposed to be hard. If it wasn’t hard, everyone would do it. 
The hard is what makes it great.

Jimmy Dugan from A League of Their Own

25

Historical Background
We now come to the El Dorado of finite group theory—the simple 
groups. Simple group theory is a vast and difficult subject; we call it the 
El Dorado of group theory because of the enormous effort put forth by 
hundreds of mathematicians over many years to discover and  classify 
all finite simple groups. Let’s begin our discussion with the  definition of 
a simple group and some historical background.

Definition Simple Group
A group is simple if its only normal subgroups are the identity  subgroup 
and the group itself.

The notion of a simple group was introduced by Galois about 180 years  
ago. The simplicity of A5, the group of even permutations on five symbols, 
played a crucial role in his proof that there is not a solution by radicals of 
the general fifth-degree polynomial (that is, there is no “quintic formula”). 
But what makes simple groups important in the  theory of groups? They 
are important because they play a role in group theory somewhat analo-
gous to that of primes in number theory or the elements in chemistry; that 
is, they serve as the building blocks for all groups. These building blocks 
may be determined in the following way. Given a finite group G, choose a 
proper normal subgroup G1 of G 5 G0 of largest order. Then the factor 
group G0/G1 is simple, and we next choose a proper normal subgroup G2 
of G1 of largest order. Then G1/G2 is also simple, and we continue in this 
fashion until we arrive at Gn 5 {e}. The simple groups G0/G1, G1/G2, . . . , 404
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Gn21/Gn are called the composition factors of G. More than 100 years ago, 
Jordan and Hölder proved that these  factors are independent of the choices 
of the normal subgroups made in the process described. In a certain sense, 
a group can be reconstructed from its composition factors, and many of the 
properties of a group are determined by the nature of its composition fac-
tors. This and the fact that many questions about finite groups can be re-
duced (by induction) to questions about simple groups make clear the im-
portance of determining all finite simple groups.

Just which groups are the simple ones? The Abelian simple groups  
are precisely Zn, where n 5 1 or n is prime. This follows  directly from the 
corollary in Chapter 11. In contrast, it is extremely difficult to describe the 
non-Abelian simple groups. The best we can do here is to give a few 
 examples and mention a few words about their discovery. It was Galois in 
1831 who first observed that An is simple for all n $ 5. The next  discoveries 
were made by Jordan in 1870, when he found four infinite families of sim-
ple matrix groups over the field Zp, where p is prime. One such family is 
the factor group SL(n, Zp)/Z(SL(n, Zp)),  except when n 5 2 and p 5 2 or 
p 5 3. Between the years 1892 and 1905, the American mathematician 
Leonard  Dickson (see Chapter 22 for a  biography) generalized Jordan’s 
results to arbitrary finite fields and discovered several new infinite families 
of simple groups. About the same time, it was shown by G. A. Miller and 
F. N. Cole that a family of five groups first described by E. Mathieu in 
1861 were in fact simple groups. Since these five groups were constructed 
by ad hoc methods that did not yield infinitely many possibilities, like An 
or the matrix groups over  finite fields, they were called “sporadic.”

The next important discoveries came in the 1950s. In that decade, 
many new infinite families of simple groups were found, and the initial 
steps down the long and winding road that led to the complete classifica-
tion of all finite simple groups were taken. The first step was Richard 
Brauer’s observation that the centralizer of an element of order 2 was an 
important tool for studying simple groups. A few years later, John 
Thompson, in his Ph.D. dissertation, introduced the crucial idea of study-
ing the normalizers of various subgroups of prime-power order.

In the early 1960s came the momentous Feit–Thompson Theorem, 
which says that a non-Abelian simple group must have even order. This 
property was first conjectured around 1900 by one of the pioneers of 
modern group theoretic methods, the Englishman William Burnside 
(see Chapter 29 for a biography). The proof of the Feit–Thompson 
 Theorem filled an entire issue of a journal [1], 255 pages in all (see 
 Figure 25.1). Writing in 2001 simple group theory expert Ronald 
 Solomon said the theorem and its proof were “a moment in the evolution 
of finite group theory analogous to the emergence of fish onto dry land.” 
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Oh, what are the orders of all simple 
groups?
I speak of the honest ones, not of the loops.
It seems that old Burnside their orders has 
  guessed
Except for the cyclic ones, even the rest.

CHORUS:  Finding all groups that are sim-
ple is no simple task.

Groups made up with permutes will  
   produce some more:
For An is simple, if n exceeds 4.
Then, there was Sir Matthew who came into 
  view
Exhibiting groups of an order quite new.

Still others have come on to study this thing. 
Of Artin and Chevalley now we shall sing. 
With matrices finite they made quite a list 
The question is: Could there be others  
  they’ve missed?

Suzuki and Ree then maintained it’s the  
  case 

Figure 25.1

That these methods had not reached the end  
  of the chase. 
They wrote down some matrices, just four by 
  four. 
That made up a simple group. Why not make  
  more?

And then came the opus of Thompson and  
  Feit
Which shed on the problem remarkable light.
A group, when the order won’t factor by two,
Is cyclic or solvable. That’s what is true.

Suzuki and Ree had caused eyebrows to raise,
But the theoreticians they just couldn’t faze.
Their groups were not new: if you added a  
  twist,
You could get them from old ones with a  
  flick of the wrist.

Still, some hardy souls felt a thorn in their  
  side.
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This result provided the impetus to classify the finite simple groups—
that is, a program to discover all finite simple groups and prove that there 
are no more to be found. Throughout the 1960s, the methods introduced 
in the Feit–Thompson proof were generalized and improved with great 
success by many mathematicians. Moreover, between 1966 and 1975, 19 
new sporadic simple groups were discovered. Despite many spectacular 
achievements, research in simple group theory in the 1960s was haphaz-
ard, and the decade ended with many people believing that the classifica-
tion would never be completed. (The pessimists feared that the sporadic 
simple groups would foil all attempts. The anonymously written “song” 
in Figure 25.1 captures the spirit of the times.) Others, more optimistic, 
were predicting that it would be accomplished in the 1990s.

The 1970s began with Thompson receiving the Fields Medal for his 
fundamental contributions to simple group theory. This honor is among 
the highest forms of recognition that a mathematician can receive (more 
information about the Fields Medal is given near the end of this  chapter). 
Within a few years, three major events took place that ultimately led to 
the classification. First, Thompson published what is regarded as the 
single most important paper in simple group theory—the N-group pa-
per. Here, Thompson introduced many fundamental techniques and 
supplied a model for the classification of a broad family of simple 
groups. Second, Daniel Gorenstein produced an elaborate outline for 
the classification, which he delivered in a series of lectures at the Uni-
versity of Chicago in 1972. Here a program for the overall proof was 
laid out. The army of researchers now had a battle plan and a com-
mander-in-chief. But this army still needed more and better weapons. 
Thus came the third critical development: the involvement of Michael 

For the five groups of Mathieu all reason  
   defied;
Not An, not twisted, and not Chevalley,
They called them sporadic and filed them  
  away.

Are Mathieu groups creatures of heaven or  
  hell?
Zvonimir Janko determined to tell.
He found out [a new sporadic simple group] 
that nobody wanted to know:
The masters had missed 1 7 5 5 6 0.

The floodgates were opened! New groups  
  were the rage!

(And twelve or more sprouted, to greet the  
  new age.)
By Janko and Conway and Fischer and Held,
McLaughlin, Suzuki, and Higman, and Sims.

No doubt you noted the last lines don’t  
  rhyme.
Well, that is, quite simply, a sign of the time.
There’s chaos, not order, among simple  
  groups;
And maybe we’d better go back to the loops.   
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Aschbacher. In a dazzling series of papers, Aschbacher combined his 
own insight with the methods of Thompson, which had been general-
ized throughout the 1960s, and a geometric approach pioneered by 
Bernd Fischer to achieve one brilliant result after another in rapid suc-
cession. In fact, so much progress was made by Aschbacher and others 
that by 1976, it was clear to nearly everyone involved that enough tech-
niques had been developed to complete the classification. Only details 
remained.

The 1980s were ushered in with Aschbacher following in the foot-
steps of Feit and Thompson by winning the American Mathematical 
 Society’s Cole Prize in algebra (see the last section of this chapter).

A week later, Robert L. Griess made the spectacular announcement 
that he had constructed the “Monster.”† The Monster is the largest of the 
sporadic simple groups. In fact, it has vastly more elements than there 
are atoms on the earth! Its order is

808,017,424,794,512,875,886,459,904,961,710,757,005,754, 
368,000,000,000

(hence, the name). This is approximately 8 3 1053. The Monster is a 
group of rotations in 196,883 dimensions. Thus, each element can be 
expressed as a 196,883 3 196,883 matrix.

At the annual meeting of the American Mathematical Society in 
1981, Gorenstein announced that the “Twenty-Five Years’ War” to clas-
sify all the finite simple groups was over. Group theorists at long last 
had a list of all finite simple groups and a proof that the list was com-
plete. The proof was spread out over hundreds of papers—both pub-
lished and unpublished—and ran more than 10,000 pages in length. Be-
cause of the proof’s extreme length and complexity, and the fact that 
some key parts of it had not been published, there was some concern in 
the mathematics community that the classification was not a certainty. 
By the end of the decade, group theorists had concluded that there was 
indeed a gap in the unpublished work that would be difficult to rectify. 
In the mid-1990s, Aschbacher and Stephen Smith began work on this 
problem. In 2004, at the annual meeting of the American Mathematical 
Society, Aschbacher announced that he and Smith had completed the 
classification. Their monograph is over 1200 pages in length. Ronald 
Solomon, writing in Mathematical Reviews, called it “an amazing tour 
de force” and a “major milestone in the history of finite group theory.” 

†The name was coined by John H. Conway. Griess called the group the “Friendly Gi-
ant.” In 2010 the American Mathematical Society awarded Griess the Leroy P. Steele 
Seminal Contribution to Research Prize for his construction of the Monster.
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Aschbacher concluded his remarks by saying that he would not bet his 
house that the proof is now error free.

Several people who played a central role in the classification are work-
ing on a “second generation” proof that will be much shorter and more 
comprehensible.

Nonsimplicity Tests
In view of the fact that simple groups are the building blocks for all 
groups, it is surprising how scarce the non-Abelian simple groups are. 
For example, A5 is the only one whose order is less than 168; there are 
only five non-Abelian simple groups of order less than 1000 and only 56 
of order less than 1,000,000. In this section, we give a few theorems that 
are useful in proving that a particular integer is not the order of a non-
Abelian simple group. Our first such result is an easy arithmetic test that 
comes from combining Sylow’s Third Theorem and the fact that groups 
of prime-power order have nontrivial centers.

 Theorem 25.1 Sylow Test for Nonsimplicity

Let n be a positive integer that is not prime, and let p be a prime 
divisor of n. If 1 is the only divisor of n that is equal to 1 modulo p, 
then there does not exist a simple group of order n.

PROOF If n is a prime-power, then a group of order n has a nontrivial cen-
ter and, therefore, is not simple. If n is not a prime-power, then  
every Sylow subgroup is proper, and, by Sylow’s Third Theorem, we 
know that the number of Sylow p-subgroups of a group of order n is equal 
to 1 modulo p and divides n. Since 1 is the only such number, the Sylow 
p-subgroup is unique, and therefore, by the corollary to Sylow’s Third 
Theorem, it is normal. 

How good is this test? Well, applying this criterion to all the  
non prime integers between 1 and 200 would leave only the following 
integers as possible orders of finite non-Abelian simple groups: 12, 24, 
30, 36, 48, 56, 60, 72, 80, 90, 96, 105, 108, 112, 120, 132, 144, 150, 160, 
168, 180, and 192. (In fact, computer experiments have revealed that for 
large intervals, say, 500 or more, this test eliminates more than 90% of 
the nonprime integers as possible orders of simple groups. See [2] for 
more on this.)

Our next test rules out 30, 90, and 150.
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 Theorem 25.2 2 ? Odd Test

An integer of the form 2 ? n, where n is an odd number greater than 1, 
is not the order of a simple group.

PROOF Let G be a group of order 2n, where n is odd and greater than 1. 
Recall from the proof of Cayley’s Theorem (Theorem 6.1) that the 
mapping g S Tg is an isomorphism from G to a permutation group on 
the elements of G [where Tg(x) 5 gx for all x in G]. Since |G| 5 2n, 
Cauchy’s Theorem guarantees that there is an element g in G of order 2. 
Then, when the permutation Tg is written in disjoint  cycle form, each 
cycle must have length 1 or 2; otherwise, |g| 2 2. But Tg can contain no 
1-cycles, because the 1-cycle (x) would mean x 5 Tg(x) 5 gx, so g 5 e. 
Thus, in cycle form, Tg consists of exactly n transpositions, where n is 
odd. Therefore, Tg is an odd permutation. This means that the set of 
even permutations in the image of G is a normal subgroup of index 2. 
(See Exercise 23 in Chapter 5 and Exercise 9 in Chapter 9.) Hence, G is 
not simple. 

The next theorem is a broad generalization of Cayley’s Theorem. We 
will make heavy use of its two corollaries.

 Theorem 25.3 Generalized Cayley Theorem

Let G be a group and let H be a subgroup of G. Let S be the group 
of all permutations of the left cosets of H in G. Then there is a 
homomorphism from G into S whose kernel lies in H and contains 
every normal subgroup of G that is contained in H.

PROOF For each g [ G, define a permutation Tg of the left cosetsof H by 
Tg(xH) 5 gxH. As in the proof of Cayley’s Theorem, it is easy to verify 
that the mapping of a: g S Tg is a homomorphism from G into S.

Now, if g [ Ker a, then Tg is the identity map, so H 5 Tg(H) 5 gH, 
and, therefore, g belongs to H. Thus, Ker a # H. On the other hand, if K 
is normal in G and K # H, then for any k [ K and any x in G, there is an 
element k9 in K such that kx 5 xk9. Thus,

Tk(xH) 5 kxH 5 xk9H 5 xH

and, therefore, Tk is the identity permutation. This means that k [ Ker a. 
We have proved, then, that every normal subgroup of G contained in H 
is also contained in Ker a. 
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As a consequence of Theorem 25.3, we obtain the following very 
powerful arithmetic test for nonsimplicity.

 Corollary 1 Index Theorem

If G is a finite group and H is a proper subgroup of G such that |G| 
does not divide |G:H|!, then H contains a nontrivial normal subgroup 
of G. In particular, G is not simple.

PROOF Let a be the homomorphism given in Theorem 25.3. Then Ker a 
is a normal subgroup of G contained in H, and G/Ker a is  isomorphic to 
a subgroup of S. Thus, |G/Ker a| 5 |G|/|Ker a| divides |S| 5 |G:H|!. 
Since |G| does not divide |G:H|!, the order of Ker a must be greater 
than 1. 

 Corollary 2 Embedding Theorem

If a finite non-Abelian simple group G has a subgroup of index n, 
then G is isomorphic to a subgroup of An.

PROOF Let H be the subgroup of index n, and let Sn be the group of all 
permutations of the n left cosets of H in G. By the Generalized Cayley 
Theorem, there is a nontrivial homomorphism from G into Sn. Since G is 
simple and the kernel of a homomorphism is a normal subgroup of G, we 
see that the mapping from G into Sn is one-to-one, so that G is isomorphic 
to some subgroup of Sn. Recall from Exercise 23 in Chapter 5 that any 
subgroup of Sn consists of even permutations only or half even and half 
odd. If G were isomorphic to a subgroup of the latter type, the even per-
mutations would be a normal subgroup of in dex 2 (see Exercise 9 in 
Chapter 9), which would contradict the fact that G is simple. Thus, G is 
isomorphic to a subgroup of An. 

Using the Index Theorem with the largest Sylow subgroup for H 
 reduces our list of possible orders of non-Abelian simple groups still 
further. For example, let G be any group of order 80 5 16 ? 5. We may 
choose H to be a subgroup of order 16. Since 80 is not a divisor of 5!, 
there is no simple group of order 80. The same argument applies to 12, 
24, 36, 48, 96, 108, 160, and 192, leaving only 56, 60, 72, 105, 112, 
120, 132, 144, 168, and 180 as possible orders of non-Abelian simple 
groups up to 200. Let’s consider these orders. Quite often we may use  
a counting argument to eliminate an integer. Consider 56. By Sylow’s 
Third Theorem, we know that a simple group of order 56 5 8 ? 7 would 
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contain eight Sylow 7-subgroups and seven Sylow 2-subgroups. Now, 
any two Sylow p-subgroups that have order p must intersect in only the 
identity. So the union of the eight Sylow 7-subgroups yields 48 ele-
ments of order 7, and the union of any two Sylow 2-subgroups gives at 
least 8 1 8 2 4 5 12 new elements. But there are only 56 elements in 
all. This contradiction shows that there is not a simple group of order 56. 
An analogous argument also eliminates the integers 105 and 132.

So, our list of possible orders of non-Abelian simple groups up to 
200 is down to 60, 72, 112, 120, 144, 168, and 180. Of these, 60 and 
168 do correspond to simple groups. The others can be eliminated with 
a bit of razzle-dazzle.

The easiest case to handle is 112 5 24 ? 7. Suppose there were a sim-
ple group G of order 112. A Sylow 2-subgroup of G must have index 7. 
So, by the Embedding Theorem, G is isomorphic to a subgroup of A7. 
But 112 does not divide |A7|, which is a contradiction.

Another easy case is 72. This case was done in Example 5 in  
Chapter 24 but we eliminate it using the Index Theorem. Recall from 
Exercise 9 in Chapter 24 that if we denote the number of Sylow  
p-subgroups of a group G by np, then np 5 |G:N(H)|, where H is any  
Sylow p-subgroup of G, and np mod p 5 1. It follows, then, that in a 
simple group of order 72, we have n3 = 4, which is impossible, since 72 
does not divide 4!

Next consider the possibility of a simple group G of order 144 5 9 ? 16. 
By the Sylow theorems, we know that n3 5 4 or 16 and n2 $ 3. The Index 
Theorem rules out the case where n3 5 4, so we know that there are  
16 Sylow 3-subgroups. Now, if every pair of Sylow 3-subgroups had  
only the identity in common, a straightforward counting argument would 
produce more than 144 elements. So, let H and H9 be a pair of Sylow 
3-subgroups whose intersection has order 3. Then H > H9 is a subgroup of 
both H and H9 and, by the corollary to Theorem 24.2 (or by Exercise 45 in 
Chapter 24), we see that N(H > H9) must contain both H and H9 and, 
therefore, the set HH9. (HH9 need not be a subgroup.) Thus,

|N(H > H9)| $ |HH9| 5 
0H 0 0H� 0
0H >H� 0 �

9 ? 9

3
 5 27.

Now, we have three arithmetic conditions on k 5 |N(H > H9)|. We 
know that 9 divides k; k divides 144; and k $ 27. Clearly, then, k $ 36, 
and so |G :N(H > H9)| # 4. The Index Theorem now gives us the de-
sired contradiction.

Finally, suppose that G is a non-Abelian simple group of order 180 5 
22 ? 32 ? 5. Then n5 5 6 or 36 and n3 5 10 (n3 5 4 is ruled out by the  
Index Theorem). First, assume that n5 5 36. Then G has 36 ? 4 5 144  
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elements of order 5. Now, if each pair of the Sylow 3-subgroups inter-
sects in only the identity, then there are 80 more elements in the group, 
which is a contradiction. So, we may assume that there are two Sylow 
3-subgroups L3 and L39 whose intersection has order 3. Then, as was the 
case for order 144, we have

|N(L3 > L39)| $ |L3L39| 5 
9 . 9

3
 5 27.

Thus,

|N(L3 > L39)| 5 9 ? k,

where k $ 3 and k divides 20. Clearly, then,

|N(L3 > L39)| $ 36

and therefore

|G :N(L3 > L39)| # 5.

The Index Theorem now gives us another contradiction. Hence, we may 
assume that n5 5 6. In this case, we let H be the normalizer of a Sylow 
5-subgroup of G. By Sylow’s Third Theorem, we have 6 5 |G:H|, so 
that |H| 5 30. In Chapter 24, we proved that every group of order 30 
has an element of order 15. On the other hand, since n5 5 6,  
G has a subgroup of index 6 and the Embedding Theorem tells us that G 
is isomorphic to a subgroup of A6. But A6 has no element of order 15. 
(See Exercise 9 in Chapter 5.)

Unfortunately, the argument for 120 is fairly long and complicated. 
However, no new techniques are required to do it. We leave this as an 
exercise (Exercise 17). Some hints are given in the answer section.

The Simplicity of A5

Once 120 has been disposed of, we will have shown that the only inte-
gers between 1 and 200 that can be the orders of non-Abelian simple 
groups are 60 and 168. For completeness, we will now prove that A5, 
which has order 60, is a simple group. A similar argument can be used 
to show that the factor group SL(2, Z7)/Z(SL(2, Z7)) is a simple group 
of order 168. [This group is denoted by PSL(2, Z7).]

If A5 had a nontrivial proper normal subgroup H, then |H| would be 
equal to 2, 3, 4, 5, 6, 10, 12, 15, 20, or 30. By Exercise 61 in Chapter 5, 
A5 has 24 elements of order 5, 20 elements of order 3, and no elements 
of order 15. Now, if |H| is equal to 3, 6, 12, or 15, then |A5/H| is rela-
tively prime to 3, and by Exercise 61 in Chapter 9, H would have to 
contain all 20 elements of order 3. If |H| is equal to 5, 10, or 20, then 
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|A5/H| is relatively prime to 5, and, therefore, H would have to contain 
the 24 elements of order 5. If |H| 5 30, then |A5/H| is relatively prime 
to both 3 and 5, and so H would have to contain all the elements of or-
ders 3 and 5. Finally, if |H| 5 2 or |H| 5 4, then |A5/H| 5 30 or  
|A5/H| 5 15. But we know from our results in Chapter 24 that any group 
of order 30 or 15 has an element of order 15. However, since A5 contains 
no such element, neither does A5/H. This proves that A5 is simple.

The simplicity of A5 was known to Galois in 1830, although the first 
formal proof was done by Jordan in 1870. A few years later, Felix Klein 
showed that the group of rotations of a regular icosahedron is simple 
and, therefore, isomorphic to A5 (see Exercise 27). Since then it has fre-
quently been called the icosahedral group. Klein was the first to prove 
that there is a simple group of order 168.

The problem of determining which integers in a certain interval are 
possible orders for finite simple groups goes back to 1892, when Hölder 
went up to 200. His arguments for the integers 144 and 180 alone used 
up 10 pages. By 1975, this investigation had been pushed to well be-
yond 1,000,000. See [3] for a detailed account of this endeavor. Of 
course, now that all finite simple groups have been classified, this prob-
lem is merely a historical curiosity.

The Fields Medal
Among the highest awards for mathematical achievement is the Fields 
Medal. Two to four such awards are bestowed at the opening session of 
the International Congress of Mathematicians, held once every four 
years. Although the Fields Medal is considered by many mathematicians 
to be the equivalent of the Nobel Prize, there are great differences be-
tween these awards. Besides the huge disparity in publicity and mone-
tary value associated with the two honors, the Fields Medal is re stricted 
to those under 40 years of age.† This tradition stems from John Charles 
Fields’s stipulation, in his will establishing the medal, that the awards 
should be “an encouragement for further achievement.” This restriction 
precluded Andrew Wiles from winning the Fields Medal for his proof of 
Fermat’s Last Theorem.

More details about the Fields Medal can be found at http://www 
.wikipedia.com.

†“Take the sum of human achievement in action, in science, in art, in literature— 
subtract the work of the men above forty, and while we should miss great treasures, 
even priceless treasures, we would practically be where we are today. . . . The effec-
tive, moving, vitalizing work of the world is done between the ages of twenty-five and 
forty.” Sir William Osler (1849–1919), Life of Sir William Osler, vol. I, chap. 24 (The 
Fixed Period).
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Three-minute video clips of the four recipients of the 2014 Fields 
medals talking about their work are available at www.icm2014.org.

The Cole Prize
Approximately every five years, beginning in 1928, the American 
Mathe matical Society awards one or two Cole Prizes for research in 
 algebra and one or two Cole Prizes for research in algebraic number 
theory. The prize was founded in honor of Frank Nelson Cole on the oc-
casion of his retirement as secretary of the American Mathematical 
 Society. In view of the fact that Cole was one of the first people inter-
ested in simple groups, it is interesting to note that no fewer than six 
recipients of the prize—Dickson, Chevalley, Brauer, Feit, Thompson, 
and Aschbacher—have made fundamental contributions to simple 
group theory at some time in their careers. Recently the time between 
Cole Prizes was reduced to three years.

Exercises

If you don’t learn from your mistakes, there’s no sense making them.
Herbert V. Prochnow

  1. Prove that there is no simple group of order 210 5 2 ? 3 ? 5 ? 7.
  2. Prove that there is no simple group of order 280 5 23 ? 5 ? 7. 
  3. Prove that there is no simple group of order 216 5 23 ? 33.
  4. Prove that there is no simple group of order 300 5 22 ? 3 ? 52.
  5. Prove that there is no simple group of order 525 5 3 ? 52 ? 7.

The Fields Medal

41525 | Finite Simple Groups

57960_ch25_ptg01_404-421.indd   415 10/27/15   2:39 PM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



  6. Prove that there is no simple group of order 540 5 22 ? 33 ? 5.
  7. Prove that there is no simple group of order 528 5 24 ? 3 ? 11.
  8. Prove that there is no simple group of order 315 5 32 ? 5 ? 7.
  9. Prove that there is no simple group of order 396 5 22 ? 32 ? 11.
 10. Prove that there is no simple group of order n, where 201 # 

n # 235 and n is not prime.
 11. Without using the Generalized Cayley Theorem or its corollaries, 

prove that there is no simple group of order 112.
 12. Without using the 2 ? Odd Test, prove that there is no simple group 

of order 210.
 13. You may have noticed that all the “hard integers” are even. Choose 

three odd integers between 200 and 1000. Show that none of these 
is the order of a simple group unless it is prime.

 14. Show that there is no simple group of order pqr, where p, q, and r 
are primes ( p, q, and r need not be distinct).

 15. Show that A5 does not contain a subgroup of order 30, 20, or 15.
 16. Prove that that A6 has no subgroup of order 120.
 17. Prove that there is no simple group of order 120 5 23 ? 3 ? 5. (This 

exercise is referred to in this chapter.)
 18. Prove that if G is a finite group and H is a proper normal subgroup 

of largest order, then G/H is simple.
 19. Suppose that H is a subgroup of a finite group G and that |H| and  

(|G:H| 2 1)! are relatively prime. Prove that H is normal in G. What 
does this tell you about a subgroup of index 2 in a finite group?

 20. Suppose that p is the smallest prime that divides |G|. Show that any 
subgroup of index p in G is normal in G.

 21. Prove that the only nontrivial proper normal subgroup of S5 is A5. 
(This exercise is referred to in Chapter 32.)

 22. Prove that a simple group of order 60 has a subgroup of order 6 and 
a subgroup of order 10.

 23. Show that PSL(2, Z7) 5 SL(2, Z7)/Z(SL(2, Z7)), which has order 168, 
is a simple group. (This exercise is referred to in this chapter.)

 24. Show that the permutations (12) and (12345) generate S5.
 25. Suppose that a subgroup H of S5 contains a 5-cycle and a 2-cycle. 

Show that H 5 S5. (This exercise is referred to in Chapter 32.)
 26. Suppose that G is a finite simple group and contains subgroups H 

and K such that |G:H| and |G:K| are prime. Show that |H| 5 |K|.
 27. Show that (up to isomorphism) A5 is the only simple group of  order 

60. (This exercise is referred to in this chapter.)
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 28. Prove that a simple group cannot have a subgroup of index 4.
 29. Prove that there is no simple group of order p2q, where p and q are 

odd primes and q . p.
 30. If a simple group G has a subgroup K that is a normal subgroup of 

two distinct maximal subgroups, prove that K 5 {e}.
 31. Show that a finite group of even order that has a cyclic Sylow 2- 

subgroup is not simple.
 32. Show that S5 does not contain a subgroup of order 40 or 30.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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make the difficult subject matter of simple groups accessible.
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Fresh out of graduate school, he 
[Aschbacher] had just entered the field, and 
from that moment he became the  driving 
force behind my program. In rapid succes-
sion he proved one astonishing  theorem 
after another. Although there were many 
other major contributors to this final assault, 
Aschbacher alone was  responsible for 
shrinking my projected  30-year timetable to 
a mere 10 years.

daniel gorenstein, Scientific American

Michael Aschbacher was born on April 8, 
1944, in Little Rock, Arkansas. Shortly after 
his birth, his family moved to Illinois, where 
his father was a professor of accounting 
and  his mother was a high school English 
teacher. When he was nine years old, his fam-
ily moved to East Lansing, Michigan; six 
years later, they moved to Los Angeles.

After high school, Aschbacher enrolled at 
the California Institute of Technology. In ad-
dition to his schoolwork, he passed the first 
four actuary exams and was employed for a 
few years as an actuary, full-time in the sum-
mers and part-time during the academic 
year. Two of the Caltech mathematicians 
who influenced him were Marshall Hall and 
Donald Knuth. In his senior year, Aschbacher 
took abstract algebra but showed little inter-
est in the course. Accordingly, he received a 
grade of C.

In 1966, Aschbacher went to the 
University of Wisconsin for a Ph.D. degree. 
He completed his dissertation in 1969, and, 
after spending one year as an assistant pro-
fessor at the University of Illinois, he re-
turned to Caltech and quickly moved up to 
the rank of professor.
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Michael Aschbacher

Aschbacher’s dissertation work in the area 
of combinatorial geometries had led him to 
consider certain group theoretic questions. 
Gradually, he turned his attention more and 
more to purely group theoretic problems, 
particularly those bearing on the classifica-
tion of finite simple groups. The 1980 Cole 
Prize Selection Committee said of one of 
his papers, “[It] lifted the subject to a new 
plateau and brought the classification within 
reach.” Aschbacher has been elected to the 
National Academy of Sciences, the Ameri-
can Academy of Sciences, and the vice 
presidency of the American Mathematical 
Society. In 2011, Aschbacher received the 
$75,000 Rolf Schock Prize from the Royal 
Swedish Academy of Sciences for “his fun-
damental contributions to one of the largest 
mathematical projects ever, the clasification 
of finite simple groups.” In 2012, he shared 
the $100,000 Wolf Prize for his work in the 
theory of finite groups and shared the Amer-
ican Mathematical Society’s Steele Prize 
for Exposition.

419

57960_ch25_ptg01_404-421.indd   419 10/27/15   2:39 PM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



420

Gorenstein was one of the most influential 
mathematicians of the last few decades.

michael aschbacher, 
Notices of the American Mathematical 

 Society

Daniel Gorenstein was born in Boston 
on  January 1, 1923. Upon graduating from 
Harvard in 1943 during World War II, 
Gorenstein was offered an instructorship at 
Harvard to teach mathematics to army per-
sonnel. After the war ended, he began gradu-
ate work at Harvard. He received his Ph.D. 
degree in 1951, working in algebraic geome-
try under Oscar Zariski. It was in his disserta-
tion that he introduced the class of rings that 
is now named after him. In 1951, Gorenstein 
took a position at Clark University in 
Worcester, Massachusetts, where he stayed 
until moving to Northeastern University in 
1964. From 1969 until his death on August 
26, 1992, he was at Rutgers University.

In 1957, Gorenstein switched from al-
gebraic geometry to finite groups, learning the 
basic material from I. N. Herstein while col-
laborating with him over the next few years. A 
milestone in Gorenstein’s development as a 
group theorist came during 1960–1961, when 
he was invited to participate in a “Group 
Theory Year” at the University of Chicago. 

It was there that Gorenstein, assimilating the 
revolutionary techniques then being developed 
by John Thompson, began his fundamental 
work that contributed to the classification of 
finite simple groups.

Through his pioneering research papers, 
his dynamic lectures, his numerous personal 
contacts, and his influential book on finite 
groups, Gorenstein became the leader in the 
25-year effort, by hundreds of mathemati-
cians, that led to the classification of the  
finite simple groups.

Among the honors received by Gorenstein 
are the Steele Prize from the American 
Mathematical Society and election to mem-
bership in the National Academy of Sciences 
and the American Academy of Arts and 
Sciences.

To find more information about Goren-
stein, visit:

http://www-groups.dcs.st-and 
.ac.uk/~history/
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There seemed to be no limit to his power.
daniel gorenstein

John G. Thompson was born on October 13, 
1932, in Ottawa, Kansas. In 1951, he entered 
Yale University as a divinity student, but he 
switched to mathematics in his sophomore 
year. In 1955, he began graduate school at the 
University of Chicago, he obtained his Ph.D. 
degree four years later. After one year on the 
faculty at Harvard, Thompson returned to 
Chicago. He remained there until 1968, when 
he moved to Cambridge University in 
England. In 1993, Thompson accepted an ap-
pointment at the University of Florida.

Thompson’s brilliance was evident early. 
In his dissertation, he verified a 50-year-old 
conjecture about finite groups possessing a 
certain kind of automorphism. (An article 
about his achievement appeared in The New 
York Times.) The novel methods Thompson 
used in his dissertation foreshadowed the rev-
olutionary ideas he would later introduce in 
the Feit–Thompson paper and the classifica-
tion of minimal simple groups (simple groups 
that contain no proper non-Abelian simple 
subgroups). The assimilation and extension 
of Thompson’s methods by others throughout 

the 1960s and 1970s ultimately led to the 
classification of finite simple groups.

In the late 1970s, Thompson made signif-
icant contributions to coding theory, the the-
ory of finite projective planes, and the theory 
of modular functions. His work on Galois 
groups is considered the most important in 
the field in the last half of the 20th century.

Among Thompson’s many honors are the 
Cole Prize in algebra and the Fields Medal. 
He was elected to the National Academy of 
Sciences in 1967, the Royal Society of 
London in 1979, the Sylvester Medal in 1985, 
the Wolf Prize and the Poincaré Prize in 1992, 
the American Academy of Arts and Sciences 
in 1998, the National Medal of Science in 
2000, and the De Morgan Medal in 2013. In 
2008, he was a cowinner of the $1,000,000 
Abel Prize given by the Norwegian Academy 
of Science and Letters.

To find more information about 
Thompson, visit:

http://www-groups.dcs.st-and 
.ac.uk/~history/
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Generators  
and Relations

One cannot escape the feeling that these mathematical formulae 
have an independent existence and an intelligence of their own, 
that they are wiser than we are, wiser even than their discoverers, 
that we get more out of them than we originally put into them.

Heinrich Hertz

I presume that to the unintiated the formulae will appear cold and 
cheerless.

Benjamin Pierce

26

Motivation
In this chapter, we present a convenient way to define a group with certain 
prescribed properties. Simply put, we begin with a set of elements that we 
want to generate the group, and a set of equations (called relations) that 
specify the conditions that these generators are to satisfy. Among all such 
possible groups, we will select one that is as large as possible. This will 
uniquely determine the group up to isomorphism.

To provide motivation for the theory involved, we begin with a  concrete 
example. Consider D4, the group of symmetries of a square. Recall that  
R 5 R90 and H, a reflection across a horizontal axis, generate the group. 
Observe that R and H are related in the following ways:

 R4 5 H2 5 (RH)2 5 R0    (the identity). (1)

Other relations between R and H, such as HR 5 R3H and RHR 5 H, also 
exist, but they can be derived from those given in Equation (1). For ex
ample, (RH)2 5 R0 yields HR 5 R21H21, and R4 5 H2 5 R0 yields R21 5 
R3 and H21 5 H. So, HR 5 R3H. In fact, every relation between R and H 
can be derived from those given in Equation (1).

Thus, D4 is a group that is generated by a pair of elements a and b 
subject to the relations a4 5 b2 5 (ab)2 5 e and such that all other rela
tions between a and b can be derived from these relations. This last 
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stipulation is necessary because the subgroup {R0, R180, H, V} of D4 is 
generated by the two elements a 5 R180 and b 5 H that satisfy the rela
tions  a4 5 b2 5 (ab)2 5 e. However, the “extra” relation a2 5 e satisfied by 
this subgroup cannot be derived from the original ones (since R90

2 2 R0). It 
is natural to ask whether this description of D4 applies to some other group 
as well. The answer is no. Any other group generated by two elements a 
and b satisfying only the relations a4 5 b2 5 (ab)2 5 e, and those that can 
be derived from these relations, is isomorphic to D4.

Similarly, one can show that the group Z4 % Z2 is generated by two el
ements a and b such that a4 5 b2 5 e and ab 5 ba, and any other relation 
between a and b can be derived from these relations. The purpose of this 
chapter is to show that this procedure can be reversed; that is, we can 
begin with any set of generators and relations among the generators and 
construct a group that is uniquely described by these generators and rela
tions, subject to the stipulation that all other relations among the genera
tors can be derived from the original ones.

Definitions and Notation
We begin with some definitions and notation. For any set S 5 {a, b, c, . . .} of 
distinct symbols, we create a new set S21 5 {a21, b21, c21, . . .} by replac
ing each x in S by x21. Define the set W(S) to be the collection of all formal 
finite strings of the form x1x2 ? ? ? xk, where each xi [ S < S21. The ele
ments of W(S) are called words from S. We also permit the string with no 
elements to be in W(S). This word is called the empty word and is denoted 
by e.

We may define a binary operation on the set W(S) by juxtaposition; 
that is, if x1x2 ? ? ? xk and y1y2 ? ? ? yt belong to W(S), then so does x1x2  
? ? ? xky1y2 ? ? ? yt. Observe that this operation is associative and the 
empty word is the identity. Also, notice that a word such as aa21 is not 
the identity, because we are treating the elements of W(S) as formal 
symbols with no implied meaning.

At this stage we have everything we need to make a group out of 
W(S) except inverses. Here a difficulty arises, since it seems reasonable 
that the inverse of the word ab, say, should be b21a21. But abb21a21 is 
not the empty word! You may recall that we faced a similar obstacle 
long ago when we carried out the construction of the field of quotients 
of an integral domain. There we had formal symbols of the form a/b and 
we wanted the inverse of a/b to be b/a. But their product, ab/(ba), was a 
formal symbol that was not the same as the formal symbol 1/1, the iden
tity. So, we proceed here as we did there—by way of equivalence 
classes.
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Definition Equivalence Classes of Words
For any pair of elements u and v of W(S), we say that u is related to v if v 
can be obtained from u by a finite sequence of insertions or deletions of 
words of the form xx21 or x21x, where x [ S.

We leave it as an exercise to show that this relation is an equivalence 
relation on W(S). (See Exercise 1.)

 EXAMPLE 1 Let S 5 {a, b, c}. Then acc21b is equivalent to ab;  
aab21bbaccc21 is equivalent to aabac; the word a21aabb21a21 is equivalent 
to  the  empty word;  and the word ca21b  i s  equivalent  to 
cc21caa21a21bbca21ac21b21. Note, however, that cac21b is not equivalent 
to ab. 

Free Group
 Theorem 26.1 Equivalence Classes Form a Group

Let S be a set of distinct symbols. For any word u in W(S), let u 
 denote the set of all words in W(S) equivalent to u (that is, u is the 
equivalence class containing u). Then the set of all  equivalence 
classes of elements of W(S) is a group under the  operation  
u ? v 5 uv .

PROOF This proof is left to the reader. 

The group defined in Theorem 26.1 is called a free group on S. 
 Theorem 26.2 shows why free groups are important.

 Theorem 26.2 Universal Mapping Property

Every group is a homomorphic image of a free group.

PROOF Let G be a group and let S be a set of generators for G. (Such a 
set exists, because we may take S to be G itself.) Now let F be the free 
group on S. Unfortunately, since our notation for any word in W(S) also 
denotes an element of G, we have created a notational problem for our
selves. So, to distinguish between these two cases, we will denote the 
word x1x2 ? ? ? xn in W(S) by (x1x2 ? ? ? xn)F and the product x1x2 ? ? ? xn 
in G by (x1x2 ? ? ? xn)G. As before, x1x2 

. . . xn denotes the equivalence 
class in F containing the word (x1x2 ? ? ? xn)F in W(S). Notice that 
x1x2 

. . . xn and (x1x2 ? ? ? xn)G are entirely different elements, since the 
operations on F and G are different.
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Now consider the mapping from F into G given by

f( x1x2 
. . . xn) 5 (x1x2 ? ? ? xn)G.

[All we are doing is taking a product in F and viewing it as a product in 
G. For example, if G is the cyclic group of order 4 generated by a, then

f(aaaaa) 5 (aaaaa)G 5 a.]

Clearly, f is welldefined, for inserting or deleting expressions of the 
form xx21 or x21x in elements of W(S) corresponds to inserting or delet
ing the identity in G. To check that f is operationpreserving, observe that

 f(x1x2 . . . xn)(y1y2 . . . ym) 5 f(x1x2 . . . xny1y2 . . . ym)
 5 (x1x2 ? ? ? xny1y2 ? ? ? ym)G
 5 (x1x2 ? ? ? xn)G(y1y2 ? ? ? ym)G.

Finally, f is onto G because S generates G. 

The following corollary is an immediate consequence of Theorem 26.2 
and the First Isomorphism Theorem for Groups.

 Corollary Universal Factor Group Property

Every group is isomorphic to a factor group of a free group.

Generators and Relations
We have now laid the foundation for defining a group by way of genera
tors and relations. Before giving the definition, we will illustrate the basic 
idea with an example.

 EXAMPLE 2 Let F be the free group on the set {a, b} and let N be the 
smallest normal subgroup of F containing the set {a4, b2, (ab)2}. We will 
show that F/N is isomorphic to D4. We begin by observing that the map
ping f from F onto D4, which takes a to R90 and b to H (horizontal 
 reflection), defines a homomorphism whose kernel contains N. Thus, 
F/Ker f is isomorphic to D4. On the other hand, we claim that the set

K 5 {N, aN, a2N, a3N, bN, abN, a2bN, a3bN}

of left cosets of N is F/N itself. To see this, notice that every member of 
F/N can be generated by starting with N and successively multiplying 
on the left by various combinations of a’s and b’s. So, it suffices  
to show that K is closed under multiplication on the left by a and b. It is 
trivial that K is closed under left multiplication by a. For b, we will do 
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only one of the eight cases. The others can be done in a similar fashion. 
Consider b(aN). Since b2, abab, a4 [ N and Nb 5 bN, we have baN 5 
baNb2 5 babNb 5 a21(abab)Nb 5 a21Nb = a21a4Nb 5 a3Nb 5 a3bN. 
Upon completion of the other cases (Exercise 3), we know that F/N has 
at most eight elements. At the same time, we know that F/Ker f has 
exactly eight elements. Since F/Ker f is a factor group of F/N [indeed, 
F/Ker f < (F/N)/(Ker f/N)], it follows that F/N also has eight ele
ments and F/N 5 F/Ker f < D4. 

Definition Generators and Relations
Let G be a group generated by some subset A 5 {a1, a2, . . . , an} and let 
F be the free group on A. Let W 5 {w1, w2, . . . , wt} be a subset of F and 
let N be the smallest normal subgroup of F containing W. We say that G 
is given by the generators a1, a2, . . . , an and the relations w1 5 w2 5 ? ? ? 5 
wt 5 e if there is an isomorphism from F/N onto G that carries aiN to ai.

The notation for this situation is

G 5 ka1, a2, . . . , an | w1 5 w2 5 ? ? ? 5 wt 5 el.

As a matter of convenience, we have restricted the number of gen
erators and relations in our definition to be finite. This restriction is 
not necessary, however. Also, it is often more convenient to write a 
relation in implicit form. For example, the relation a21b23ab 5 e is 
often written as ab 5 b3a. In practice, one does not bother writing 
down the normal subgroup N that contains the relations. Instead, one 
just manipulates the generators and treats anything in N as the iden
tity, as our notation suggests. Rather than saying that G is given by

ka1, a2, . . . , an | w1 5 w2 5 ? ? ? 5 wt 5 el,

many authors prefer to say that G has the presentation

ka1, a2, . . . , an | w1 5 w2 5 ? ? ? 5 wt 5 el.

Notice that a free group is “free” of relations; that is, the equivalence 
class containing the empty word is the only relation. We mention in pass
ing the fact that a subgroup of a free group is also a free group.  Free 
groups are of fundamental importance in a branch of algebra known as 
combinatorial group theory.

 EXAMPLE 3 The discussion in Example 2 can now be summed up by 
writing

 D4 5 ka, b | a4 5 b2 5 (ab)2 5 el. 
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 EXAMPLE 4 The group of integers is the free group on one letter; that is, 
Z < kal. (This is the only nontrivial Abelian group that is free.) 

The next theorem formalizes the argument used in Example 2 to 
prove that the group defined there has eight elements.

 Theorem 26.3 Dyck's Theorem (1882)

Let

G 5 ka1, a2, . . . , an | w1 5 w2 5 ? ? ? 5 wt 5 el

and let

G 5 ka1, a2, . . . , an | w1 5 w2 5 ? ? ? 5 wt 5
wt11 5 ? ? ? 5 wt1k 5 el.

Then G is a homomorphic image of G.

PROOF See Exercise 5. 

In words, Theorem 26.3 says that if you start with generators and rela
tions for a group G and create a group G by imposing additional  
 relations, then G is a homomorphic image of G.

 Corollary Largest Group Satisfying Defining Relations

If K is a group satisfying the defining relations of a finite group G 
and |K| $ |G|, then K is isomorphic to G.

PROOF See Exercise 5. 

 EXAMPLE 5 Quaternions Consider the group G 5 ka, b | a2 5  
b2 5 (ab)2l. What does G look like? Formally, of course, G is isomorphic 
to F/N, where F is free on {a, b} and N is the smallest normal subgroup 
of F containing b22a2 and (ab)22a2. Now, let H 5 kbl and S 5 {H, aH}. 
Then, just as in Example 2, it follows that S is closed under multiplication 
by a and b from the left. So, as in Example 2, we have G 5 H < aH. 
Thus, we can determine the elements of G once we know exactly how 
many elements there are in H. (Here again, the three relations come in.) 
To do this, first observe that b2 5 (ab)2 5 abab implies b 5 aba. Then a2 
5 b2 5 (aba)(aba) 5 aba2ba 5 ab4a and therefore b4 5 e. Hence, H has 
at most four elements, and therefore G has at most eight—namely, e, b, 
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b2, b3, a, ab, ab2, and ab3. It is conceivable, however, that not all of these 
eight elements are distinct. For example, Z2 % Z2 satisfies the  defining 
relations and has only four elements. Perhaps it is the largest group satis
fying the relations. How can we show that the eight elements listed above 
are distinct? Well, consider the group G generated by the  matrices

 
A � c 0 1

�1 0
d   and  B � c0 i

i 0
d ,

where i 5 2�1. Direct calculations show that in G, the elements e, B, B2, 
B3, A, AB, AB2, and AB3 are distinct and that G satisfies the relations  
A2 5 B2 5 (AB)2. So, it follows from the corollary to Dyck’s Theorem 
that G is isomorphic to G and therefore G has order 8. 

The next example illustrates why, in Examples 2 and 5, it is neces
sary to show that the eight elements listed for the group are distinct.

 EXAMPLE 6 Let

G 5 ka, b | a3 5 b9 5 e, a21ba 5 b21l.

Once again, we let H 5 kbl and observe that G 5 H < aH < a2H. Thus,

G 5 {aib j | 0 # i # 2, 0 # j # 8},

and therefore G has at most 27 elements. But this time we will not be 
able to find some concrete group of order 27 satisfying the same rela
tions that G does, for notice that b21 5 a21ba implies

b 5 (a21ba)21 5 a21b21a.

Hence,

b 5 ebe 5 a23ba3 5 a22(a21ba)a2 5 a22b21a2

 5 a21(a21b21a)a 5 a21ba 5 b21.

So, the original three relations imply the additional relation b2 5 e. But 
b2 5 e 5 b9 further implies b 5 e. It follows, then, that G has at most 
three distinct elements—namely, e, a, and a2. But Z3 satisfies the defin
ing relations with a 5 1 and b 5 0. So, |G| 5 3. 

We hope Example 6 convinces you of the fact that, once a list of the 
elements of the group given by a set of generators and relations has been 
obtained, one must further verify that this list has no duplications. 
Typically, this is accomplished by exhibiting a specific group that satis
fies the given set of generators and relations and that has the same size 
as the list. Obviously, experience plays a role here.

Here is a fun example adapted from [1].
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 EXAMPLE 7 Let G be the group with the 26 letters of the alphabet as 
generators. For relations we take strings A 5 B, where A and B are words 
in some fixed reference, say [2], and have the same pronunciation but 
different meanings (such words are called homophones). For example, 
buy 5 by 5 bye, hour 5 our, lead 5 led, whole 5 hole. From these 
strings and cancellation, we obtain u 5 e 5 h 5 a 5 w 5 /0 (/0 is the 
identity string). With these examples in mind, we ask, What is the group 
given by these generators and relations? Surprisingly, the answer is the 
infinite cyclic group generated by v. To verify this, one must show that 
every letter except v is equivalent to  /0 and that there are no two homo
phones that contain a different number of v’s. The former can easily be 
done with common words. For example, from inn 5 in, plumb 5 plum, 
and knot 5 not, we see that n 5 b 5 k 5 /0. From too 5 to we have o 5  /0. 
That there are no two homophones in [2] that have a  different number of 
v’s can be verified by simply checking all cases. In contrast, the refer
ence Handbook of Homophones by W. C. Townsend (see http:// 
members.peak.org/~jeremy/dictionaryclassic/chapters/homophones.
php) lists felt/veldt as  homophones. Of course, including these makes 
the group trivial. 

Classification of Groups  
of Order Up to 15

The next theorem illustrates the utility of the ideas presented in this chapter.

 Theorem 26.4 Classification of Groups of Order 8 (Cayley, 1859)

Up to isomorphism, there are only five groups of order 8: Z8, Z4 % Z2, 
Z2 % Z2 % Z2, D4, and the quaternions.

PROOF The Fundamental Theorem of Finite Abelian Groups takes care of 
the Abelian cases. Now, let G be a nonAbelian group of order 8. Also, let 
G1 5 ka, b | a4 5 b2 5 (ab)2 5 el and let G2 5 ka, b | a2 5 b2 5 (ab)2l. 
We know from the preceding examples that G1 is isomorphic to D4 and 
G2 is isomorphic to the quaternions. Thus, it suffices to show that G must 
satisfy the defining relations for G1 or G2. It follows from Exercise 47 in 
Chapter 2 and Lagrange’s Theorem that G has an element of order 4; call 
it a. Then, if b is any element of G not in kal, we know that

G 5 kal < kalb 5 {e, a, a2, a3, b, ab, a2b, a3b}.
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Consider the element b2 of G. Which of the eight elements of G can it 
be? Not b, ab, a2b, or a3b, by cancellation. Not a, for b2 commutes with  
b and a does not. Not a3, for the same reason. Thus, b2 5 e or b2 5 a2. 
Suppose b2 5 e. Since kal is a normal subgroup of G, we know that bab21 
[ kal. From this and the fact that |bab21| 5 |a|, we then conclude that 
bab21 5 a or bab21 5 a21. The first relation would mean that G is 
A belian, so we know that bab21 5 a21. But then, since b2 5 e, we have 
(ab)2 5 e, and therefore G satisfies the defining relations for G1.

Finally, if b2 5 a2 holds instead of b2 5 e, we can use bab21 5 a21  

to conclude that (ab)2 5 a(bab21)b2 5 aa21b2 5 b2, and therefore G satis
fies the defining relations for G2. 

The classification of the groups of order 8, together with our results  
on groups of order p2, 2p, and pq from Chapter 24, allows us to classify 
the groups of order up to 15, with the exception of those of order 12. We 
already know four groups of order 12—namely, Z12, Z6 % Z2, D6, and A4. 
An argument along the lines of Theorem 26.4 can be given to show that 
there is only one more group of order 12. This group, called the dicyclic 
group of order 12 and denoted by Q6, has presentation ka, b | a6 5 e,  
a3 5 b2, b21ab 5 a21l. Table 26.1 lists the groups of order at most 15. We 
use Q4 to denote the quaternions (see Example 5 in this chapter).

Table 26.1  Classification of Groups of Order Up to 15

Order Abelian Groups Non-Abelian Groups

 1 Z1
 2 Z2
 3 Z3
 4 Z4, Z2 % Z2
 5 Z5
 6 Z6 D3
 7 Z7
 8 Z8, Z4 % Z2, Z2 % Z2 % Z2 D4, Q4
 9 Z9, Z3 % Z3
 10 Z10 D5
 11 Z11
 12 Z12, Z6 % Z2 D6, A4, Q6
 13 Z13
 14 Z14 D7
 15 Z15
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Characterization of Dihedral Groups
As another nice application of generators and relations, we will now give 
a characterization of the dihedral groups that has been known for more 
than 100 years. For n $ 3, we have used Dn to denote the group of sym
metries of a regular ngon. Imitating Example 2, one can show that Dn < 
ka, b | an 5 b2 5 (ab)2 5 el (see Exercise 9). By analogy, these generators 
and relations serve to define D1 and D2 also. (These are also called dihe
dral groups.) Finally, we define the infinite dihedral group  
D` as ka, b | a2 5 b2 5 el. The elements of D` can be listed as e, a, b, ab, 
ba, (ab)a, (ba)b, (ab)2, (ba)2, (ab)2a, (ba)2b, (ab)3, (ba)3, . . . .

 Theorem 26.5 Characterization of Dihedral Groups

Any group generated by a pair of elements of order 2 is dihedral.

PROOF Let G be a group generated by a pair of distinct elements of order 
2, say, a and b. We consider the order of ab. If |ab| 5 `, then G is infinite 
and satisfies the relations of D`. We will show that G is isomorphic to D`. 
By Dyck’s Theorem, G is isomorphic to some factor group of D`, say, 
D`/H. Now, suppose h [ H and h 2 e. Since every element of D` has one 
of the forms (ab)i, (ba)i, (ab)ia, or (ba)ib, by symmetry, we may assume 
that h 5 (ab)i or h 5 (ab)ia. If h 5 (ab)i, we will show that D`/H satisfies 
the relations for Di given in Exercise 9. Since (ab)i is in H, we have

H 5 (ab)iH 5 (abH)i,

so that (abH)21 5 (abH)i21. But

(ab)21H 5 b21a21H 5 baH,

and it follows that

aHabHaH � a2HbHaH � eHbaH � baH � 1abH2�1
.

Thus,

D`/H 5 kaH, bHl 5 kaH, abHl

(see Exercise 7), and D`/H satisfies the defining relations for Di (use 
 Exercise 9 with x 5 aH and y 5 abH). In particular, G is finite—an 
 impossibility.

If h 5 (ab)ia, then

H 5 (ab)iaH 5 (ab)iHaH,

and therefore
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(abH)i 5 (ab)iH 5 (aH)21 5 a21H 5 aH.

It follows that

kaH, bHl 5 kaH, abHl # kabHl.

However,

(abH)2i 5 (aH)2 5 a2H 5 H,

so that D`/H is again finite. This contradiction forces H 5 {e} and G to 
be isomorphic to D`.

Finally, suppose that |ab| 5 n. Since G 5 ka, bl 5 ka, abl, we can 
show that G is isomorphic to Dn by proving that b(ab)b 5 (ab)21, which 
is the same as ba 5 (ab)21 (see Exercise 9). But (ab)21 5 b21a21 5 ba, 
since a and b have order 2. 

Realizing the Dihedral Groups  
with Mirrors

A geometric realization of D` can be obtained by placing two mirrors 
facing each other in a parallel position, as shown in Figure 26.1. If we let 
a and b denote reflections in mirrors A and B, respectively, then ab, 
viewed as the composition of a and b, represents a translation through 
twice the distance between the two mirrors to the left, and ba is the trans
lation through the same distance to the right.

aba bab babaab a b bae

A B

FF FF FF FF

Figure 26.1 The group D`—reflections in parallel mirrors

The finite dihedral groups can also be realized with a pair of mirrors. 
For example, if we place a pair of mirrors facing each other at a 45° 
 angle, we obtain the group D4. Notice that in Figure 26.2, the effect of 
reflecting an object in mirror A, then mirror B, is a rotation of twice the 
angle between the two mirrors (that is, 90°).
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bab
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e

baba = abab

ab

a

A

B

Figure 26.2 The group D4—reflections in mirrors at a 45° angle

In Figure 26.3, we see a portion of the pattern produced by reflections 
in a pair of mirrors set at a 1° angle. The corresponding group is D180. In 
general, reflections in a pair of mirrors set at the angle 180°/n correspond 
to the group Dn. As n becomes larger and larger, the mirrors approach a 
parallel position. In the limiting case, we have the group D`.

aba ab a b ba bab baba
e

FFFF FFFF

Α Β

Figure 26.3 The group D180—reflections in mirrors at a 1° angle

We conclude this chapter by commenting on the advantages and dis
advantages of using generators and relations to define groups. The prin
cipal advantage is that in many situations—particularly in knot theory, 
algebraic topology, and geometry—groups defined by way of generators 
and relations arise in a natural way. Within group theory itself, it is often 
convenient to construct examples and counterexamples with generators 
and relations. Among the disadvantages of defining a group by genera
tors and relations is the fact that it is often difficult to decide whether or 
not the group is finite, or even whether or not a particular  element is the 
identity. Furthermore, the same group can be defined with entirely dif
ferent sets of generators and relations, and, given two groups defined by 
generators and relations, it is often extremely difficult to  decide whether 
or not these two groups are isomorphic. Nowadays, these questions are 
frequently tackled with the aid of a  computer.
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Exercises

It don’t come easy.
Ringo Starr, “It Don't Come Easy,” single

  1. Let S be a set of distinct symbols. Show that the relation defined on 
W(S) in this chapter is an equivalence relation.

  2. Let n be an even integer. Prove that Dn/Z(Dn) is isomorphic to Dn/2.
  3. Verify that the set K in Example 2 is closed under multiplication on 

the left by b.
  4. Show that ka, b | a5 5 b2 5 e, ba 5 a2bl is isomorphic to Z2.
  5. Prove Theorem 26.3 and its corollary.
  6. Let G be the group {61, 6i, 6j, 6k} with multiplication defined 

as in Exercise 54 in Chapter 9. Show that G is isomorphic to ka, b | 
a2 5 b2 5 (ab)2l. (Hence, the name “quaternions.”)

  7. In any group, show that ka, bl 5 ka, abl. (This exercise is referred 
to in the proof of Theorem 26.5.)

  8. Let a 5 (12)(34) and b 5 (24). Show that the group generated by a 
and b is isomorphic to D4.

  9. Prove that G 5 kx, y | x2 5 yn 5 e, xyx 5 y21l is isomorphic to Dn. 
(This exercise is referred to in the proof of Theorem 26.5.)

 10. What is the minimum number of generators needed for Z2 % Z2 % 
Z2? Find a set of generators and relations for this group.

 11. Suppose that x2 5 y2 5 e and yz 5 zxy. Show that xy 5 yx.
 12. Let G 5 ka, b | a2 5 b4 5 e, ab 5 b3al.
 a.  Express a3b2abab3 in the form bia j, where 0 # i # 1 and  

0 # j # 3.
 b. Express b3abab3a in the form biaj, where 0 # i # 1 and 0 # j # 3.
 13. Let G 5 ka, b | a2 5 b2 5 (ab)2l.
 a. Express b2abab3 in the form bia j.
 b. Express b3abab3a in the form bia j.
 14. Let G be the group defined by the following table. Show that G is  

isomorphic to Dn.

  1 2 3 4 5 6 ? ? ? 2n

 1 1 2 3 4 5 6 ? ? ? 2n
 2 2 1 2n 2n 2 1 2n 2 2 2n 2 3 ? ? ? 3
 3 3 4 5 6 7 8 ? ? ? 2
 4 4 3 2 1 2n 2n 2 1 ? ? ? 5
 5 5 6 7 8 9 10 ? ? ? 4
 6 6 5 4 3 2 1 ? ? ? 7
 : : : : : : : : :

 2n 2n 2n 2 1 2n 2 2 2n 2 3 2n 2 4 2n 2 5 ? ? ? 1
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 15. Let G 5 kx, y | x 5 (xy)3, y 5 (xy)4l. To what familiar group is G  
isomorphic?

 16. Let G 5 kz | z6 5 1l and H 5 kx, y | x2 5 y3 5 1, xy 5 yxl. Show 
that G and H are isomorphic.

 17. Let G 5 kx, y | x8 5 y2 5 e, yxyx3 5 el. Show that |G| # 16. As
suming that |G| 5 16, find the center of G and the order of xy.

 18. Confirm the classification given in Table 26.1 of all groups of 
 orders 1 to 11.

 19. Let G be defined by some set of generators and relations. Show that 
every factor group of G satisfies the relations defining G.

 20. Let G 5 ks, t | sts 5 tstl. Show that the permutations (23) and (13) 
satisfy the defining relations of G. Explain why this proves that G 
is nonAbelian.

 21. In D12 5 kx, y | x2 5 y12 5 e, xyx 5 y21l, prove that the subgroup  
H 5 kx, y3l (which is isomorphic to D4) is not a normal subgroup.

 22. Let G 5 kx, y | x2n 5 e, xn 5 y2, y21xy 5 x21l. Show that Z(G) 5  
{e, xn}. Assuming that |G| 5 4n, show that G/Z(G) is isomorphic to 
Dn. (The group G is called the dicyclic group of order 4n.)

 23. Let G 5 ka, b | a6 5 b3 5 e, b21ab 5 a3l. How many elements does 
G have? To what familiar group is G isomorphic?

 24. Let G 5 kx, y | x4 5 y4 5 e, xyxy21 5 el. Show that |G| # 16. As
suming that |G| 5 16, find the center of G and show that G/ky2l is 
isomorphic to D4.

 25. Determine the orders of the elements of D`.

 26. Let G � • £
1

0

0

a

1

0

b

c

1

§  � a, b, c [ Z2s. Prove that G is isomorphic  

  to D4.
 27. Let G 5 ka, b, c, d | ab 5 c, bc 5 d, cd 5 a, da 5 bl. Determine |G|.
 28. Let G � ka, b � a2 � e, b2 � e, aba � babl. To what familiar group 

is G isomorphic?
 29. Let G � ka, b � a3 � e, b2 � e, aba�1b�1 � el. To what familiar 

group is G isomorphic?
 30. Give an example of a nonAbelian group that has exactly three 

 elements of finite order.
 31. Referring to Example 7 in this chapter, show as many letters as you 

can that are equivalent to ~.
 32. Suppose that a group of order 8 has exactly five elements of order 2. 

Identify the group.
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Suggested Readings

Alexander H. Frey, Jr., and David Singmaster, Handbook of Cubik Math, 
Hillside, N.J.: Enslow, 1982.

This book is replete with the group theoretic aspects of the Magic Cube. 
It uses permutation group theory and generators and relations to discuss 
the solutions to the cube and related results. The book has numerous 
challenging exercises stated in group theoretic terms.

Lee Neuwirth, “The Theory of Knots,” Scientific American 240 (1979): 
110–124.

This article shows how a group can be associated with a knotted string. 
Mathematically, a knot is just a onedimensional curve situated in three
dimensional space. The theory of knots—a branch of topology—seeks 
to classify and analyze the different ways of embedding such a curve. 
Around the beginning of the 20th century, Henri Poincaré observed that 
important geometric characteristics of knots could be described in terms 
of group generators and relations—the socalled knot group. Among 
other knots, Neuwirth describes the construction of the knot group for the 
trefoil knot pictured. One set of generators and relations for this group is 
kx, y, z | xy 5 yz, zx 5 yzl.

The trefoil knot

David Peifer, “An Introduction to Combinatorial Group Theory and the 
Word Problem,” Mathematics Magazine 70 (1997): 3–10.

This article discusses some fundamental ideas and problems regarding 
groups given by presentations.
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Marshall Hall, Jr., was born on September 
17, 1910, in St. Louis, Missouri. He demon
strated interest in mathematics at the age of 
11 when he constructed a sevenplace table of 
logarithms for the positive integers up to 
1000. He completed a B.A. degree in 1932 at 
Yale. After spending a year at Cambridge 
University, where he worked with Philip  
Hall, Harold Davenport, and G. H. Hardy, he 
returned to Yale for his Ph.D. degree. At the 
outbreak of World War II, he joined Naval 
Intelligence and had significant success in de
ciphering both the Japanese codes and the 
German Enigma messages. These successes 
helped to turn the tide of the war. After the 
war, Hall had faculty appointments at the 
Ohio State University, Caltech, and Emory 
University. He died on July 4, 1990.

Hall’s highly regarded books on group  
theory and combinatorial theory are classics. 
His mathematical legacy includes more than 

Professor Hall was a mathematician in the 
broadest sense of the word but with a  
predilection for group theory, geometry and 
combinatorics.

hans zassenhaus, Notices of  
the American Mathematical Society

120 research papers on group theory, coding 
theory, and design theory. His 1943 paper on 
projective planes ranks among the most cited 
papers in mathematics. Several fundamental 
concepts as well as a sporadic simple group  
are identified with Hall’s name. One of Hall’s 
most celebrated results is his solution to the 
“Burnside Problem” for exponent 6—that is, 
his proof that a finitely generated group in 
which the order of every element divides 6 must 
be finite. Hall influenced both John Thompson 
and Michael Aschbacher, two of finite group 
theory’s greatest contributors. It was Hall who 
suggested Thompson’s Ph.D. dissertation prob
lem. Hall’s Ph.D. students at Caltech included 
Donald Knuth and Robert McEliece.

To find more information about Hall, 
visit:

http://www–groups.dcs.st–and 
.ac.uk/~history/
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27

Isometries
In the early chapters of this book, we briefly discussed symmetry 
groups. In this chapter and the next, we examine this fundamentally im-
portant concept in some detail. It is convenient to begin such a discus-
sion with the definition of an isometry (from the Greek isometros, 
meaning “equal measure”) in Rn.

Definition Isometry
An isometry of n-dimensional space Rn is a function from Rn onto Rn 

that preserves distance.

In other words, a function T from Rn onto Rn is an isometry if, for 
every pair of points p and q in Rn, the distance from T(p) to T(q) is the 
same as the distance from p to q. With this definition, we may now 
make precise the definition of the symmetry group of an n-dimensional 
figure.

Definition Symmetry Group of a Figure in Rn

Let F be a set of points in Rn. The symmetry group of F in Rn is the set 
of all isometries of Rn that carry F onto itself. The group operation is 
function composition.

Symmetry Groups

Physicists have exalted symmetry to the position of the central 
concept in their attempts to organize and explain an otherwise be-
wildering and complex universe.

Mario Livio, The Equation That Could Not Be Solved

I’m not good at math, but I do know that the universe is formed 
with mathematical principles whether I understand them or not, 
and I am going to let that guide me.

Bob Dylan, Chronicles, Volume One
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It is important to realize that the symmetry group of an object de-
pends not only on the object, but also on the space in which we view it. 
For example, the symmetry group of a line segment in R1 has order 2, 
the symmetry group of a line segment considered as a set of points in R2 
has order 4, and the symmetry group of a line segment viewed as a set of 
points in R3 has infinite order (see Exercise 9).

Although we have formulated our definitions for all finite dimen-
sions, our chief interest will be the two-dimensional case. It has been 
known since 1831 that every isometry of R2 is one of four types:  
rotation, reflection, translation, and glide-reflection (see [1, p. 46]). 
Rotation about a point in a plane needs no explanation. A reflection 
across a line L is that transformation that leaves every point of L fixed 
and takes every point Q, not on L, to the point Q9 so that L is the perpen-
dicular bisector of the line segment from Q to Q9 (see Figure 27.1). The 
line L is called the axis of reflection. In an xy-coordinate plane, the 
transformation (x, y) S (x, 2y) is a reflection across the x-axis,  
whereas (x, y) S (y, x) is a reflection across the line y 5 x. Some au-
thors call an axis of reflective symmetry L a mirror because L acts like a 
two-sided mirror; that is, the image of a point Q in a mirror placed on 
the line L is, in fact, the image of Q under the reflection across the line 
L. Reflections are called opposite isometries because they reverse orien-
tation. For example, the reflected image of a clockwise spiral is a coun-
terclockwise spiral. Similarly, the reflected image of a right hand is a 
left hand. (See Figure 27.1.)

L

Q

Q'

  Axis of reflection   Axis of reflection

Figure 27.1 Reflected images

A translation is simply a function that carries all points the same dis-
tance in the same direction. For example, if p and q are points in a plane 
and T is a translation, then the two directed line segments joining p to 
T( p) and q to T(q) have the same length and direction. A glide-reflection 
is the product of a translation and a reflection across the line containing 
the translation line segment. This line is called the glide-axis. In  
Figure 27.2, the arrow gives the direction and length of the translation, 
and is contained in the axis of reflection. A glide-reflection is also an  
opposite isometry. Successive footprints in wet sand are related by a 
glide-reflection.
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p T(p)

Figure 27.2 Glide-reflection

Classification of Finite Plane Symmetry Groups
Our first goal in this chapter is to classify all finite plane symmetry 
groups. As we have seen in earlier chapters, the dihedral group Dn is the 
plane symmetry group of a regular n-gon. (For convenience, call D2 the 
plane symmetry group of a nonsquare rectangle and D1 the plane sym-
metry group of the letter “V.” In particular, D2 < Z2 % Z2 and D1 < Z2.) 
The cyclic groups Zn are easily seen to be plane symmetry groups also. 
Figure 27.3 is an illustration of an organism whose plane symmetry 
group consists of four rotations and is isomorphic to Z4. The surprising 
fact is that the cyclic groups and dihedral groups are the only finite plane 
symmetry groups. The famous mathematician Hermann Weyl  attributes 
the following theorem to Leonardo da Vinci (1452–1519).

  Figure 27.3 Aurelia insulinda, an organism  
whose plane symmetry group is Z4

 Theorem 27.1 Finite Symmetry Groups in the Plane

The only finite plane symmetry groups are Zn and Dn.
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PROOF Let G be a finite plane symmetry group of some figure. We first 
observe that G cannot contain a translation or a glide-reflection, because 
in either case G would be infinite. Now observing that the composition of 
two reflections preserves orientation, we know that such a composition is 
a translation or rotation. When the two reflections have parallel axes of 
reflection, there is no fixed point so the composition is a translation. Thus, 
every two reflections in G have reflection axes that intersect in some 
point. We claim that all reflections intersect in the same point. Suppose 
that f and f � are two distinct reflections in G. Then because f f� preserves 
orientation, we know that f f� is a rotation. We use the fact from geometry 
[2, p. 366] that a finite group of rotations must have a common center, say 
P. This means that any two reflections must intersect at point P. So, we 
have shown that all the elements of G have the common fixed point P.

For convenience, let us denote a rotation about P of s degrees 
by Rs. Now, among all rotations in G, let b be the smallest positive 
angle of rotation. (Such an angle exists, since G is finite and R360 be-
longs to G.) We claim that every rotation in G is some power of Rb. To 
see this, suppose that Rs is in G. We may assume 0° , s # 360°. 
Then, b # s and there is some integer t such that tb # s ,  
(t 1 1)b. But, then Rs2tb 5 Rs(Rb)2t is in G and 0 # s 2 tb , b. 
Since b represents the smallest positive angle of rotation among the 
elements of G, we must have s 2 tb 5 0, and therefore, Rs 5 (Rb)t. 
This verifies the claim.

For convenience, let us say that |Rb| 5 n. Now, if G has no reflec-
tions, we have proved that G 5 kRbl < Zn. If G has at least one reflec-
tion, say f, then

f, fRb, f (Rb)2, . . . , f (Rb)n21

are also reflections. Furthermore, this is the entire set of reflections of G. 
For if g is any reflection in G, then fg is a rotation, and so fg 5 (Rb)k for 
some k. Thus, g 5 f21(Rb)k 5 f(Rb)k. So

G 5 {R0, Rb, (Rb)2, . . . , (Rb)n21, f, fRb, f (Rb)2, . . . , f(Rb)n21},

and G is generated by the pair of reflections f and fRb. Hence, by our 
characterization of the dihedral groups (Theorem 26.5), G is the dihe-
dral group Dn. 

Classification of Finite Groups of Rotations in R3

One might think that the set of all possible finite symmetry groups in 
three dimensions would be much more diverse than is the case for two 
dimen sions. Surprisingly, this is not the case. For example, moving to 
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three dimensions introduces only three new groups of rotations. This 
observation was first made by the physicist and mineralogist Auguste 
Bravais in 1849, in his study of possible structures of crystals.

 Theorem 27.2 Finite Groups of Rotations in R 3

Up to isomorphism, the finite groups of rotations in R3 are Zn, Dn, 
A4, S4, and A5.

Theorem 27.2, together with the Orbit-Stabilizer Theorem (Theo-
rem 7.3), makes easy work of determining the group of rotations of an 
object in R3.

 EXAMPLE 1 We determine the group G of rotations of the solid in 
 Figure 27.4, which is composed of six congruent squares and eight con-
gruent equilateral triangles. We begin by singling out any one of the 
squares. Obviously, there are four rotations that map this square to itself, 
and the designated square can be rotated to the location of any of the 
other five. So, by the Orbit-Stabilizer Theorem (Theorem 7.4), the rota-
tion group has order 4 ? 6 5 24. By Theorem 27.2, G is one of Z24, D12, 
and S4. But each of the first two groups has exactly two elements of order 
4, whereas G has more than two. So, G is isomorphic to S4. 

 
 Figure 27.4

The group of rotations of a tetrahedron (the tetrahedral group) is iso-
morphic to A4; the group of rotations of a cube or an octahedron (the 
octahedral group) is isomorphic to S4; the group of rotations of a do-
decahedron or an icosahedron (the icosahedral group) is isomorphic to 
A5. (Coxeter [1, pp. 271–273] specifies which portions of the polyhedra 
are being permuted in each case.) These five solids are illustrated in 
Figure 27.5.
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Figure 27.5 The five regular solids as depicted by Johannes Kepler  
in Harmonices Mundi, Book II (1619)

Exercises

Perhaps the most valuable result of all education is the ability to make  
yourself do the thing you have to do, when it ought to be done, whether you 
like it or not .

Thomas Henry Huxley, “Technical Education”

  1. Show that an isometry of Rn is one-to-one.
  2. Show that the translations of Rn form a group.
  3. Exhibit a plane figure whose plane symmetry group is Z5.
  4. Show that the group of rotations in R3 of a 3-prism (that is, a prism 

with equilateral ends, as in the following figure) is isomorphic to D3.

  5. What is the order of the (entire) symmetry group in R3 of a 3-prism?
  6. What is the order of the symmetry group in R3 of a 4-prism (a box 

with square ends that is not a cube)?
  7. What is the order of the symmetry group in R3 of an n-prism?
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  8. Show that the symmetry group in R3 of a box of dimensions 20 3 
30 3 40 is isomorphic to Z2 % Z2 % Z2.

  9. Describe the symmetry group of a line segment viewed as
 a. a subset of R1.
 b. a subset of R2.
 c. a subset of R3.
  (This exercise is referred to in this chapter.)
 10. (From the “Ask Marilyn” column in Parade Magazine, December 11, 

1994.)* The letters of the alphabet can be sorted into the following 
categories:

 1. FGJLNPQRSZ
 2. BCDEK
 3. AMTUVWY
 4. HIOX
  What defines the categories?
 11. Exactly how many elements of order 4 does the group in Example 1 

have?
 12. Why is inversion [that is, f 1x, y2 � 1�x, �y2] not listed as one of 

the four kinds of isometries in R2?
 13. Explain why inversion through a point in R3 cannot be realized by a 

rotation in R3.
 14. Reflection across a line L in R3 is the isometry that takes each point 

Q to the point Q9 with the property that L is a perpendicular bisec-
tor of the line segment joining Q and Q9. Describe a rotation that 
has this same effect.

 15. In R2, a rotation fixes a point; in R3, a rotation fixes a line. In R4, 
what does a rotation fix? Generalize these observations to Rn.

 16. Show that an isometry of a plane preserves angles.
 17. Show that an isometry of a plane is completely determined by the 

image of three noncollinear points.
 18. Suppose that an isometry of a plane leaves three noncollinear points 

fixed. Which isometry is it?
 19. Suppose that an isometry of a plane fixes exactly one point. What 

type of isometry must it be?
 20. Suppose that A and B are rotations of 180° about the points a and b, 

respectively. What is A followed by B? How is the composite mo-
tion related to the points a and b?

*Copyright © 1994. Reprinted with permission of the author and the publisher from 
PARADE, December 11, 1994.
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28

The Frieze Groups
In this chapter, we discuss an interesting collection of infinite symmetry 
groups that arise from periodic designs in a plane. There are two types of 
such groups. The discrete frieze groups are the plane symmetry groups 
of patterns whose subgroups of translations are isomorphic to Z. These 
kinds of designs are the ones used for decorative strips and for patterns 
on jewelry, as illustrated in Figure 28.1. In mathematics, familiar 
 examples include the graphs of y 5 sin x, y 5 tan x, y 5 |sin x|, and  
|y| 5 sin x. After we analyze the discrete frieze groups, we exam ine the 
discrete symmetry groups of plane patterns whose subgroups of transla-
tions are isomorphic to Z % Z.

In previous chapters, it was our custom to view two isomorphic 
groups as the same group, since we could not distinguish between them 
algebraically. In the case of the frieze groups, we will soon see that, al-
though some of them are isomorphic as groups (that is, algebraically the 
same), geometrically they are quite different. To emphasize this 
 difference, we will treat them separately. In each of the following  
cases, the given pattern extends infinitely far in both directions.  
A proof that there are exactly seven types of frieze patterns is given in 
the appendix to [6].

Frieze Groups  
and Crystallographic Groups

Symmetry and group theory have an uncanny way of directing 
physicists to the right path. 

Mario Livio, The Equation That Could Not Be Solved

Group theory is the bread and butter of crystallography.
Mario Livio, The Equation That Could Not Be Solved
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Figure 28.1 Frieze patterns

The symmetry group of pattern I (Figure 28.2) consists of transla-
tions only. Letting x denote a translation to the right of one unit (that  
is, the distance between two consecutive R’s), we may write the sym-
metry group of pattern I as

F1 5 {xn | n [ Z}.

R R R R

Figure 28.2 Pattern I
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The group for pattern II (Figure 28.3), like that of pattern I, is infi-
nitely cyclic. Letting x denote a glide-reflection, we may write the sym-
metry group of pattern II as

F2 5 {xn | n [ Z}.

R R RRR R R

Figure 28.3 Pattern II

Notice that the translation subgroup of pattern II is just kx2l.
The symmetry group for pattern III (Figure 28.4) is generated by a 

translation x and a reflection y across the dashed vertical line. (There 
are infinitely many axes of reflective symmetry, including those mid-
way between consecutive pairs of opposite-facing R’s. Any one will 
do.) The entire group (the operation is function composition) is

F3 5 {xnym | n [ Z, m 5 0 or 1}.

RRRRRRRRRR

Figure 28.4 Pattern III

Note that the two elements xy and y have order 2, they generate F3, 
and their product (xy)y 5 x has infinite order. Thus, by Theorem 26.5, 
F3 is the infinite dihedral group. A geometric fact about pattern III worth 
mentioning is that the distance between consecutive pairs of vertical re-
flection axes is half the length of the smallest translation vector.

In pattern IV (Figure 28.5), the symmetry group F4 is generated by a 
translation x and a rotation y of 180° about a point p midway between 
consecutive R’s (such a rotation is often called a half-turn). This group, 
like F3, is also infinite dihedral. (Another rotation point lies between a 
top and bottom R. As in pattern III, the distance between consecutive 
points of rotational symmetry is half the length of the smallest transla-
tion vector.) Therefore,

F4 5 {xnym | n [ Z, m 5 0 or m 5 1}.

R R R RRRRR

p

Figure 28.5 Pattern IV
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RRRR RR RRRR RR
p

Figure 28.6 Pattern V

The symmetry group F5 for pattern V (Figure 28.6) is yet another 
 infinite dihedral group generated by a glide-reflection x and a rotation y 
of 180° about the point p. Notice that pattern V has vertical reflection 
symmetry xy. The rotation points are midway between the vertical reflec-
tion axes. Thus,

F5 5 {xnym | n [ Z, m 5 0 or m 5 1}.

The symmetry group F6 for pattern VI (Figure 28.7) is generated by a 
translation x and a horizontal reflection y. The group is

F6 5 {xnym | n [ Z, m 5 0 or m 5 1}.

Note that, since x and y commute, F6 is not infinite dihedral. In fact, F6 
is isomorphic to Z % Z2. Pattern VI is invariant under a glide-reflection 
also, but in this case the glide-reflection is called trivial, since the axis 
of the glide-reflection is also an axis of reflection. (Conversely, a glide-
reflection is nontrivial if its glide-axis is not an axis of reflective sym-
metry for the pattern.)

R R R RR R R R

Figure 28.7 Pattern VI

The symmetry group F7 of pattern VII (Figure 28.8) is generated by a 
translation x, a horizontal reflection y, and a vertical reflection z. It is 
isomorphic to the direct product of the infinite dihedral group and Z2. 
The product of y and z is a 180° rotation. Therefore,

F7 5 {xnymzk | n [ Z, m 5 0 or m 5 1, k 5 0 or k 5 1}.

RR RR RR RRRR RR RR RR

Figure 28.8 Pattern VII

The preceding discussion is summarized in Figure 28.9. Figure 28.10 
provides an identification algorithm for the frieze patterns.

In describing the seven frieze groups, we have not explicitly said how 
multiplication is done algebraically. However, each group element cor-
responds to some isometry, so multiplication is the same as function 
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x =  translation

x =  glide-reflection

Z

Z

x =  translation
y =  vertical reflection

x =  translation
y =  rotation of 180°

x =  glide-reflection
y =  rotation of 180°

Generators

Group
isomorphism
classPattern

x =  translation
y =  horizontal reflection

x =  translation
y =  horizontal reflection
z =  vertical reflection

D

D

D

D

Z Z
2

Z
2

Figure 28.9 The seven frieze patterns and their groups of symmetries

composition. Thus, we can always use the geometry to determine the 
product of any particular string of elements.

For example, we know that every element of F7 can be written in the 
form xnymzk. So, just for fun, let’s determine the appropriate values for n, 
m, and k for the element g 5 x21yzxz. We may do this simply by looking 
at the effect that g has on pattern VII. For convenience, we will pick out 
a particular R in the pattern and trace the action of g one step at a time. To 
distinguish this R, we enclose it in a shaded box. Also, we draw the axis 
of the vertical reflection z as a dashed line segment. See Figure 28.11.

Now, comparing the starting position of the shaded R with its final 
position, we see that x21yzxz 5 x22y. Exercise 7 suggests how one may 
arrive at the same result through purely algebraic manipulation.

R R R RI

x21 x2xe

II R R
R R

R
x22

x21 x

x2e

III RR RRRR
x21y  x21 xy xy  e

IV R R

R R R

R
x21

x2y xy

e x

y

V RRRR
RR

  x21y xy x2e

y x

  x21y

VI R R
R R R

R
x21

y

e x

xy

VII RRRR RR
RR RRRR

  x21z x21

  x21yz  x21y

xz xz e

xyz xyyz y
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*Adaptation of figure from Dorothy K. Washburn and Donald W. Crowe. Symmetries of 
Culture: Theory and Practice of Plane Pattern Analysis. Copyright © 1988 by the 
University of Washington Press. Used by permission.
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The Crystallographic Groups
The seven frieze groups catalog all symmetry groups that leave a   
design invariant under all multiples of just one translation. However, 
there are 17 additional kinds of discrete plane symmetry groups that 
arise from infinitely repeating designs in a plane. These groups are the 
symmetry groups of plane patterns whose subgroups of translations are 
isomorphic to Z % Z. Consequently, the patterns are invariant under lin-
ear combinations of two linearly independent translations. These 17 
groups were first studied by 19th-century crystallographers and are of-
ten called the plane crystallographic groups. Another term occasionally 
used for these groups is wallpaper groups.

Our approach to the crystallographic groups will be geometric. It 
is adapted from the excellent article by Schattschneider [5] and the 
monograph by Crowe [1]. Our goal is to enable the reader to determine 
which of the 17 plane symmetry groups corresponds to a given periodic 
pattern. We begin with some examples.

RRRR RRRR
RRRR RRRR

RRRR RRRR
RRRR RRRR

RR RRR RRR
RRRR RRRR

RRRR RRRR
RRRR RRRR

RRRR RRRR

RRRR RRRR
RRRR RRRR

RRRR RRRR

z

x

z

y

x�1

Figure 28.11 
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The simplest of the 17 crystallographic groups contains translations 
only. In Figure 28.12, we present an illustration of a representative pat-
tern for this group (imagine the pattern repeated to fill the entire plane). 
The crystallographic notation for it is p1. (This notation is explained  
in [5].)

The symmetry group of the pattern in Figure 28.13 contains transla-
tions and glide-reflections. This group has no (nonzero) rotational or 
reflective symmetry. The crystallographic notation for it is pg.

Figure 28.14 has translational symmetry and threefold rotational 
symmetry (that is, the figure can be rotated 120° about certain points 
and be brought into coincidence with itself). The notation for this  
group is p3.

Representative patterns for all 17 plane crystallographic groups, 
 together with their notations, are given in Figures 28.15 and 28.16. 
 Figure 28.17 uses a triangle motif to illustrate the 17 classes of symme-
try patterns.

 Figure 28.12 Fish3 by Makoto Nakamura, adapted by Kevin Lee. Design with sym-
metry group p1 (disregarding shading). The inserted arrows are translation vectors.
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 Figure 28.13 Fish5 by Makoto 
Nakamura, adapted by Kevin Lee. 
Design with symmetry group pg 
(disregarding shading). The solid 
arrow is the translation vector. 
The dashed arrows are the glide-
reflection vectors.

 Figure 28.14  
Horses1 by Ma-
koto Nakamura, 
adapted by Kevin 
Lee. Design with 
symmetry group 
p3 (disregarding 
shading). The 
 inserted arrows 
are translation 
vectors.

M
ak

ot
o 

N
ak

am
ur

a 
an

d 
Ke

vi
n 

Le
e

M
ak

ot
o 

N
ak

am
ur

a 
an

d 
Ke

vi
n 

Le
e

454 Special Topics

57960_ch28_ptg01_446-471.indd   454 10/27/15   2:38 PM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 28.15 The plane symmetry groups

All designs in Figures 28.15 and 28.16 except pm, p3, and pg are 
found in [2]. The  designs for p3 and pg are based on elements of Chinese 
lattice designs found in [2]; the design for pm is based on a weaving pat-
tern from Hawaii, found in [3].  
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Figure 28.16 The plane symmetry groups
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Figure 28.17 The 17 plane periodic patterns formed using a triangle motif
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Identification of Plane Periodic Patterns
To decide which of the 17 classes any particular plane periodic pattern 
belongs to, we may use the flowchart presented in Figure 28.18. This is 
done by determining the rotational symmetry and whether or not the pat-
tern has reflection symmetry or nontrivial glide-reflection symmetry. 
These three pieces of information will narrow the list of candidates to at 
most two. The final test, if necessary, is to determine the locations of the 
centers of rotation.

For example, consider the two patterns in Figure 28.19 generated in a 
hockey stick motif. Both patterns have a smallest positive rotational sym-
metry of 120°; both have reflectional and nontrivial glide-reflectional 
symmetry. Now, according to Figure 28.18, these patterns must be of type 
p3m1 or p31m. But notice that the pattern on the left has all its threefold 
centers of rotation on the reflection axis, whereas in the pattern on the 
right the points where the three blades meet are not on a reflection axis. 
Thus, the left pattern is p3m1, and the right pattern is p31m.

Table 28.1 (reproduced from [5, p. 443]) can also be used to deter-
mine the type of periodic pattern and contains two other features that are 
often useful. A lattice of points of a pattern is a set of images of any 
particular point acted on by the translation group of the pattern. A lattice 
unit of a pattern whose translation subgroup is generated by u and v  
is a parallelogram formed by a point of the pattern and its image  under 
u, v, and u 1 v. The possible lattices for periodic patterns in a plane, to-
gether with lattice units, are shown in Figure 28.20. A generating region 
(or fundamental region) of a periodic pattern is the smal lest portion of the 
lattice unit whose images under the full symmetry group of the pattern 
cover the plane. Examples of generating regions for the  patterns repre-
sented in Figures 28.12, 28.13, and 28.14 are given in Figure 28.21. In 
Figure 28.21, the portion of the lattice unit with vertical bars is the gener-
ating region. The only symmetry pattern in which the lattice unit and the 
generating region coincide is the p1 pattern illustrated in Figure 28.12. 
Table 28.1 tells what proportion of the lattice unit constitutes the generat-
ing region of each plane periodic pattern.

Notice that Table 28.1 reveals that the only possible n-fold rotational 
symmetries occur when n 5 1, 2, 3, 4, and 6. This fact is commonly 
called the crystallographic restriction. The first proof of this was given 
by the Englishman W. Barlow over 100 years ago. The information in 
Table 28.1 can also be used in reverse to create patterns with a specific 
symmetry group. The patterns in Figure 28.19 were made in this way.
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p3m1 p31m

Figure 28.19 Patterns generated in a hockey stick motif

Parallelogram

Square Hexagonal
(Equilateral triangles)

Rectangular Rhombic

Figure 28.20 Possible lattices for plane periodic patterns

In sharp contrast to the situation for finite symmetry groups, the transi-
tion from two-dimensional crystallographic groups to three-dimensional 
crystallographic groups introduces a great many more possibilities, since 
the motif is repeated indefinitely by three independent translations. Indeed, 
there are 230 three-dimensional crystallographic groups (often called space 
groups). These were independently determined by Fedorov, Schönflies, and 
Barlow in the 1890s. David Hilbert, one of the leading mathematicians of 
the 20th century, focused attention on the crystallographic groups in his 
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 famous lecture in 1900 at the International Congress of Mathematicians in 
Paris. One of 23 problems he posed was whether or not the number of crys-
tallographic groups in n dimensions is always  finite. This was answered af-
firmatively by L. Bieberbach in 1910. We mention in passing that in four 
dimensions, there are 4783 symmetry groups for infinitely repeating 
patterns. 

As one might expect, the crystallographic groups are fundamentally 
important in the study of crystals. In fact, a crystal is defined as a rigid 
body in which the component particles are arranged in a pattern that re-
peats in three directions (the repetition is caused by the chemical 

Table 28.1 Identification Chart for Plane Periodic Patternsa

  Highest  Nontrivial  Helpful
  Order of  Glide- Generating Distinguishing
Type Lattice Rotation Reflections Reflections Region Properties

p1 Parallelogram 1 No No 1 unit
p2 Parallelogram 2 No No 1

2 unit
pm Rectangular 1 Yes No 1

2 unit
pg Rectangular 1 No Yes 1

2 unit
cm Rhombic 1 Yes Yes 1

2 unit
pmm Rectangular 2 Yes No 1

4 unit
pmg Rectangular 2 Yes Yes 1

4 unit Parallel reflection

        axes
pgg Rectangular 2 No Yes 1

4 unit
cmm Rhombic 2 Yes Yes 1

4 unit Perpendicular

        reflection axes
p4 Square 4 No No 1

4 unit
p4m Square 4 Yes Yes 1

8 unit Fourfold centers

        on reflection

        axes
p4g Square 4 Yes Yes 1

8 unit Fourfold centers

        not on

        reflection axes
p3 Hexagonal 3 No No 1

3 unit
p3m1 Hexagonal 3 Yes Yes 1

6 unit All threefold

        centers on

        reflection axes
p31m Hexagonal 3 Yes Yes 1

6 unit Not all threefold

        centers on

        reflection axes
p6 Hexagonal 6 No No 1

6 unit
p6m Hexagonal 6 Yes Yes 1

12 unit

aA rotation through an angle of 360°/n is said to have order n. A glide-reflection is nontrivial if its glide-axis is not 
an axis of reflective symmetry for the pattern.
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 bonding). A grain of salt and a grain of sugar are two examples of com-
mon crystals. In crystalline materials, the motif units are atoms, ions, 
ionic groups, clusters of ions, or molecules.

Perhaps it is fitting to conclude this chapter by recounting two  
episodes in the history of science in which an understanding of symmetry 
groups was crucial to a great discovery. In 1912, Max von Laue, a young 
German physicist, hypothesized that a narrow beam of x-rays directed 
onto a crystal with a photographic film behind it would be  deflected  

Figure 28.21 A lattice unit and generating region for the patterns in 
Figures 28.12, 28.13, and 28.14. Generating regions are shaded with bars.   
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(the technical term is “diffracted”) by the unit cell (made up of atoms or 
ions) and would show up on the film as spots. (See Figure 1.3.) Shortly 
thereafter, two British scientists, Sir William Henry Bragg and his 
22-year-old son William Lawrence Bragg, who was a student, noted that 
von Laue’s diffraction spots, together with the known information about 
crystallographic space groups, could be used to calculate the shape of the 
internal array of atoms. This discovery marked the birth of mod ern min-
eralogy. From the first crystal structures deduced by the Braggs to the 
present, x-ray diffraction has been the means by which the internal 
 structures of crystals are determined. Von Laue was awarded the Nobel 
Prize in physics in 1914, and the Braggs were jointly awarded the No-
bel Prize in physics in 1915.

Our second episode took place in the early 1950s, when a handful of 
scientists were attempting to learn the structure of the DNA molecule—
the basic genetic material. One of these was a graduate student named 
Francis Crick; another was an x-ray crystallographer, Rosalind Franklin. 
On one occasion, Crick was shown one of Franklin’s research reports  
and an x-ray diffraction photograph of DNA. At this point, we let Horace 
 Judson [4, pp. 165–166], our source, continue the story.

Crick saw in Franklin’s words and numbers something just as important,  
 indeed eventually just as visualizable. There was drama, too: Crick’s  
insight began with an extraordinary coincidence. Crystallographers distin-
guish 230 different space groups, of which the face-centered monoclinic 
cell with its curious properties of symmetry is only one—though in biologi-
cal substances a fairly common one. The principal experimental subject of 
Crick’s dissertation, however, was the x-ray diffraction of the crystals of a 
protein that was of exactly the same space group as DNA. So Crick saw at 
once the symmetry that neither Franklin nor Wilkins had comprehended, that 
Perutz, for that matter, hadn’t noticed, that had escaped the theoretical crys-
tallographer in Wilkins’ lab, Alexander Stokes—namely, that the  molecule 
of DNA, rotated a half turn, came back to congruence with itself. The struc-
ture was dyadic, one half matching the other half in reverse.

This was a crucial fact. Shortly thereafter, James Watson and Crick 
built an accurate model of DNA. In 1962, Watson, Crick, and Maurice 
Wilkins received the Nobel Prize in medicine and physiology for their 
discovery. The opinion has been expressed that, had Franklin correctly 
recognized the symmetry of the DNA molecule, she might have been 
the one to unravel the mystery and receive the Nobel Prize [4, p. 172].
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Exercises

You can see a lot just by looking.
Yogi Berra

  1. Show that the frieze group F6 is isomorphic to Z % Z2.
  2. How many nonisomorphic frieze groups are there?
  3. In the frieze group F7, write x2yzxz in the form xnymzk.
  4. In the frieze group F7, write x23zxyz in the form xnymzk.
  5. In the frieze group F7, show that yz 5 zy and xy 5 yx.
  6. In the frieze group F7, show that zxz 5 x21.
  7. Use the results of Exercises 5 and 6 to do Exercises 3 and 4  

through symbol manipulation only (that is, without referring to the 
pattern). (This exercise is referred to in this chapter.)

  8. Prove that in F7 the cyclic subgroup generated by x is a normal 
 subgroup.

  9. Quote a previous result that tells why the subgroups kx, yl and  
kx, zl must be normal in F7.

 10. Look up the word frieze in an ordinary dictionary. Explain why the 
frieze groups are appropriately named.

 11. Determine which of the seven frieze groups is the symmetry group 
of each of the following patterns.

  a. 

  b. 

  c. 

  d. 
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  e. 

  f. 

 12. Determine the frieze group corresponding to each of the following  
patterns.

  a. y 5 sin x
  b. y 5 |sin x|
  c. |y| 5 sin x
  d. y 5 tan x
  e. y 5 csc x

 13. Determine the symmetry group of the tessellation of the plane ex-
emplified by the brickwork shown.

 

 14. Determine the plane symmetry group for each of the patterns in 
Figure 28.17.

 15. Determine which of the 17 crystallographic groups is the symmetry 
group of each of the following patterns.

  a.       b. 

  c.       d. 
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 16. In the following figure, there is a point labeled 1. Let a be the trans-
lation of the plane that carries the point labeled 1 to the point la-
beled a, and let b be the translation of the plane that carries the 
point labeled 1 to the point labeled b. The image of 1 under the 
composition of a and b is labeled ab. In the corresponding fashion, 
label the remaining points in the figure in the form aib j.

  

β αβ

α1

 17. The patterns made by automobile tire treads in the snow are frieze 
patterns. An extensive study of automobile tires revealed that only 
five of the seven frieze patterns occur. Speculate on which two pat-
terns do not occur and give a possible reason why they do not.

 18. Locate a nontrivial glide-reflection axis of symmetry in the cm pat-
tern in Figure 28.16.

 19. Determine which of the frieze groups is the symmetry group of 
each of the following patterns.

  a. ? ? ? D D D D ? ? ?
  b. ? ? ? V 

V
 V 

V
 ? ? ?

  c. ? ? ? L L L L ? ? ?
  d. ? ? ? V V V V ? ? ?
  e. ? ? ? N N N N ? ? ?
  f. ? ? ? H H H H ? ? ?
  g. ? ? ? L

L

 L

L

 ? ? ?
 20. Locate a nontrivial glide-reflection axis of symmetry in the pattern 

third from the left in the bottom row in Figure 28.17.
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Suggested Readings

S. Garfunkel et al., For All Practical Purposes, 9th ed., New York: W. H. 
Freeman, 2012.

This book has a well-written, richly illustrated chapter on symmetry in 
art and nature.

W. G. Jackson, “Symmetry in Automobile Tires and the Left-Right Prob-
lem,” Journal of Chemical Education 69 (1992): 624–626.

This article uses automobile tires as a tool for introducing and explain-
ing the symmetry terms and concepts important in chemistry.

C. MacGillivray, Fantasy and Symmetry—The Periodic Drawings of  
M. C. Escher, New York: Harry N. Abrams, 1976. 

This is a collection of Escher’s periodic drawings together with a math-
ematical discussion of each one.

D. Schattschneider, Visions of Symmetry, New York: Harry Abrams, 2004.

A loving, lavish, encyclopedic book on the drawings of M. C. Escher.

H. von Baeyer, “Impossible Crystals,” Discover 11 (2) (1990): 69–78.

This article tells how the discovery of nonperiodic tilings of the plane 
led to the discovery of quasicrystals. The x-ray diffraction patterns of 
qua sicrystals exhibit fivefold symmetry—something that had been 
thought to be impossible.
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Suggested Websites

http://www.mcescher.com/

This is the official website for the artist M. C. Escher. It features many of 
his prints and most of his 136 symmetry drawings.

http://britton.disted.camosun.bc.ca/jbsymteslk.htm

This spectacular website on symmetry and tessellations has numerous 
 activities and links to many other sites on related topics. It is a wonderful 
website for K–12 teachers and students.
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M. C. Escher was born on June 17, 1898, in 
the Netherlands. His artistic work prior to 
1937 was dominated by the representation 
of visible reality, such as landscapes and 
buildings. Gradually, he became less and 
less interested in the visible world and be-
came increasingly absorbed in an inventive 
approach to space. He studied the abstract 
space-filling patterns used in the Moorish 
mosaics in the Alhambra in Spain. He also 
studied the mathematician George Pólya’s 
paper on the 17 plane crystallographic 
groups. Instead of the geometric motifs used 
by the Moors and Pólya, Escher preferred to 
use animals, plants, or people in his space-
filling prints.

Escher was fond of incorporating various 
mathematical ideas into his works. Among 
these are infinity, Möbius bands, stellations, 

I never got a pass mark in math. The funny 
thing is I seem to latch on to mathematical 
theories without realizing what is happening.

m. c. escher

deformations, reflections, Platonic solids, 
spirals, and the hyperbolic plane.

Although Escher originals are now quite 
expensive, it was not until 1951 that he de-
rived a significant portion of his income 
from his prints. Today, Escher is widely 
known and appreciated as a graphic artist. 
His prints have been used to illustrate ideas 
in hundreds of scientific works. Despite this 
popularity among scientists, however,  Escher 
has never been held in high esteem in tradi-
tional art circles. Escher died on March 27, 
1972, in the Netherlands.

To find more information about Escher 
and his art, visit the official website of M. C. 
Escher:

http://www.mcescher.com/
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Thank you, Professor Pólya, for all your 
beautiful contributions to mathematics, to 
science, to education, and to humanity.

A toast from frank harary on the  
occasion of Pólya’s 90th birthday 

George Pólya was born in Budapest, 
Hungary, on December 13, 1887. He received 
a teaching certificate from the University of 
Budapest in languages before turning to phi-
losophy, mathematics, and physics.

In 1912, he was awarded a Ph.D. in math-
ematics. Horrified by Hitler and World War 
II, Pólya came to the United States in 1940. 
After two years at Brown University, he went 
to Stanford University, where he remained 
until his death in 1985 at the age of 97.

In 1924, Pólya published a paper in a crys-
tallography journal in which he classified the 
plane symmetry groups and provided a full-
page illustration of the corresponding 17 peri-
odic patterns. B. G. Escher, a geologist, sent a 
copy of the paper to his artist brother, M. C. 
Escher, who used Pólya’s black-and-white 
geometric patterns as a guide for making his 
own interlocking colored patterns featuring 
birds, reptiles, and fish.

Pólya contributed to many branches of 
mathematics, and his collected papers fill four 
large volumes. Pólya is also famous for his 
books on problem solving and for his teaching. 
One of his books has sold more than 1,000,000 
copies. The Society for Industrial and Applied 
Mathematics, the London Mathematical 
Society, and the Mathematical Association of 
America have prizes named after Pólya.

Pólya taught courses and lectured around 
the country into his 90s. He never learned to 
drive a car and took his first plane trip at 
age 75. He was married for 67 years and had 
no children.

For more information about Pólya, visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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He’s definitely world class, yet he has this 
kind of childlike enthusiasm.

ronald graham

John H. Conway ranks among the most 
original and versatile contemporary mathe-
maticians. Conway was born in Liverpool, 
England, on December 26, 1937, and grew 
up in a rough neighborhood. As a youngster, 
he was often beaten up by older boys and did 
not do well in high school. Nevertheless, his 
mathematical ability earned him a scholar-
ship to Cambridge University, where he ex-
celled.

A pattern that uses repeated shapes to 
cover a flat surface without gaps or overlaps 
is called a tiling. In 1975, Oxford physicist 
Roger Penrose invented an important new 
way of tiling the plane with two shapes. 
Unlike patterns whose symmetry group is 
one of the 17 plane crystallographic groups, 
Penrose patterns can be neither translated nor 
rotated to coincide with themselves. Many of 
the remarkable properties of the Penrose pat-
terns were discovered by Conway. In 1993, 
Conway discovered a new prism that can be 

used to fill three- dimensional space without 
gaps or overlaps.

Conway has made many significant con-
tributions to number theory, group theory, 
game theory, knot theory, and combinator-
ics. Among his most important discoveries 
are three simple groups, which are now 
named after him. (Simple groups are the 
basic building blocks of all groups.) Conway 
is fascinated by games and puzzles. He in-
vented the game Life and the game Sprouts. 
Conway has received numerous prestigious 
honors. In 1987 he joined the faculty at 
Princeton University, where his title is John 
von Neumann Distinguished Professor of 
Mathematics.

For more information about Conway, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Symmetry  
and Counting

Let us pause to slake our thirst one last time at symmetry’s bub-
bling spring.

Timothy Ferris, Coming of Age in the Milky Way

Whenever you can, count.
Francis Galton, (1822–1911)

29

Motivation
Permutation groups naturally arise in many situations involving 
 symmetric designs or arrangements. Consider, for example, the task of 
coloring the six vertices of a regular hexagon so that three are 

black and three are white. Figure 29.1 shows the a6
3
b 5 20 possibilities.

However, if these designs appeared on one side of hexagonal ceramic 
tiles, it would be nonsensical to count the designs shown in Figure 29.1(a) 
as different, since all six designs shown there can be obtained from one of 
them by rotating. (A manufacturer would make only one of the six.) In 
this case, we say that the designs in Figure 29.1(a) are equivalent under 
the group of rotations of the hexagon. Similarly, the designs in Figure 
29.1(b) are equivalent under the group of rotations, as are the designs in 
Figure 29.1(c) and those in Figure 29.1(d). And, since no design from 
Figure 29.1(a)–(d) can be obtained from a design in a different part by 
rotation, we see that the designs within each part of the figure are equiva-
lent to each other but nonequivalent to any design in another part of the 
figure. However, the designs in Figure 29.1(b) and (c) are equivalent under 
the dihedral group D6, since the designs in Figure 29.1(b) can be reflected 
to yield the designs in Figure 29.1(c). For example, for purposes of arrang-
ing three black beads and three white beads to form a necklace, the designs 
shown in Figure 29.1(b) and (c) would be considered equivalent.
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In general, we say that two designs (arrangements of beads) A and B 
are equivalent under a group G of permutations of the arrangements if 
there is an element f in G such that f(A) 5 B. That is, two designs are 
equivalent under G if they are in the same orbit of G. It follows, then, that 
the number of nonequivalent designs under G is simply the number of 
orbits of designs under G. (The set being permuted is the set of all pos-
sible designs or arrangements.)

Notice that the designs in Figure 29.1 divide into four orbits under 
the group of rotations but only three orbits under the group D6, since the 
designs in Figure 29.1(b) and (c) form a single orbit under D6. Thus, we 
could obtain all 20 tile designs from just four tiles, but we could  obtain 
all 20 necklaces from just three of them.

Burnside’s Theorem
Although the problems we have just posed are simple enough to solve 
by observation, more complicated ones require a more sophisticated 
approach. Such an approach was provided by Georg Frobenius in 1887. 
Frobenius’s theorem did not become widely known  until it appeared in 
the classic book on group theory by William Burnside in 1911. By an 
accident of history, Frobenius’s theorem has come to be known as 

(b)

(c)

(d)

Figure 29.1   

(a)
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Burnside’s Theorem. Before stating this theorem, we recall some nota-
tion introduced in Chapter 7 and introduce new  notation. If G is a 
group of permutations on a set S and i [ S, then stabG(i) 5 {f [ G | 
f(i) 5 i} and orbG(i) 5 {f(i) | f [ G}. For any set X, we use |X| to denote 
the number of elements in X.

Definition Elements Fixed by F
For any group G of permutations on a set S and any f in G, we let fix(f) 
5 {i [ S | f(i) 5 i}. This set is called the elements fixed by f (or more 
simply, “fix of f”).

 Theorem 29.1 Burnside's Theorem

If G is a finite group of permutations on a set S, then the number  
of orbits of elements of S under G is

1

0G 0 af[G
0 fix1f2 0 .

PROOF Let n denote the number of pairs (f, i), with f [ G, i [ S, and 
f(i) 5 i. We begin by counting these pairs in two ways. First, for each 
particular f in G, the number of such pairs is exactly |fix(f)|. So,

 n � a
f[G
0 fix1f2 0 . (1)

Second, for each particular i in S, observe that |stabG(i)| is exactly the 
number of pairs (f, i) for which f(i) 5 i. So,

 
n � a

i[S
0stabG1i2 0 . (2)

It follows from Exercise 43 in Chapter 7 that if s and t are in the same or-
bit of G, then orbG(s) 5 orbG(t), and thus by the Orbit-Stabilizer Theo-
rem (Theorem 7.4) we have |stabG(s)| 5 |G|/|orbG(s)| 5 |G|/|orbG(t)| 5 
|stabG(t)|. So, if we choose s [ S and sum over orbG(s), we have

 a
t[orbG1s2

0stabG1t2 0 � 0orbG1s2 0 0stabG1s2 0 � 0G 0 . (3)

Finally, by summing over all the elements of G, one orbit at a time, it fol-
lows from Equations (1), (2), and (3) that

a
f[G
0  fix1f2 0 � a

i[S
0stab1i2 0 � 0G 0 . 1number of orbits2,

and the result follows. 
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Applications
To illustrate how to apply Burnside’s Theorem, let us return to the  ceramic 
tile and necklace problems. In the case of counting hexagonal tiles with 
three black vertices and three white vertices, the objects  being permuted are 
the 20 possible designs, whereas the group of permutations is the group of 
six rotational symmetries of a hexagon. Obviously, the identity fixes all  
20 designs. We see from Figure 29.1 that rotations of 60°, 180°, or 300° fix 
none of the 20 designs. Finally, Figure 29.2 shows fix(f) for the rotations of 
120° and 240°. These data are collected in Table 29.1.

Figure 29.2 Tile designs fixed by 120°  
rotation and 240° rotation

 

Figure 29.3 Bead arrangements fixed  
by the reflection across a diagonal

Table 29.1

 Number of Designs
Element Fixed by Element

Identity 20
Rotation of 60° 0
Rotation of 120° 2
Rotation of 180° 0
Rotation of 240° 2
Rotation of 300° 0

So, applying Burnside’s Theorem, we obtain the number of orbits 
under the group of rotations as

1

6
 (20 1 0 1 2 1 0 1 2 1 0) 5 4.

Now let’s use Burnside’s Theorem to count the number of necklace ar-
rangements consisting of three black beads and three white beads. (For 
the purposes of analysis, we may arrange the beads in the shape of a reg-
ular hexagon.) For this problem, two arrangements are equivalent if they 
are in the same orbit under D6. Figure 29.3 shows the arrangements fixed 
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by a reflection across a diagonal. Table 29.2 summarizes the information 
needed to apply Burnside’s Theorem.

So, there are

 

1

12
 (1 ? 20 1 1 ? 0 1 2 ? 2 1 2 ? 0 1 3 ? 4 1 3 ? 0) 5 3

nonequivalent ways to string three black beads and three white beads on 
a necklace.

Now that we have gotten our feet wet on a few easy problems, let’s try 
a more difficult one. Suppose that we have the colors red (R), white (W), 
and blue (B) that can be used to color the edges of a regular tetrahedron 
(see Figure 5.1). First, observe that there are 36 5 729 colorings without 
regard to equivalence. How shall we decide when two colorings of the 
tetrahedron are nonequivalent? Certainly, if we were to pick up a tetrahe-
dron colored in a certain manner, rotate it, and put it back down, we 
would think of the tetrahedron as being positioned differently rather than 
as being colored differently ( just as if we picked up a die labeled in the 
usual way and rolled it, we would not say that the die is now differently 
labeled). So, our permutation group for this problem is just the group of 
12 rotations of the tetrahedron shown in Figure 5.1 and is isomorphic to 
A4. (The group consists of the identity; eight elements of order 3, each of 
which fixes one vertex; and three elements of order 2, each of which 
fixes no vertex.) Every rotation permutes the 729 colorings, and to apply 
Burnside’s Theorem we must determine the size of fix(f) for each of the 
12 rotations of the group.

Clearly, the identity fixes all 729 colorings. Next, consider the element 
(234) of order 3, shown in the bottom row, second from the left in 
Figure 5.1. Suppose that a specific coloring is fixed by this element (that is, 

Table 29.2

  Number of Number of
  Elements Arrangements
  of This Fixed by Type
Type of Element Type of Element

Identity 1 20
Rotation of order 2 (180°) 1 0
Rotation of order 3 (120° or 240°) 2 2
Rotation of order 6 (60° or 300°) 2 0
Reflection across diagonal 3 4
Reflection across side bisector 3 0
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the tetrahedron appears to be colored the same before and after this 
 rotation). Since (234) carries edge 12 to edge 13, edge 13 to edge 14, and 
edge 14 to edge 12, these three edges must agree in color (edge ij is the 
edge joining vertex i and vertex j). The same argument shows that the three 
edges 23, 34, and 42 also must agree in color. So, |fix(234)| 5 32, since 
there are three choices for each of these two sets of three edges. The nine 
columns in Table 29.3 show the possible colorings of the two sets of three 
edges. The analogous analysis applies to the other seven elements of 
order 3.

Now consider the rotation (12)(34) of order 2. (See the second tetra-
hedron in the top row in Figure 5.1.) Since edges 12 and 34 are fixed, 
they may be colored in any way and will appear the same after the rota-
tion (12)(34). This yields 3 ? 3 choices for those two edges. Since edge 
13 is carried to edge 24, these two edges must agree in color. Similarly, 
edges 23 and 14 must agree. So, we have three choices for the pair of 
edges 13 and 24 and three choices for the pair of edges 23 and 14. This 
means that we have 3 ? 3 ? 3 ? 3 ways to color the tetrahedron that will be 
equivalent under (12)(34). (Table 29.4 gives the complete list of 81 
 colorings.) So, |fix((12)(34))| 5 34, and the other two elements of order 
2 yield the same results.

Now that we have analyzed the three types of group elements, we 
can apply Burnside’s Theorem. In particular, the number of distinct 

Table 29.4 81 Colorings Fixed by (12)(34) (X and Y can be any of R, W, and B)

Edge Colorings

 12 X X X X X X X X X
 34 Y Y Y Y Y Y Y Y Y
 13 R R R W W W B B B
 24 R R R W W W B B B
 23 R W B W R B B R W
 14 R W B W R B B R W

Table 29.3 Nine Colorings Fixed by (234)

Edge Colorings

 12 R R R W W W B B B
 13 R R R W W W B B B
 14 R R R W W W B B B
 23 R W B W R B B R W
 34 R W B W R B B R W
 24 R W B W R B B R W
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 colorings of the edges of a tetrahedron with three colors is

1

12
 (1 ? 36 1 8 ? 32 1 3 ? 34) 5 87.

Surely it would be a difficult task to solve this problem without Burn-
side’s Theorem.

Just as surely, you are wondering who besides mathematicians are inter-
ested in counting problems such as the ones we have discussed. Well, chem-
ists are. Indeed, one set of benzene derivatives can be viewed as six carbon 
atoms arranged in a hexagon with one of the three radicals NH2, COOH, or 
OH attached at each carbon atom. See Figure 29.4 for one example.

OH

OH

COOH

COOHCOOH

COOH

C

C

C

C

C

C

Figure 29.4 A benzene derivative

So Burnside’s Theorem enables a chemist to determine the number of 
benzene molecules (see Exercise 4). Another kind of molecule consid-
ered by chemists is visualized as a regular tetrahedron with a carbon 
atom at the center and any of the four radicals HOCH2 (hydroxymethyl), 
C2H5 (ethyl), Cl (chlorine), or H (hydrogen) at the four vertices. Again, 
the number of such molecules can be easily counted using Burnside’s 
Theorem.

Group Action
Our informal approach to counting the number of objects that are consid-
ered nonequivalent can be made formal as follows. If G is a group and S 
is a set of objects, we say that G acts on S if there is a homomorphism g 
from G to sym(S), the group of all permutations on S. (The  homomorphism 
is sometimes called the group action.) For convenience, we denote the 
image of g under g as gg. Then two objects x and y in S are viewed as 
equivalent under the action of G if and only if gg(x) 5 y for some g in G. 
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Notice that when g is one-to-one, the elements of G may be regarded as 
permutations on S. On the other hand, when g is not one-to-one, the ele-
ments of G may still be regarded as permutations on S, but there are 
distinct elements g and h in G such that gg and gh induce the same per-
mutation on S [that is, gg(x) 5 gh(x) for all x in S]. Thus, a group acting 
on a set is a natural generalization of the permutation group concept.

As an example of group action, let S be the two diagonals of a square 
and let G be D4, the group of symmetries of the square. Then gR0

, gR180
, 

gD, gD9 are the identity; gR90
, gR270

, gH, gV interchange the two diagonals; 
and the mapping g S gg from D4 to sym(S) is a group homomorphism. 
As a second example, note that GL(n, F), the group of invertible n 3 n 
matrices with entries from a field F, acts on the set S of n 3 1 column 
vectors with entries from F by multiplying the vectors on the left by the 
matrices. In this case, the mapping g S gg from GL(n, F) to sym(S) is a 
one-to-one homomorphism.

We have used group actions several times in this text without calling 
them that. The proof of Cayley’s Theorem ( Theorem 6.1) has a group G 
acting on the elements of G; the proofs of Sylow’s Second Theorem and 
Third Theorem ( Theorems 24.4 and 24.5) have a group acting on the set 
of conjugates of a Sylow p-subgroup; and the proof of the Generalized 
Cayley Theorem ( Theorem 25.3) has G acting on the left cosets of a 
subgroup H.

Exercises

The greater the difficulty, the more glory in surmounting it.
Epicurus

  1. Determine the number of ways in which the four corners of a square 
can be colored with two colors. (It is permissible to use a single 
color on all four corners.)

  2. Determine the number of different necklaces that can be made us-
ing 13 white beads and 3 black beads.

  3. Determine the number of ways in which the vertices of an equilat-
eral triangle can be colored with five colors so that at least two col-
ors are used.

  4. A benzene molecule can be modeled as six carbon atoms arranged 
in a regular hexagon in a plane. At each carbon atom, one of three 
radicals NH2, COOH, or OH can be attached. How many such 
 compounds are possible? (Make no distinction between single and 
double bonds between the atoms.)
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  5. Suppose that in Exercise 4 we permit only NH2 and COOH for the 
radicals. How many compounds are possible?

  6. Determine the number of ways in which the faces of a regular 
 dodecahedron (regular 12-sided solid) can be colored with three 
colors.

  7. Determine the number of ways in which the edges of a square can be 
colored with six colors so that no color is used on more than one edge.

  8. Determine the number of ways in which the edges of a square can 
be colored with six colors with no restriction placed on the number 
of times a color can be used.

  9. Determine the number of different 11-bead necklaces that can be 
made using two colors.

 10. Determine the number of ways in which the faces of a cube can be 
colored with three colors.

 11. Suppose a cake is cut into six identical pieces. How many ways can 
we color the cake with n colors assuming that each piece receives 
one color?

 12. How many ways can the five points of a five-pointed crown be 
painted if three colors of paint are available?

 13. Let G be a finite group and let sym(G) be the group of all permutations 
on G. For each g in G, let fg denote the element of sym(G) defined by 
fg(x) 5 gxg21 for all x in G. Show that G acts on itself  under the ac-
tion g S fg. Give an example in which the mapping g S fg is not one-
to-one.

 14. Let G be a finite group, let H be a subgroup of G, and let S be the set 
of left cosets of H in G. For each g in G, let gg denote the element of 
sym(S) defined by gg(xH) 5 gxH. Show that G acts on S under the 
action g S gg.

 15. For a fixed square, let L1 be the perpendicular bisector of the top 
and bottom of the square and let L2 be the perpendicular bisector of 
the left and right sides. Show that D4 acts on {L1, L2} and determine 
the kernel of the mapping g S gg.

Suggested Readings
Doris Schattschneider, “Escher’s Combinatorial Patterns,” Electronic Jour-
nal of Combinatorics 4(2) (1997): R17.

This article discusses a combinatorial problem concerning generating 
periodic patterns that the artist M. C. Escher posed and solved in an 
 algorithmic way. The problem can also be solved by using Burnside’s 
Theorem. The article can be downloaded free from the website http://
www.combinatorics.org/
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William Burnside was born on July 2, 
1852, in London. After graduating from 
Cambridge University in 1875, Burnside 
was appointed lecturer at Cambridge,  
where he stayed until 1885. He then ac-
cepted a position at the Royal Naval Col-
lege at Greenwich and spent the rest of his 
career in that post.

Burnside wrote more than 150 research 
papers in many fields. He is best remem-
bered, however, for his pioneering work in 
group theory and his classic book Theory of 
Groups, which first appeared in 1897. 
Because of Burnside’s emphasis on the ab-
stract approach, many consider him to be the 
first pure group theorist.

One mark of greatness in a mathemati-
cian is the ability to pose important and 
challenging problems—problems that open 
up new areas of research for future genera-
tions. Here, Burnside excelled. It was he 
who first conjectured that a group G of odd 

order has a series of normal subgroups,  
G 5 G0 $ G1 $ G2 $ ? ? ? $ Gn 5 {e}, such 
that Gi/Gi11 is Abelian. This extremely im-
portant conjecture was finally proved more 
than 50 years later by Feit and Thompson in 
a 255-page paper (see Chapter 25 for more 
on this). In 1994, Efim Zelmanov  received 
the Fields Medal for his work on a variation 
of one of Burnside’s conjectures.

Burnside was elected a Fellow of the 
Royal Society and awarded two Royal Medals. 
He served as president of the Council of the 
London Mathemati cal Society and received 
its De Morgan Medal. Burnside died on 
August 21, 1927.

To find more information about Burnside, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

In one of the most abstract domains of 
thought, he [Burnside] has systematized 
and amplified its range so that , there, his 
work stands as a landmark in the widening 
expanse of knowledge. Whatever be the 
 estimate of Burnside made by posterity,  
contemporaries salute him as a Master 
among the mathematicians of his own 
 generation.

a. r. forsyth
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Cayley Digraphs  
of Groups

The important thing in science is not so much to obtain new facts 
as to discover new ways of thinking about them.

Sir William Lawrence Bragg, Beyond Reductionism

The changing of a vague difficulty into a specific, concrete form is 
a very essential element in thinking.

J. P. Morgan

30

Motivation
In this chapter, we introduce a graphical representation of a group given by 
a set of generators and relations. The idea was originated by Cayley in 
1878. Although this topic is not usually covered in an abstract algebra 
book, we include it for five reasons: It provides a method of visualizing a 
group; it connects two important branches of modern mathematics—
groups and graphs; it has many applications to computer science; it gives a 
review of some of our old friends—cyclic groups, dihedral groups, direct 
products, and generators and relations; and, most importantly, it is fun!

Intuitively, a directed graph (or digraph) is a finite set of points, called 
vertices, and a set of arrows, called arcs, connecting some of the verti
ces. Although there is a rich and important general theory of directed 
graphs with many applications, we are interested only in those that arise 
from groups.

The Cayley Digraph of a Group
Definition Cayley Digraph of a Group
Let G be a finite group and let S be a set of generators for G. We define 
a digraph Cay(S:G ), called the Cayley digraph of G with generating set 
S, as follows.

 1. Each element of G is a vertex of Cay(S:G).
 2. For x and y in G, there is an arc from x to y if and only if xs 5 y for 

some s [ S.482
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To tell from the digraph which particular generator connects two verti
ces, Cayley proposed that each generator be assigned a color, and that the 
arrow joining x to xs be colored with the color assigned to s. He called the 
resulting figure the color graph of the group. This terminology is still used 
occasionally. Rather than use colors to distinguish the different generators, 
we will use solid arrows, dashed arrows, and dotted arrows. In general, if 
there is an arc from x to y, there need not be an arc from y to x. An arrow 
emanating from x and pointing to y indicates that there is an arc from x to y.

Following are numerous examples of Cayley digraphs. Note that 
there are several ways to draw the digraph of a group given by a partic
ular generating set. However, it is not the appearance of the digraph that 
is relevant but the manner in which the vertices are connected. These 
connections are uniquely determined by the generating set. Thus, dis
tances between vertices and angles formed by the arcs have no signifi
cance. (In the digraphs below, a headless arrow joining two vertices x 
and y indicates that there is an arc from x to y and an arc from y to x. 
This occurs when the generating set contains both an element and its 
inverse. For example, a generator of order 2 is its own inverse.)

 EXAMPLE 1 Z6 5 k1l.

  

 EXAMPLE 2 Z3 % Z2 5 k(1, 0), (0, 1)l.

  

0055

2233

44 11

Cay({1}:Z6)

0

1

2

3

4

5

1

Cay({1}:Z6 )

(0, 1)(0, 0)

(1, 0)

(2, 0)

(0, 1)

(1, 1)

(2, 1)

Cay({(1, 0), (0, 1)}:Z
3 

⊕ Z
2
)

(0, 0)

(0, 1)

(2, 0) (1, 0)

(1, 0)

(1, 1)(2, 1)

Cay({(1, 0), (0, 1)}:Z
3 

⊕ Z
2
)
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 EXAMPLE 3 D4 5 kR90, Hl.

  

 EXAMPLE 4 S3 5 k(12), (123)l.

  
 

 EXAMPLE 5 S3 5 k(12), (13)l.

  

R90

H

R
90

H

R
180

H

R
270

H R
270

R
180

R
90

R
0

Cay({R
90

, H}:D
4
)

(12) (1)

(13)

(23) (132)(132)

(123)

(12)

Cay({(12), (123)}:S3)

(132)

(123)

(23)

(1) (123)

(13)(12)

Cay({(12), (123)}:S3)

(123)(13) (23)

(13)(12)

(12) (132)(1)

Cay({(12), (13)}:S
3
)

R
90

H

R
180

HR
270

H

R
180

R
270

R
90

R
0

R
0

H

H

Cay({R
90

, H}:D
4
)
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 EXAMPLE 6 A4 5 k(12)(34), (123)l.

  

 EXAMPLE 7 Q4 5 ka, b | a4 5 e, a2 5 b2, b21ab 5 a3l.

  

 EXAMPLE 8 D` 5 ka, b | a2 5 b2 5 el.

 

bab ba b e a

a b

ab aba abab

Cay({a, b}:D`)  

The Cayley digraph provides a quick and easy way to determine the 
value of any product of the generators and their inverses. Consider, for 
example, the product ab3ab22 from the group given in Example 7. To re
duce this to one of the eight elements used to label the vertices, we need 

(123)(12)(34)

(123)

(1) (132)

(234)

(243)

(143)

(124) (14)(23)

(13)(24)

(142)

(12)(34)

(134)

Cay({(12)(34), (123)}:A
4
)

ba

b

a3

a2

a

e

ab

a2b

a3b

Cay({a, b}:Q4)

48530 | Cayley Digraphs of Groups

57960_ch30_ptg01_482-502.indd   485 10/24/15   1:06 PM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



only begin at the vertex e and follow the arcs from each vertex to the next 
as specified in the given product. Of course, b21 means traverse the b arc in 
reverse. (Observations such as b23 5 b also help.) Tracing the product 
through, we obtain b. Similarly, one can verify or discover other relations 
among the generators.

Hamiltonian Circuits and Paths
Now that we have these directed graphs, what is it that we care to know 
about them? One question about directed graphs that has been the object 
of much research was popularized by the Irish mathematician 
Sir William Hamilton in 1859, when he invented a puzzle called “Around 
the World.” His idea was to label the 20 vertices of a regular dodecahedron 
with the names of famous cities. One solves this puzzle by starting at any 
particular city (vertex) and traveling “around the world,” moving along the 
arcs in such a way that each other city is  visited exactly once before return
ing to the original starting point. One solution to this  puzzle is given in 
Figure 30.1, where the vertices are visited in the order indicated.

Obviously, this idea can be applied to any digraph; that is, one starts 
at some vertex and attempts to traverse the digraph by moving along 

9

8

1

2

3

11

10

12
13

1718

19

20

1615

144

5

6

7

Figure 30.1 Around the World.

arcs in such a way that each vertex is visited exactly once before 
 returning to the starting vertex. (To go from x to y, there must be an arc 
from x to y.) Such a sequence of arcs is called a Hamiltonian circuit in 
the digraph. A sequence of arcs that passes through each vertex exactly 
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once without returning to the starting point is called a Hamiltonian path. 
In the rest of this chapter, we concern ourselves with the existence of 
Hamiltonian circuits and paths in Cayley digraphs.

Figures 30.2 and 30.3 show a Hamiltonian path for the digraph given in 
Example 2 and a Hamiltonian circuit for the digraph given in Example 7, 
respectively.

Is there a Hamiltonian circuit in

Cay({(1, 0), (0, 1)}:Z3 % Z2)?

More generally, let us investigate the existence of Hamiltonian circuits in

Cay({(1, 0), (0, 1)}:Zm % Zn),

where m and n are relatively prime and both are greater than 1. Visualize 
the Cayley digraph as a rectangular grid coordinatized with Zm % Zn, as

(0, 0) (0, 1)

(1, 1)(1, 0)

(2, 0) (2, 1)

 Figure 30.2 Hamiltonian path in Cay({(1, 0), (0, 1)}:Z3 % Z2)  
from (0, 0) to (2, 1).

b

ab

a2b

a3b

a2

a3

a

e

Figure 30.3 Hamiltonian circuit in Cay({a, b}:Q4).

in Figure 30.4. Suppose there is a Hamiltonian circuit in the  digraph and 
(a, b) is some vertex from which the circuit exits horizontally. (Clearly, 
such a vertex exists.) Then the circuit must exit (a 2 1, b 1 1)  horizontally 
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also, for otherwise the circuit passes through (a, b 1 1) twice—see Figure 
30.5. Repeating this argument again and again, we see that the circuit ex
its horizontally from each of the vertices (a, b), (a 2 1, b 1 1), (a 2 2, 
b 1 2), . . . , which is just the coset (a, b) 1 k(21, 1)l. But when m and n 
are relatively prime, k(21, 1)l is the entire group. Obviously, there cannot 
be a Hamiltonian circuit consisting entirely of horizontal moves. Let us 
record what we have just proved.

(0, 1)

(1, 0)(1, 0)

(1, 1)(1, 1)(1, 0)(1, 0)

(m – 1, 0) (m – 1, 1) (m – 1, 2) (m – 1, n – 1)

(1, n – 1)(1, 2)

(0, 1)(0, 1)(0, 0)(0, 0) (0, 2)(0, 2) (0, n – 1)

Figure 30.4 Cay({(1, 0), (0, 1)}:Zm % Zn).

(a, b)

(a 2 1, b 1 1)

Figure 30.5

 Theorem 30.1 A Necessary Condition

Cay({(1, 0), (0, 1)}:Zm % Zn ) does not have a Hamiltonian circuit 
when m and n are relatively prime and greater than 1.

What about when m and n are not relatively prime? In general, the 
answer is somewhat complicated, but the following special case is easy 
to prove.
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 Theorem 30.2 A Sufficient Condition

Cay({(1, 0), (0, 1)}:Zm % Zn) has a Hamiltonian circuit when n 
divides m.

(0, 2 )(0, 1)(0, 0 )

(1, 0 )

(2, 0 ) (2, 1)

(3, 1)

(4, 1)

(5, 1)
(5, 2 )

(4, 0)

(5, 0)

(3, 0)

(0, 1)

(1, 0)

(1, 1)
(1, 2 )

(3, 2 )

(2, 2 )

(4, 2 )

First 3 3 3 block

kth 3 3 3 block

Repeat path used
in first block

Repeat path used
in first block

(3k – 1, 0)  (3k – 1, 1)  (3k – 1, 2)

Figure 30.6 Cay({(1, 0), (0, 1)}:Z3k % Z3).
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PROOF Say m 5 kn. Then we may think of Zm % Zn as k blocks of size 
n 3 n. (See Figure 30.6 for an example.) Start at (0, 0) and cover the ver
tices of the top block as follows. Use the generator (0, 1) to move hori
zontally across the first row to the end. Then use the generator (1, 0) to 
move vertically to the point below, and cover the remaining points in the 
second row by moving horizontally. Keep this process up until the point 
(n 2 1, 0)—the lower lefthand corner of the first block—has been 
reached. Next, move vertically to the second block and repeat the process 
used in the first block. Keep this up until the bottom block is covered. 
Complete the circuit by moving vertically back to (0, 0). 

Notice that the circuit given in the proof of Theorem 30.2 is easy to 
visualize but somewhat cumbersome to describe in words. A much 
more convenient way to describe a Hamiltonian path or circuit is to 
specify the starting vertex and the sequence of generators in the order in 
which they are to be applied. In Example 5, for instance, we may start at 
(1) and alternate the generators (12) and (13) until we return to (1). In 
Example 3, we may start at R0 and successively apply R90, R90, R90, H, 
R90, R90, R90, H. When k is a positive integer and a, b, . . . , c is  
a sequence of group elements, we use k p (a, b, . . . , c) to denote the 
concatenation of k copies of the sequence (a, b, . . . , c). Thus, 2 p  
(R90, R90, R90, H) and 2 p (3 p R90, H) both mean R90, R90, R90, H, R90, 
R90, R90, H. With this notation, we may conveniently denote the Hamil
tonian circuit given in Theorem 30.2 as

m p ((n 2 1) p (0, 1), (1, 0)).

We leave it as an exercise (Exercise 11) to show that if x1, x2, . . . , xn 
is a sequence of generators determining a Hamiltonian circuit starting at 
some vertex, then the same sequence determines a Hamiltonian circuit 
for any starting vertex.

From Theorem 30.1, we know that there are some Cayley digraphs 
of Abelian groups that do not have any Hamiltonian circuits. But Theorem 
30.3 shows that each of these Cayley digraphs does have a Hamiltonian 
path. There are some Cayley digraphs for non-Abelian groups that do not 
even have Hamiltonian paths, but we will not discuss them here.

 Theorem 30.3 Abelian Groups Have Hamiltonian Paths

Let G be a finite Abelian group, and let S be any (nonempty†) gener-
ating set for G. Then Cay(S:G) has a Hamiltonian path.

†If S is the empty set, it is customary to define kSl as the identity group. We prefer to 
 ignore this trivial case.
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PROOF We use induction on |S|. If |S| 5 1, say, S 5 {a}, then the digraph 
is just a circle labeled with e, a, a2, . . . , am21, where |a| 5 m. Obviously, 
there is a Hamiltonian path for this case. Now assume that |S| . 1. Choose 
some s [ S. Let T 5 S 2 {s}—that is, T is S with s removed—and set H 
5 ks1, s2, . . . , sn21l where S 5 {s1, s2, . . . , sn} and s 5 sn. (Notice that H 
may be equal to G.)

Because |T| , |S| and H is a finite Abelian group, the induction hy
pothesis guarantees that there is a Hamiltonian path (a1, a2, . . . , ak) in 
Cay(T:H). We will show that

(a1, a2, . . . , ak, s, a1, a2, . . . , ak, s, . . . , a1, a2, . . . , ak, s, a1, a2, . . . , ak),

where a1, a2, . . . , ak occurs |G|/|H| times and s occurs |G|/|H| 2 1 times, 
is a Hamiltonian path in Cay(S:G).

Because S 5 T < {s} and T generates H, the coset Hs generates the 
factor group G/H. (Since G is Abelian, this group exists.) Hence, the co
sets of H are H, Hs, Hs2, . . . , Hsn, where n 5 |G|/|H| 2 1. Starting from 
the identity element of G, the path given by (a1, a2, . . . , ak) visits each 
element of H  exactly once [because (a1,  a2,  .  .  .  ,  ak) is a  
Hamiltonian path in Cay(T:H)]. The generator s then moves us to some 
element of the coset Hs. Starting from there, the path (a1, a2, . . . , ak) vis
its each element of Hs exactly once. Then, s moves us to the coset Hs2, 
and we visit each element of this coset exactly once. Continuing this pro
cess, we successively move to Hs3, Hs4, . . . , Hsn, visiting each vertex in 
each of these cosets exactly once. Because each vertex of Cay(S:G) is in 
exactly one coset Hsi, this implies that we visit each vertex of Cay(S:G) 
exactly once. Thus, we have a Hamiltonian path. 

We next look at Cayley digraphs with three generators.

 EXAMPLE 9 Let

D3 5 kr, f | r3 5 f 2 5 e, rf 5 fr 2l.

Then a Hamiltonian circuit in

Cay({(r, 0), ( f, 0), (e, 1)}:D3 % Z6)

is given in Figure 30.7. 
(f, 0)     (e, 0)     (f, 1)     (e, 1)     (f, 2)     (e, 2)     (f, 3)     (e, 3)     (f, 4)     (e, 4)     (f, 5)     (e, 5)

(rf, 0) (r, 5)

(r2f, 0) (r2, 5)

Figure 30.7
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Although it is not easy to prove, it is true that

Cay({(r, 0), ( f, 0), (e, 1)}:Dn % Zm)

has a Hamiltonian circuit for all n and m. (See [3].) Example 10 shows 
the circuit for this digraph when m is even.

 EXAMPLE 10 Let

Dn 5 kr, f | rn 5 f 2 5 e, rf 5 fr21l.

Then a Hamiltonian circuit in

Cay({(r, 0), ( f, 0), (e, 1)}:Dn % Zm)

with m even is traced in Figure 30.8. The sequence of generators that 
traces the circuit is

 m p [(n 2 1) p (r, 0), ( f, 0), (n 2 1) p (r, 0), (e, 1)]. 

 

(e, 1)(e, 0)

(r, 0)(rf, 0)

(f, 0) (f, 1)

(r, 1)

(r2, 1)

(rn–1, 1)(rn –1f, 1)(rn –1, 0)(rn –1f, 0)

(r2 f, 0) (r2, 0)

...iterate

Figure 30.8

Some Applications
Cayley digraphs are natural models for interconnection networks in 
computer designs, and Hamiltonicity is an important property in relation 
to sorting algorithms on such networks. One particular Cayley digraph 
that is used to design and analyze interconnection networks of parallel 
machines is the symmetric group Sn with the set of all transpositions as 
the generating set. Hamiltonian paths and circuits in Cayley digraphs 
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arise in a variety of group theory contexts. A Hamiltonian path in a Cayley 
 digraph of a group is simply an ordered listing of the group elements with
out repetition. The vertices of the digraph are the group elements, and the 
arcs of the path are generators of the group. In 1948, R. A. Rankin used 
these ideas (although not the terminology) to prove that certain bell ringing 
exercises could not be done by the traditional methods employed by bell 
ringers. (See [1, Chap. 22] for the group theoretic  aspects of bell ringing.) 
In 1981, Hamiltonian paths in Cayley digraphs were used in an algorithm 
for creating computer graphics of Eschertype repeating patterns in the hy
perbolic plane [2]. This program can produce repeating  hyperbolic patterns 
in color from among various infinite classes of symmetry groups. The pro
gram has now been improved so that the user may choose from many kinds 
of color symmetry. The 2003 Mathematics Awareness Month poster fea
tured one such image (see http://www.mathaware.org/mam/03/index.
html). Two Escher drawings and their computerdrawn counterparts are 
given in Figures 30.9 through 30.12.

In this chapter, we have shown how one may construct a directed 
graph from a group. It is also possible to associate a group—called the 
automorphism group—with every directed graph. In fact, several of 
the 26 sporadic simple groups were first constructed in this way.

Figure 30.9 M. C. Escher’s Circle Limit I.
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Figure 30.10 A computer duplication of the pattern of M. C. Escher’s Circle  
Limit I [2]. The program used a Hamiltonian path in a Cayley digraph of the  
underlying symmetry group.

Figure 30.11 M. C. Escher’s Circle Limit IV.
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Figure 30.12 A computer drawing inspired by the pattern of  
M. C. Escher’s Circle Limit IV [2]. The program used a Hamiltonian  
path in a Cayley digraph of the underlying symmetry group.

Exercises

A mathematician is a machine for turning coffee into theorems.
Paul Erdo'' s

  1. Find a Hamiltonian circuit in the digraph given in Example 7 differ
ent from the one in Figure 30.3.

  2. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}:Q4 % Z2).

  3. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}:Q4 % Zm)

  where m is even.
  4. Write the sequence of generators for each of the circuits found in 

Exercises 1, 2, and 3.
  5. Use the Cayley digraph in Example 7 to evaluate the product  

a3ba21ba3b21.
  6. Let x and y be two vertices of a Cayley digraph. Explain why two 

paths from x to y in the digraph yield a group relation—that is, an 
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equation of the form a1a2 ? ? ? am 5 b1b2 ? ? ? bn, where the ai’s and 
bj’s are generators of the Cayley digraph.

  7. Use the Cayley digraph in Example 7 to verify the relation  
aba21b21a21b21 5 a2ba3.

  8. Identify the following Cayley digraph of a familiar group.

  9. Let D4 5 kr, f | r4 5 e 5 f 2, rf 5 fr21l. Verify that

6 p [3 p (r, 0), ( f, 0), 3 p (r, 0), (e, 1)]

  is a Hamiltonian circuit in

Cay({(r, 0), ( f, 0), (e, 1)}:D4 % Z6).

 10. Draw a picture of Cay({2, 5}:Z8).
 11. If s1, s2, . . . , sn is a sequence of generators that determines a 

Hamiltonian circuit beginning at some vertex, explain why the same 
sequence determines a Hamiltonian circuit beginning at any point. 
(This exercise is referred to in this chapter.)

 12. Show that the Cayley digraph given in Example 7 has a Hamiltonian 
path from e to a.

 13. Show that there is no Hamiltonian path in

Cay({(1, 0), (0, 1)}:Z3 % Z2)

  from (0, 0) to (2, 0).
 14. Draw Cay({2, 3}:Z6). Is there a Hamiltonian circuit in this  digraph?
 15. a.  Let G be a group of order n generated by a set S. Show that a se

quence s1, s2, . . . , sn21 of elements of S is a Hamiltonian path in 
Cay(S:G) if and only if, for all i and j with 1 # i # j , n, we 
have sisi11 ? ? ? sj 2 e.

b.  Show that the sequence s1s2 ? ? ? sn is a Hamiltonian circuit if 
and only if s1s2 ? ? ? sn 5 e, and that whenever 1 # i # j , n, we 
have sisi11 ? ? ? sj 2 e.

 16. Let D4 5 ka, b | a2 5 b2 5 (ab)4 5 el. Draw Cay({a, b}:D4). Why 
is it reasonable to say that this digraph is undirected?

 17. Let Dn be as in Example 10. Show that 2 p [(n 2 1) p r, f ] is a 
Hamiltonian circuit in Cay({r, f}:Dn).
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 18. Let Q8 5 ka, b | a8 5 e, a4 5 b2, b21ab 5 a21l. Find a Hamiltonian 
circuit in Cay({a, b}:Q8).

 19. Let Q8 be as in Exercise 18. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}:Q8 % Z5).

 20. Prove that the Cayley digraph given in Example 6 does not have a 
Hamiltonian circuit. Does it have a Hamiltonian path?

 21. Find a Hamiltonian circuit in

Cay({(R90, 0), (H, 0), (R0, 1)}:D4 % Z3).

  Does this circuit generalize to the case Dn11 % Zn for all n $ 3?
 22. Let Q8 be as in Exercise 18. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}:Q8 % Zm) for all even m.

 23. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}:Q4 % Z3).

 24. Find a Hamiltonian circuit in

Cay({(a, 0), (b, 0), (e, 1)}:Q4 % Zm) for all odd m $ 3.

 25. Write the sequence of generators that describes the Hamiltonian 
 circuit in Example 9.

 26. Let Dn be as in Example 10. Find a Hamiltonian circuit in

Cay({(r, 0), ( f, 0), (e, 1)}:D4 % Z5).

  Does your circuit generalize to the case Dn % Zn11 for all n $ 4?
 27. Prove that Cay({(0, 1), (1, 1)}:Zm % Zn) has a Hamiltonian circuit 

for all m and n greater than 1.
 28. Suppose that a Hamiltonian circuit exists for Cay({(1, 0), (0, 1)}: 

Zm % Zn) and that this circuit exits from vertex (a, b) vertically. 
Show that the circuit exits from every member of the coset  
(a, b) 1 k(1, 21)l vertically.

 29. Let D2 5 kr, f | r2 5 f 2 5 e, rf 5 fr21l. Find a Hamiltonian circuit in 
Cay({(r, 0), ( f, 0), (e, 1)}:D2 % Z3).

 30. Let Q8 be as in Exercise 18. Find a Hamiltonian circuit in Cay({(a, 0), 
(b, 0), (e, 1)}:Q8 % Z3).

 31. In Cay({(1, 0), (0, 1)}:Z4 % Z5), find a sequence of generators that 
visits exactly one vertex twice and all others exactly once and re
turns to the starting vertex.

 32. In Cay({(1, 0), (0, 1)}:Z4 % Z5), find a sequence of generators that 
visits exactly two vertices twice and all others exactly once and re
turns to the starting vertex.
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 33. Find a Hamiltonian circuit in Cay({(1, 0), (0, 1)}:Z4 % Z6).
 34. Let G be the digraph obtained from Cay({(1, 0), (0, 1)}:Z3 % Z5) by 

deleting the vertex (0, 0). [Also, delete each arc to or from  
(0, 0).] Prove that G has a Hamiltonian circuit.

 35. Prove that the digraph obtained from Cay({(1, 0), (0, 1)}:Z4 % Z7) 
by deleting the vertex (0, 0) has a Hamiltonian circuit.

 36. Let G be a finite group generated by a and b. Let s1, s2, . . . , sn be the 
arcs of a Hamiltonian circuit in the digraph Cay({a, b}:G). We say 
that the vertex s1s2 ? ? ? si travels by a if si11 5 a. Show that if a ver
tex x travels by a, then every vertex in the coset xkab21l travels by a.

 37. A finite group is called Hamiltonian if all of its subgroups are normal. 
(One nonAbelian example is Q4.) Show that Theorem 30.3 can be 
generalized to include all Hamiltonian groups.

 38. (Factor Group Lemma) Let S be a generating set for a group G, let 
N be a cyclic normal subgroup of G, and let

S 5 {sN | s [ S}.

  If (a1N, . . . , arN) is a Hamiltonian circuit in Cay(S:G/N) and the 
product a1 ? ? ? ar generates N, prove that

|N| p (a1, . . . , ar)

  is a Hamiltonian circuit in Cay(S:G).
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http://www.d.umn.edu/~ddunham/

This website has copies of several articles that describe the mathematics 
involved in creating Escherlike repeating patterns in the hyperbolic plane 
as shown in Figure 30.10.

Suggested DVD

N is a Number, Mathematical Association of America, 58 minutes.
In this documentary, Erdo'' s discusses politics, death, and mathematics. 
Many of Erdo'' s’s collaborators and friends comment on his work and 
life. It is available for purchase at http://www.amazon.com
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Suggested Software

Group Explorer is mathematical visualization software that allows  
users to explore dozens of Cayley digraphs of finite groups visually and 
interactively. This free software is available at http:// 
sourceforge.net/projects/groupexplorer
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William Rowan Hamilton was born on 
August 3, 1805, in Dublin, Ireland. At  
three, he was skilled at reading and arithme
tic. At five, he read and translated Latin, 
Greek, and Hebrew; at 14, he had mastered 
14 languages, including Arabic, Sanskrit, 
Hindustani, Malay, and Bengali.

In 1833, Hamilton provided the first mod
ern treatment of complex numbers. In 1843, 
he made what he considered his greatest 
 discovery—the algebra of quaternions. The 
quaternions represent a natural generaliza
tion of the complex numbers with three num
bers i, j, and k whose squares are 21. With 
these,  rotations in three and four dimensions 
can be algebraically treated. Of greater sig
nificance, however, is the fact that the quater
nions are noncommutative under multiplica
tion. This was the first ring to be discovered in 

After Isaac Newton, the greatest mathema-
tician of the English-speaking peoples is 
William Rowan Hamilton. 

sir edmund whittaker,  
Scientific American

which the com mutative property does not 
hold. The essential idea for the quaternions 
suddenly came to Hamilton after 15 years of 
fruitless thought!

Today Hamilton’s name is attached to sev
eral concepts, such as the Hamiltonian func
tion, which represents the total energy in a 
physical system; the Hamilton–Jacobi differ
ential equations; and the Cayley–Hamilton 
Theorem from linear algebra. He also coined 
the terms vector, scalar, and tensor.

In his later years, Hamilton was plagued 
by alcoholism. He died on September 2, 
1865, at the age of 60.

For more information about Hamilton, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/ 
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Paul Erdo'' s

Paul Erdős is a socially helpless Hungarian 
who has thought about more mathematical 
problems than anyone else in history.

The Atlantic Monthly

Paul Erdo''  s (pronounced AIRdish) was 
one of the bestknown and most highly re
spected mathematicians of the 20th century. 
Unlike most of his contemporaries, who 
have concentrated on theory building, Erdo'' s 
focused on problem solving and problem 
posing. The problems and methods of solu
tion of Erdo'' s—like those of Euler, whose 
solutions to special problems pointed the 
way to much of the mathematical theory 
we have today—have helped pioneer new 
theories, such as combinatorial and probabilis
tic number theory, combinatorial geometry, 
probabilistic and transfinite combinatorics, 
and graph theory.

Erdo''  s was born on March 26, 1913, in 
Hungary. Both of his parents were high 
school mathematics teachers. Erdo'' s, a Jew, 
left Hungary in 1934 at the age of 21 because 
of the rapid rise of antiSemitism in Europe. 
For the rest of his life he traveled incessantly, 
rarely pausing more than a month in any one 
place, giving lectures for small honoraria 
and staying with fellow mathematicians. He 
had little property and no fixed address. All 
that he owned he carried with him in a 
 mediumsized suitcase, frequently visiting 
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as many as 15 places in a month. His motto 
was, “Another roof, another proof.” Even in 
his eighties, he put in 19hour days doing 
mathematics.

Erdo'' s wrote more than 1500 research pa
pers. He coauthored papers with more than 
500 people. These people are said to have 
Erdo''  s number 1. People who do not have 
Erdo''  s number 1, but who have written a 
 paper with someone who does, are said to 
have Erdo'' s number 2, and so on, inductively. 

Erdo'' s received the Cole Prize in number 
theory from the American Mathematical 
Society, the Wolf Prize for lifelong contribu
tions, and was elected to the U.S. National 
Academy of Sciences. Erdo'' s died of a heart 
attack on September 20, 1996.

For more information about Erdo'' s, visit:

http://www-groups.dcs.st-and 
.ac.uk/~history/

http://www.oakland.edu/enp 
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Introduction to Algebraic 
Coding Theory

There is no branch of mathematics, however abstract, which may 
not some day be applied to phenomena of the real world.

Nikolai Lobatchevsky

Damn it, if the machine can detect an error, why can’t it locate the 
position of the error and correct it?

Richard W. Hamming

31

Motivation
One of the most interesting and important applications of finite fields 
has been the development of algebraic coding theory. This theory, which 
originated in the late 1940s, was created in response to practical com-
munication problems. (Algebraic coding has nothing to do with  secret 
codes.) Algebraic codes are now used in compact disc and DVD play-
ers, fax machines, digital televisions, and bar code scanners, and are 
essential to computer maintenance.

To motivate this theory, imagine that we wish to transmit one of two 
possible signals to a spacecraft approaching Mars. If the proposed land-
ing site appears unfavorable, we will command the craft to orbit the 
planet; otherwise, we will command the craft to land. The signal for or-
biting will be a 0, and the signal for landing will be a 1. But it is possible 
that some sort of  interference (called noise) could cause an incorrect 
message to be received. To decrease the chance of this happening, redun-
dancy is built into the transmission process. For example, if we wish the 
craft to orbit Mars, we could send five 0s. The craft’s onboard computer 
is programmed to take any five-digit message received and decode 
the result by majority rule. So, if 00000 is sent and 10001 is received, the 
computer decides that 0 was the intended message. Notice that, for the 
 computer to make the wrong decision, at least three errors must occur 
during transmission. If we assume that errors occur independently, it is 
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less likely that three errors will occur than that two or fewer errors will 
occur. For this reason, this decision process is frequently called the 
maximum-likelihood decoding procedure. Our particular situation is 
 illustrated in Figure 31.1. The general coding procedure is illustrated in 
Figure 31.2.

Decoded
message

0

Received
message
10001

Encoded
message
00000

Original
message

0

decoderspacecrafttransmitterencoderearth

Noise

Figure 31.1 Encoding and decoding by fivefold repetition.

Decoded
message

Received
message

Encoded
message

Original
message

decoderreceivertransmitterencoder

Noisy
channel

Figure 31.2 General encoding–decoding.

In practice, the means of transmission are telephone, radiowave, 
 microwave, or even a magnetic disk. The noise might be human error, 
crosstalk, lightning, thermal noise, or deterioration of a disk. Through-
out this chapter, we assume that errors in transmission occur indepen-
dently. Different methods are needed when this is not the case.

Now, let’s consider a more complicated situation. This time, assume 
that we wish to send a sequence of 0s and 1s of length 500. Further, sup-
pose that the probability that an error will be made in the transmission of 
any particular digit is .01. If we send this message directly, without any 
redundancy, the probability that it will be received error-free is (.99)500, 
or approximately .0066.

On the other hand, if we adopt a threefold repetition scheme by send-
ing each digit three times and decoding each block of three digits 
 received by majority rule, we can do much better. For example, the se-
quence 1011 is encoded as 111000111111. If the received message is 
011000001110, the decoded message is 1001. Now, what is the proba-
bility that our 500-digit message will be error-free? Well, if a 1, say, is 
sent, it will be decoded as a 0 if and only if the block received is 001, 
010, 100, or 000. The probability that this will occur is

(.01)(.01)(.99) 1 (.01)(.99)(.01) 1 (.99)(.01)(.01) 1 (.01)(.01)(.01)

 5 (.01)2[3(.99) 1 .01]

 5 .000298 , .0003.
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Thus, the probability that any particular digit in the sequence will be de-
coded correctly is greater than .9997, and it follows that the probability 
that the entire 500-digit message will be decoded correctly is greater than 
(.9997)500, or approximately .86—a dramatic improvement over .0066.

This example illustrates the three basic features of a code. There is a 
set of messages, a method of encoding these messages, and a method of 
decoding the received messages. The encoding procedure builds some 
redundancy into the original messages; the decoding procedure corrects 
or detects certain prescribed errors. Repetition codes have the advantage 
of simplicity of encoding and decoding, but they are too inefficient. In a 
fivefold repetition code, 80% of all transmitted information is redundant. 
The goal of coding theory is to devise message encoding and  decoding 
methods that are reliable, efficient, and reasonably easy to  implement.

Before plunging into the formal theory, it is instructive to look at a 
sophisticated example.

 EXAMPLE 1 Hamming (7, 4) Code
This time, our message set consists of all possible 4-tuples of 0’s and 1’s 
(that is, we wish to send a sequence of 0’s and 1’s of length 4). Encod-
ing will be done by viewing these messages as 1 3 4 matrices with en-
tries from Z2 and multiplying each of the 16 messages on the right by the 
matrix

G �D

 1

 0

 0

 0

  0

  1

  0

  0

0

0

1

0

0

0

0

1

1

1

1

0

1

0

1

1

0

1

1

1

T .

(All arithmetic is done modulo 2.) The resulting 7-tuples are called code 
words. (See Table 31.1.)

Table 31.1

 Message Encoder G Code Word Message Encoder G Code Word

 0000 → 0000000 0110 → 0110010
 0001 → 0001011 0101 → 0101110
 0010 → 0010111 0011 → 0011100
 0100 → 0100101 1110 → 1110100
 1000 → 1000110 1101 → 1101000
 1100 → 1100011 1011 → 1011010
 1010 → 1010001 0111 → 0111001
 1001 → 1001101 1111 → 1111111
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Notice that the first four digits of each code word constitute just the 
original message corresponding to the code word. The last three digits 
of the code word constitute the redundancy features. For this code, we 
use the nearest-neighbor decoding method (which, in the case that the 
errors occur independently, is the same as the maximum-likelihood de-
coding procedure). For any received word v, we assume that the word 
sent is the code word v9 that differs from v in the fewest number of posi-
tions. If the choice of v9 is not unique, we can decide not to decode or 
arbitrarily choose one of the code words closest to v. (The first option is 
usually selected when retransmission is practical.) 

Once we have decoded the received word, we can obtain the message 
by deleting the last three digits of v9. For instance, suppose that 1000 were 
the intended message. It would be encoded and transmitted as u 5 
1000110. If the received word were v 5 1100110 (an error in the second 
position), it would still be decoded as u, since v and u differ in only one 
position, whereas v and any other code word would differ in at least two 
positions. Similarly, the intended message 1111 would be encoded as 
1111111. If, instead of this, the word 0111111 were received, our decod-
ing procedure would still give us the intended message 1111. 

The code in Example 1 is one of an infinite class of important codes 
discovered by Richard Hamming in 1948. The Hamming codes are the 
most widely used codes.

The Hamming (7, 4) encoding scheme can be conveniently illus-
trated with the use of a Venn diagram, as shown in Figure 31.3. Begin by 
placing the four message digits in the four overlapping regions I, II,

A B

C

A B

C

V VI

VII

I

II
III

IV

1
1

1

1

0

0
0

  Figure 31.3 Venn diagram of the message 1001 and the encoded   
message 1001101.
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III, and IV, with the digit in position 1 in region I, the digit in position 
2 in region II, and so on. For regions V, VI, and VII, assign 0 or 1 so that 
the total number of 1s in each circle is even.

Consider the Venn diagram of the received word 0001101:

A B

C

1 0

1

0

0
0

1

How may we detect and correct an error? Well, observe that each of the 
circles A and B has an odd number of 1s. This tells us that something is 
wrong. At the same time, we note that circle C has an even number of 1s. 
Thus, the portion of the diagram that is in both A and B but not in C is  
the source of the error. See Figure 31.4.

Quite often, codes are used to detect errors rather than correct them. 
This is especially appropriate when it is easy to retransmit a message.  
If a received word is not a code word, we have detected an error. For ex-
ample, computers are designed to use a parity check for numbers. Inside 
the computer, each number is represented by a string of 0’s and 1’s. If 
there is an even number of 1’s in this representation, a 0 is attached to the 
string; if there is an odd number of 1’s in the representation, a 1  
is attached to the string. Thus, each number stored in the computer mem-
ory has an even number of 1’s. Now, when the computer reads a 

A B

C

1 0

1

0

0
0

1

Figure 31.4 Circles A and B but not C have wrong parity.
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number from memory, it performs a parity check. If the read number has 
an odd number of 1’s, the computer will know that an error has been 
made, and it will reread the number. Note that an even number of errors 
will not be detected by a parity check.

The methods of error detection introduced in Chapters 0 and 5 are 
based on the same principle. An extra character is appended to a string 
of numbers so that a particular condition is satisfied. If we find that such 
a string does not satisfy that condition, we know that an error has 
 occurred.

Linear Codes
We now formalize some of the ideas introduced in the preceding  
discussion.

Definition Linear Code
An (n, k) linear code over a finite field F is a k-dimensional subspace V 
of the vector space

Fn 5 F % F % ? ? ? % F
 
 n copies

over F. The members of V are called the code words. When F is Z2, the 
code is called binary.

One should think of an (n, k) linear code over F as a set of n-tuples 
from F, where each n-tuple has two parts: the message part, consisting 
of k digits; and the redundancy part, consisting of the remaining n 2 k 
digits. Note that an (n, k) linear code over a finite field F of order q has 
qk code words, since every member of the code is uniquely expressible 
as a linear combination of the k basis vectors with coefficients from F. 
The set of qk code words is closed under addition and scalar multiplica-
tion by members of F. Also, since errors in transmission may occur in 
any of the n positions, there are qn possible vectors that can be  received. 
Where there is no possibility of confusion, it is customary to denote  
an n-tuple (a1, a2, . . . , an) more simply as a1a2 ? ? ? an, as we did in  
Example 1.

 EXAMPLE 2 The set

{0000000, 0010111, 0101011, 1001101, 
1100110, 1011010, 0111100, 1110001}

is a (7, 3) binary code.  
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 EXAMPLE 3 The set {0000, 0101, 1010, 1111} is a (4, 2) binary  
code. 

Although binary codes are by far the most important ones, other 
codes are occasionally used.

 EXAMPLE 4 The set

{0000, 0121, 0212, 1022, 1110, 1201, 2011, 2102, 2220}

is a (4, 2) linear code over Z3. A linear code over Z3 is called a ternary 
code. 

To facilitate our discussion of the error-correcting and error- 
detecting capability of a code, we introduce the following terminology.

Definitions Hamming Distance, Hamming Weight
The Hamming distance between two vectors in Fn is the number of com-
ponents in which they differ. The Hamming weight of a vector is the 
number of nonzero components of the vector. The Hamming weight of a 
linear code is the minimum weight of any nonzero vector in the code.

We will use d(u, v) to denote the Hamming distance between the vec-
tors u and v, and wt(u) for the Hamming weight of the vector u.

 EXAMPLE 5 Let s 5 0010111, t 5 0101011, u 5 1001101, and v 
51101101. Then, d(s, t) 5 4, d(s, u) 5  4, d(s, v) 5 5, d(u, v) 5 1; and 
wt(s) 5 4, wt(t) 5 4, wt(u) 5 4, wt(v) 5 5. 

The Hamming distance and Hamming weight have the following 
 important properties.

 Theorem 31.1 Properties of Hamming Distance and Hamming Weight

For any vectors u, v, and w, d(u, v) # d(u, w) 1 d(w, v) and d(u, v) 5 
wt(u 2 v).

PROOF To prove that d(u, v) 5 wt(u 2 v), simply observe that both d(u, v) 
and wt(u 2 v) equal the number of positions in which u and v differ. To 
prove that d(u, v) # d(u, w) 1 d(w, v), note that if u and v differ in the ith 
position and u and w agree in the ith position, then w and v  differ in the 
ith position. 
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With the preceding definitions and Theorem 31.1, we can now 
 explain why the codes given in Examples 1, 2, and 4 will correct any 
single error, but the code in Example 3 will not.

 Theorem 31.2 Correcting Capability of a Linear Code

If the Hamming weight of a linear code is at least 2t 1 1, then the 
code can correct any t or fewer errors. Alternatively, the same code 
can detect any 2t or fewer errors.

PROOF We will use nearest-neighbor decoding; that is, for any received 
vector v, we will assume that the corresponding code word sent is a code 
word v9 such that the Hamming distance d(v, v9) is a minimum.  
(If there is more than one such v9, we do not decode.) Now, suppose that a 
transmitted code word u is received as the vector v and that at most t er-
rors have been made in transmission. Then, by the definition of distance 
between u and v, we have d(u, v) # t. If w is any code word other than u, 
then w 2 u is a nonzero code word. Thus, by assumption,

2t 1 1 # wt(w 2 u) 5 d(w, u) # d(w, v) 1 d(v, u) # d(w, v) 1 t,

and it follows that t 1 1 # d(w, v). So, the code word closest to the re-
ceived vector v is u, and therefore v is correctly decoded as u.

To show that the code can detect 2t errors, we suppose that a trans-
mitted code word u is received as the vector v and that at least one  error, 
but no more than 2t errors, was made in transmission. Because only 
code words are transmitted, an error will be detected whenever a 
 received word is not a code word. But v cannot be a code word, since 
d(v, u) # 2t, whereas we know that the minimum distance between 
 distinct code words is at least 2t 1 1. 

 EXAMPLE 6 Since the binary code {000, 001, 010, 100, 110, 101, 011, 
111} has weight 1 5 2t 1 1, it will not detect any error (t 5 0).

Since the binary code {000, 0101, 1010, 1111} has weight 2 5  
2t 11, it will not correct every 1 error (t 5 1/2) but it will detect any 1  
error.

Since the binary code {00000,10011,01010,11001,00101,10110,01l11, 
11100} has weight 3 5 2t 1 1, it will correct any 1 error ( t 5 1) or it will 
detect any 2 or fewer errors.

Since the binary code {0000000, 0010111, 0101011, 1001101, 
1100110, 1011010, 0111100, 1110001} has weight 4 5 2t 1 1, it will 
correct any 1 error (t 5 3/2) or it will detect any 3 or fewer errors. 
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Theorem 31.2 is often misinterpreted to mean that a linear code with 
Hamming weight 2t 1 1 can correct any t errors and detect any 2t or 
fewer errors simultaneously. This is not the case. The user must choose 
one or the other role for the code. Consider, for example, the Hamming 
(7, 4) code given in Table 31.1. By inspection, the Hamming weight of 
the code is 3 5 2 ? 1 1 1, so we may elect either to correct any single 
error or to detect any one or two errors. To understand why we can’t do 
both, consider the received word 0001010. The intended message  
could have been 0000000, in which case two errors were made (like-
wise for the intended messages 1011010 and 0101110), or the intended 
message could have been 0001011, in which case one error was made. 
But there is no way for us to know which of these possibilities occurred. 
If our choice were error correction, we would assume—perhaps 
 mistakenly—that 0001011 was the intended message. If our choice 
were error detection, we simply would not decode. (Typically, one 
would request retransmission.)

On the other hand, if we write the Hamming weight of a linear code 
in the form 2t 1 s 1 1, we can correct any t errors and detect any t 1 s 
or fewer errors. Thus, for a code with Hamming weight 5, our options 
include the following:

1. Detect any four errors (t 5 0, s 5 4).
2.  Correct any one error and detect any two or three errors (t 5 1,  

s 5 2).
3. Correct any two errors (t 5 2, s 5 0).

 EXAMPLE 7 Since the Hamming weight of the linear code given in 
Example 2 is 4, it will correct any single error and detect any two errors 
(t 5 1, s 5 1) or detect any three errors (t 5 0, s 5 3). 

It is natural to wonder how the matrix G used to produce the Ham-
ming code in Example 1 was chosen. Better yet, in general, how can 
one find a matrix G that carries a subspace V of Fk to a subspace of Fn in 
such a way that for any k-tuple v in V, the vector vG will agree with v in 
the first k components and build in some redundancy in the last n 2 k 
components? Such a matrix is a k 3 n matrix of the form

1
0
?
?
?
0

0
1
?
?
?
0

0
0
?
?
?
1

a11
?
?
?
?
ak1

a1n 2 k

?
?
?
?
akn 2 k

?
?

?

?
?

?

?
?

?

?

?

?

?

?

?
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where the aij’s belong to F. A matrix of this form is called the standard 
generator matrix (or standard encoding matrix) for the resulting code.

Any k 3 n matrix whose rows are linearly independent will trans-
form Fk to a k-dimensional subspace of Fn that could be used to build 
redundancy, but using the standard generator matrix has the advantage 
that the original message constitutes the first k components of the  
transformed vectors. An (n, k) linear code in which the k information 
digits occur at the beginning of each code word is called a systematic 
code. Schematically, we have the following.

message message redundant digits

k digits

Encoder

Notice that, by definition, a standard generator matrix produces a sys-
tematic code.

 EXAMPLE 8 From the set of messages

{000, 001, 010, 100, 110, 101, 011, 111},

we may construct a (6, 3) linear code over Z2 with the standard gene-
rator matrix

G �  C
 1

 0

 0

  0

  1

  0

  0

  0

 1

  1

  1

  1

 1

 0

 1

0

1

1

S .

The resulting code words are given in Table 31.2. Since the minimum 
weight of any nonzero code word is 3, this code will correct any single 
error or detect any double error. 

Table 31.2

 Message Encoder G Code Word

 000 → 000000
 001 → 001111
 010 → 010101
 100 → 100110
 110 → 110011
 101 → 101001
 011 → 011010
 111 → 111100
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 EXAMPLE 9 Here we take a set of messages as

{00, 01, 02, 10, 11, 12, 20, 21, 22},

and we construct a (4, 2) linear code over Z3 with the standard generator 
matrix

G �  c 1
 0

  0

  1

 2

 2

1

2
d .

The resulting code words are given in Table 31.3. Since the minimum 
weight of the code is 3, it will correct any single error or detect any 
double error. 

Table 31.3

 Message Encoder G Code Word

 00 → 0000
 01 → 0122
 02 → 0211
 10 → 1021
 11 → 1110
 12 → 1202
 20 → 2012
 21 → 2101
 22 → 2220

Parity-Check Matrix Decoding
Now that we can conveniently encode messages with a standard genera-
tor matrix, we need a convenient method for decoding the received mes-
sages. Unfortunately, this is not as easy to do; however, in the case 
where at most one error per code word has occurred, there is a fairly 
simple method for decoding. (When more than one error occurs in a 
code word, our decoding method fails.)

To describe this method, suppose that V is a systematic linear  
code over the field F given by the standard generator matrix G 5  
[Ik | A], where Ik represents the k 3 k identity matrix and A is the k 3  
(n 2 k) matrix obtained from G by deleting the first k columns of G. 
Then, the n 3 (n 2 k) matrix

H � c �  A

In�k
d  ,
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where 2A is the negative of A and In2k is the (n 2 k) 3 (n 2 k) identity 
matrix, is called the parity-check matrix for V. (In the literature, the 
transpose of H is called the parity-check matrix, but H is much more 
convenient for our purposes.) The decoding procedure is:

1. For any received word w, compute wH.
2. If wH is the zero vector, assume that no error was made.
3.  If there is exactly one instance of a nonzero element s [ F and a 

row i of H such that wH is s times row i, assume that the sent word 
was w 2 (0 . . . s . . . 0), where s occurs in the ith component. If 
there is more than one such instance, do not decode.

39.  When the code is binary, category 3 reduces to the following: If wH 
is the ith row of H for exactly one i, assume that an error was made 
in the ith component of w. If wH is more than one row of H, do not 
decode.

4.  If wH does not fit into either category 2 or category 3, we know that at 
least two errors occurred in transmission and we do not decode.

 EXAMPLE 10 Consider the Hamming (7, 4) code given in Example 1. 
The generator matrix is

G �   D�
 1

 0

 0

 0

  0

  1

  0

  0

 0

 0

 1

 0

0

0

0

1

1

1

1

0

1

0

1

1

0

1

1

1

T

and the corresponding parity-check matrix is

.H 5 G

1 1 0

1 0 1

1 1 1

0 1 1

1 0 0

0 1 0

0 0 1

W

Now, if the received vector is v 5 0000110, we find vH 5 110. Since this 
is the first row of H and no other row, we assume that an error has been 
made in the first position of v. Thus, the transmitted code word is as-
sumed to be 1000110, and the corresponding message is assumed to be 
1000. Similarly, if w 5 1011111 is the received word, then wH 5 101, 
and we assume that an error has been made in the second position. So, we 
assume that 1111111 was sent and that 1111 was the intended message. If 
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the encoded message 1001101 is received as z 5 1001011 (with errors in 
the fifth and sixth positions), we find zH 5 110. Since this matches the 
first row of H, we decode z as 0001011 and incorrectly  assume that the 
message 0001 was intended. On the other hand, nearest-neighbor decod-
ing would yield the same incorrect result. 

Notice that when only one error was made in transmission, the 
 parity-check decoding procedure gave us the originally intended mes-
sage. We will soon see under what conditions this is true, but first we 
need an important fact relating a code given by a generator matrix and 
its parity-check matrix.

 Lemma Orthogonality Relation

Let C be a systematic (n, k) linear code over F with a standard 
generator matrix G and parity-check matrix H. Then, for any vector v 
in F n, we have vH 5 0 (the zero vector) if and only if v belongs to C.

PROOF First note that, since H has rank n 2 k, we may think of H as a lin-
ear transformation from Fn onto Fn2k. Therefore, it follows from the di-
mension theorem for linear transformations that n 5 n 2 k 1 dim (Ker H), 
so that Ker H has dimension k. (Alternatively, one can use a group theory 
argument to show that |Ker H| 5 |F|k.) Then, since the dimension of C is 
also k, it suffices to show that C # Ker H. To do this, let G 5 [Ik | A],  

so that H 5 c �A

In�k
d . Then, 

GH 5 [Ik | A] c �A

In�k
d  5 2A 1 A 5 [0]    (the zero matrix).

Now, by definition, any vector v in C has the form mG, where m is a 
message vector. Thus, vH 5 (mG)H 5 m(GH) 5 m[0] 5 0 (the zero 
vector). 

Because of the way H was defined, the parity-check matrix method 
correctly decodes any received word in which no error has been made. 
But it will do more.

 Theorem 31.3 Parity-Check Matrix Decoding

Parity-check matrix decoding will correct any single error if and only 
if the rows of the parity-check matrix are nonzero and no one row is 
a scalar multiple of any other row.

51531 | Introduction to Algebraic Coding Theory

57960_ch31_ptg01_503-529.indd   515 10/27/15   2:38 PM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



PROOF For simplicity’s sake, we prove only the binary case. In this 
 special situation, the condition on the rows is that they are nonzero and 
distinct. So, let H be the parity-check matrix, and let’s assume that this 
condition holds for the rows. Suppose that the transmitted code word w 
was received with only one error, and that this error occurred in the ith 
position. Denoting the vector that has a 1 in the ith position and 0’s else-
where by ei, we may write the received word as w 1 ei. Now, using the 
Orthogonality Lemma, we obtain

(w 1 ei)H 5 wH 1 eiH 5 0 1 eiH 5 eiH.

But this last vector is precisely the ith row of H. Thus, if there was ex-
actly one error in transmission, we can use the rows of the parity-check 
matrix to identify the location of the error, provided that these rows are 
distinct. (If two rows, say, the ith and jth, are the same, we know that the 
error occurred in either the ith position or the jth position, but we do not 
know in which.)

Conversely, suppose that the parity-check matrix method correctly 
decodes all received words in which at most one error has been made in 
transmission. If the ith row of the parity-check matrix H were the zero 
vector and if the code word u 5 0 ? ? ? 0 were received as ei, we would 
find eiH 5 0 ? ? ? 0, and we would erroneously assume that the vector ei 
was sent. Thus, no row of H is the zero vector. Now, suppose that the ith 
row of H and the jth row of H are equal and i 2 j. Then, if some code 
word w is transmitted and the received word is w 1 ei (that is, there is a 
single error in the ith position), we find

(w 1 ei)H 5 wH 1 eiH 5 ith row of H 5 jth row of H.

Thus, our decoding procedure tells us not to decode. This contradicts 
our assumption that the method correctly decodes all received words in 
which at most one error has been made. 

Coset Decoding
There is another convenient decoding method that utilizes the fact that 
an (n, k) linear code C over a finite field F is a subgroup of the additive 
group of V 5 Fn. This method was devised by David Slepian in 1956 
and is called coset decoding (or standard decoding). To use this method, 
we proceed by constructing a table, called a standard array. The first 
row of the table is the set C of code words, beginning in column 1 with 
the identity 0 ? ? ? 0. To form additional rows of the table, choose an ele-
ment v of V not listed in the table thus far. Among all the elements of the 
coset v 1 C, choose one of minimum weight, say, v9. Complete the next 
row of the table by placing under the column headed by the code word c 
the vector v9 1 c. Continue this process until all the vectors in V have 
been listed in the table. [Note that an (n, k) linear code over a field with q 
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elements will have |V:C| 5 qn2k rows.] The words in the first column 
are called the coset leaders. The decoding procedure is simply to de-
code any received word w as the code word at the head of the column 
containing w.

 EXAMPLE 11 Consider the (6, 3) binary linear code

C 5 {000000, 100110, 010101, 001011, 110011, 101101, 011110, 111000}.

The first row of a standard array is just the elements of C. Obviously, 
100000 is not in C and has minimum weight among the elements of 
100000 1 C, so it can be used to lead the second row. Table 31.4 is the 
completed table.

Table 31.4  A Standard Array for a (6, 3) Linear Code

 Words
 Coset
 Leaders

 000000 100110 010101 001011 110011 101101 011110 111000
 100000 000110 110101 101011 010011 001101 111110 011000
 010000 110110 000101 011011 100011 111101 001110 101000
 001000 101110 011101 000011 111011 100101 010110 110000
 000100 100010 010001 001111 110111 101001 011010 111100
 000010 100100 010111 001001 110001 101111 011100 111010
 000001 100111 010100 001010 110010 101100 011111 111001
 100001 000111 110100 101010 010010 001100 111111 011001

If the word 101001 is received, it is decoded as 101101, since 101001 
lies in the column headed by 101101. Similarly, the received word 
011001 is decoded as 111000. 

Recall that the first method of decoding that we introduced was the 
 nearest-neighbor method; that is, any received word w is decoded as the 
code word c such that d(w, c) is a minimum, provided that there is only one 
code word c such that d(w, c) is a minimum. The next result shows that in 
this situation, coset decoding is the same as nearest-neighbor decoding.

 Theorem 31.4 Coset Decoding Is Nearest-Neighbor Decoding

In coset decoding, a received word w is decoded as a code word c such 
that d(w, c) is a minimum.

PROOF Let C be a linear code, and let w be any received word. Suppose 
that v is the coset leader for the coset w 1 C. Then, w 1 C 5 v 1 C, so  
w 5 v 1 c for some c in C. Thus, using coset decoding, w is decoded  
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as c. Now, if c9 is any code word, then w 2 c9 [ w 1 C 5 v 1 C, so  
that wt(w 2 c9) $ wt(v), since the coset leader v was chosen as a  vector 
of minimum weight among the members of v 1 C. 

Therefore,

d(w, c9) 5 wt(w 2 c9) $ wt(v) 5 wt(w 2 c) 5 d(w, c).

So, using coset decoding, w is decoded as a code word c such that  
d(w, c) is a minimum. 

Recall that in our description of nearest-neighbor decoding, we stated 
that if the choice for the nearest neighbor of a received word v is not 
unique, then we can decide not to decode or to decode v arbitrarily from 
among those words closest to v. In the case of coset decoding, the de-
coded value of v is always uniquely determined by the coset leader of 
the row containing the received word. Of course, this decoded value may 
not be the word that was sent.

When we know a parity-check matrix for a linear code, coset decod-
ing can be considerably simplified.

Definition Syndrome
If an (n, k) linear code over F has parity-check matrix H, then, for any 
vector u in Fn, the vector uH is called the syndrome† of u.

The importance of syndromes stems from the following property.

 Theorem 31.5 Same Coset—Same Syndrome

Let C be an (n, k) linear code over F with a parity-check matrix H. 
Then, two vectors of Fn are in the same coset of C if and only if they 
have the same syndrome.

PROOF Two vectors u and v are in the same coset of C if and only if  
u 2 v is in C. So, by the Orthogonality Lemma, u and v are in the same 
coset if and only if 0 5 (u 2 v)H 5 uH 2 vH. 

We may now use syndromes for decoding any received word w:

1. Calculate wH, the syndrome of w.
2. Find the coset leader v such that wH 5 vH.
3. Assume that the vector sent was w 2 v.

With this method, we can decode any received word with a table that 
has only two rows—one row of coset leaders and another row with the 
corresponding syndromes.

†This term was coined by D. Hagelbarger in 1959.   
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 EXAMPLE 12 Consider the code given in Example 11. The parity-
check matrix for this code is

.H 5 F

1 1 0

1 0 1

0 1 1

1 0 0

0 1 0

0 0 1

V

The list of coset leaders and corresponding syndromes is the following.

Coset leader 000000 100000 010000 001000 000100 000010 000001 100001

Syndromes 000 110 101 011 100 010 001 111

So, to decode the received word w � 101001, we compute wH � 100. 
Since the coset leader v � 000100 has 100 as its syndrome, we assume that 
w � 000100 � 101101 was sent. If the received word is w� � 011001, 
we compute w�H � 111 and assume w� � 100001 � 111000 was 
sent because 100001 is the coset leader with syndrome 111. Notice that these 
answers are in agreement with those obtained by using the standard-array 
method of Example 11. 

The term syndrome is a descriptive term. In medicine, it is used to 
designate a collection of symptoms that typify a disorder. In coset de-
coding, the syndrome typifies an error pattern.

In this chapter, we have presented algebraic coding theory in  
its simplest form. A more sophisticated treatment would make substan-
tially greater use of group theory, ring theory, and especially finite-field 
theory. For example, Gorenstein (see Chapter 25 for a biography) and 
Zierler, in 1961, made use of the fact that the multiplicative subgroup of 
a finite field is cyclic. They associated each digit of certain codes with a 
field element in such a way that an algebraic equation would be derived 
whose zeros determined the locations of the errors.

In some instances, two error-correcting codes are employed. The 
 European Space Agency space probe Giotto, which came within 
370 miles of the nucleus of Halley’s Comet in 1986, had two error- 
correcting codes built into its electronics. One code checked for 
indepen dently occurring errors, and another—a so-called Reed– 
Solomon code—checked for bursts of errors. Giotto achieved an error-
detection rate of 0.999999. Reed–Solomon codes are also used on 
 compact discs. They can correct thousands of consecutive errors.
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We conclude this chapter with an adapted version of an article by Barry A. Cipra about 
the Reed–Solomon codes [1]. It was the first in a series of articles called “Mathematics 
That Counts” in SIAM News, the news journal of the Society for Industrial and 
Applied Mathematics. The articles highlight developments in mathematics that have 
led to products and processes of substantial benefit to industry and the public.

Irving Reed and Gustave Solomon 
monitor the  encounter of Voyager II 
with Neptune at the Jet Propulsion 
Laboratory in 1989.

In this “Age of Information,” no one need be 
reminded of the importance not only of 
speed but also of accuracy in the storage, re-
trieval, and transmission of data. Machines 
do make errors, and their non-man-made 
mistakes can turn otherwise flawless pro-
gramming into worthless, even dangerous, 
trash. Just as architects design buildings that 
will remain standing even through an earth-
quake, their computer counterparts have 
come up with sophisticated techniques ca-
pable of counteracting digital disasters.

The idea for the current error-correcting 
techniques for everything from computer 
hard disk drives to CD players was first in-
troduced in 1960 by Irving Reed and Gustave 

Solomon, then staff members at MIT’s 
Lincoln Laboratory. . . .

“When you talk about CD players and digi-
tal audio tape and now digital television, and 
various other digital imaging systems that are 
coming—all of those need Reed–Solomon 
[codes] as an integral part of the system,” says 
Robert McEliece, a coding theorist in the elec-
trical engineering department at Caltech.

Why? Because digital information, virtually 
by definition, consists of strings of “bits”—0s 
and 1s—and a physical device, no matter how 
capably manufactured, may occasionally con-
fuse the two. Voyager II, for example, was 
transmitting data at incredibly low power—
barely a whisper—over tens of millions of 

*Adapted version of an article called, “The Ubiquitous Reed-Solomon Codes” in SIAM News, the news 
journal of the Society for Industrial and Applied Mathematics, by Barry A. Cipra. Reprinted from SIAM 
News, Volume 26-1, January 1993.
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miles. Disk drives pack data so densely that a 
read/write head can (almost) be excused if it 
can’t tell where one bit stops and the next 1 (or 
0) begins. Careful engineering can reduce the 
error rate to what may sound like a negligible 
level—the industry standard for hard disk 
drives is 1 in 10 billion—but given the volume 
of information processing done these days, that 
“negligible” level is an invitation to daily disas-
ter. Error- correcting codes are a kind of safety 
net—mathematical insurance against the 
 vagaries of an imperfect material world.

In 1960, the theory of error-correcting codes 
was only about a decade old. The basic theory 
of reliable digital communication had been set 
forth by Claude Shannon in the late 1940s. At 
the same time, Richard Hamming introduced 
an elegant approach to single-error correction 
and double-error  detection. Through the 1950s, 
a number of researchers began experimenting 
with a  variety of error-correcting codes. But 
with their SIAM journal paper, McEliece says, 
Reed and Solomon “hit the jackpot.”

The payoff was a coding system based on 
groups of bits—such as bytes—rather than 
individual 0s and 1s. That feature makes 
Reed–Solomon codes particularly good at 
dealing with “bursts” of errors: six consecu-
tive bit errors, for example, can affect at 
most two bytes. Thus, even a double-error-
correction version of a Reed–Solomon code 
can provide a comfortable safety factor. . . .

Mathematically, Reed–Solomon codes are 
based on the arithmetic of finite fields. Indeed, 
the 1960 paper begins by defining a code as “a 
mapping from a vector space of dimension m 
over a finite field K into a vector space of 
higher dimension over the same field.” Starting 
from a “message” (a0, a1, . . . , am21), where 
each ak is an element of the field K, a Reed–
Solomon code produces (P(0), P(g), P(g2), 
. . . , P(gN21)), where N is the number of ele-
ments in K, g is a generator of the (cyclic) 
group of nonzero elements in K, and P(x) is the 
polynomial a0 1 a1x 1 ? ? ? 1 am21x

m21. If N 
is greater than m, then the values of P over-
determine the polynomial, and the properties 
of finite fields guarantee that the  coefficients of 

P—i.e., the original message—can be recov-
ered from any m of the values . . . .

In today’s byte-sized world, for example, it 
might make sense to let K be the field of order 
28, so that each element of K corresponds to a 
single byte (in computerese, there are four 
bits to a nibble and two nibbles to a byte). In 
that case, N 5 28 5 256, and hence messages 
up to 251 bytes long can be recovered even if 
two errors occur in transmitting the values 
P(0), P(g), . . . , P(g255). That’s a lot better 
than the 1255 bytes required by the say- 
everything-five-times approach.

Despite their advantages, Reed–Solomon 
codes did not go into use immediately—they 
had to wait for the hardware technology to 
catch up. “In 1960, there was no such thing as 
fast digital electronics”—at least not by today’s 
standards, says McEliece. The Reed–Solomon 
paper “suggested some nice ways to  process 
data, but  nobody knew if it was practical or not, 
and in 1960 it probably wasn’t practical.”

But technology did catch up, and nu- 
merous researchers began to work on imple-
menting the codes. . . . Many other bells and 
whistles (some of fundamental theoretic sig-
nificance) have also been added. Compact 
discs, for example, use a version of a Reed–
Solomon code.

Reed was among the first to recognize the 
significance of abstract algebra as the basis 
for error-correcting codes. “In hindsight it 
seems obvious,” he told SIAM News. However, 
he added, “coding theory was not a subject 
when we published that paper.” The two au-
thors knew they had a nice result; they  didn’t 
know what impact the paper would have.

Three decades later, the impact is clear. 
The vast array of applications, both current 
and pending, has settled the question of the 
practicality and significance of Reed–
Solomon codes. “It’s clear they’re practical, 
because everybody’s using them now,” says 
Elwyn Berkekamp. Billions of dollars in 
modern technology depend on ideas that 
stem from Reed and Solomon’s original 
work. In short, says McEliece, “it’s been an 
extraordinarily influential paper.”
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Exercises

The New Testament offers the basis for modern computer coding theory, in the 
form of an affirmation of the binary number system.

“But let your communication be yea, yea; nay, nay: for whatsoever is more 
than these cometh of evil.”

Anonymous

  1. Find the Hamming weight of each code word in Table 31.1.
  2. Find the Hamming distance between the following pairs of vectors: 

{1101, 0111}, {0220, 1122}, {11101, 00111}.
  3. Referring to Example 1, use the nearest-neighbor method to decode 

the received words 0000110 and 1110100.
  4. For any vector space V and any u, v, w in Fn, prove that the 

 Hamming distance has the following properties.
 a. d(u, v) 5 d(v, u) (symmetry).
 b. d(u, v) 5 0 if and only if u 5 v.
 c. d(u, v) 5 d(u 1 w, v 1 w) (translation invariance).
  5. Determine the (6, 3) binary linear code with generator matrix

G � C
 1

 0

 0

  0

  1

  0

  0

  0

 1

  0

  1

  1

 1

 0

 1

1

1

0

S .

  6. Show that for binary vectors, wt(u 1 v) $ wt(u) 2 wt(v) and equal-
ity occurs if and only if for all i the ith component of u is 1 when-
ever the ith component of v is 1.

  7. If the minimum weight of any nonzero code word is 2, what can we 
say about the error-detecting capability of the code?

  8. Suppose that C is a linear code with Hamming weight 3 and that C9 
is one with Hamming weight 4. What can C9 do that C can’t?

  9. Let C be a binary linear code. Show that the code words of even 
weight form a subcode of C. (A subcode of a code is a subset of the 
code that is itself a code.)

 10. Let

  C 5 {0000000, 1110100, 0111010, 0011101, 1001110,
0100111, 1010011, 1101001}.

  What is the error-correcting capability of C? What is the error- 
detecting capability of C?
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 11. Suppose that the parity-check matrix of a binary linear code is

.H 5 E

1 0

0 1

1 1

1 0

0 1

U

  Can the code correct any single error?
 12. Use the generator matrix

G � c 1
 0

  0

  1

 1

 2

1

1
d

  to construct a (4, 2) ternary linear code. What is the parity-check 
 matrix for this code? What is the error-correcting capability of this 
code? What is the error-detecting capability of this code? Use parity-
check decoding to decode the received word 1201.

 13. Find all code words of the (7, 4) binary linear code whose generator 
matrix is

G � D�
 1

 0

 0

 0

  0

  1

  0

  0

 0

 0

 1

 0

0

0

0

1

1

1

1

0

1

0

1

1

1

1

0

1

T .

  Find the parity-check matrix of this code. Will this code correct any 
single error?

 14. Show that in a binary linear code, either all the code words end with 
0, or exactly half end with 0. What about the other components?

 15. Suppose that a code word v is received as the vector u. Show that 
coset decoding will decode u as the code word v if and only if u 2 v 
is a coset leader.

 16. Consider the binary linear code

C 5 {00000, 10011, 01010, 11001, 00101, 10110, 01111, 11100}.

  Construct a standard array for C. Use nearest-neighbor decoding to 
decode 11101 and 01100. If the received word 11101 has exactly 
one error, can we determine the intended code word? If the received 
word 01100 has exactly one error, can we determine the intended 
code word?
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 17. Construct a (6, 3) binary linear code with generator matrix

G � C
 1

 0

 0

  0

  1

  0

  0

  0

 1

  1

  0

  1

 1

 1

 0

0

1

1

S .

  Decode each of the received words

001001, 011000, 000110, 100001

  by the following methods:
a. Nearest-neighbor method.
b. Parity-check matrix method.
c. Coset decoding using a standard array.
d. Coset decoding using the syndrome method.

 18. Suppose that the minimum weight of any nonzero code word in a 
linear code is 6. Discuss the possible options for error correction 
and error detection.

 19. Using the code and the parity-check matrix given in Example 10, 
show that parity-check matrix decoding cannot detect any multiple 
errors (that is, two or more errors).

 20. Suppose that the last row of a standard array for a binary linear 
code is

10000  00011  11010  01001  10101  00110  11111  01100.

  Determine the code.
 21. How many code words are there in a (6, 4) ternary linear code? 

How many possible received words are there for this code?
 22. If the parity-check matrix for a binary linear code is

H 5 F

1 1 0

0 1 1

1 0 1

1 0 0

0 1 0

0 0 1

V ,

  will the code correct any single error? Why?
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 23. Suppose that the parity-check matrix for a ternary code is

H 5 E

2 1

2 2

1 2

1 0

0 1

U.

  Can the code correct all single errors? Give a reason for your 
 answer.

 24. Prove that for nearest-neighbor decoding, the converse of Theorem 
31.2 is true.

 25. Can a (6, 3) binary linear code be double-error-correcting using the 
nearest-neighbor method? Do not assume that the code is systematic.

 26. Prove that there is no 2 3 5 standard generator matrix G that will 
produce a (5, 2) linear code over Z3 capable of detecting all possible 
triple errors.

 27. Why can’t the nearest-neighbor method with a (4, 2) binary linear 
code correct all single errors?

 28. Suppose that one row of a standard array for a binary code is
000100  110000  011110  111101  101010  001001  100111  010011.

  Determine the row that contains 100001.
 29. Use the field F 5 Z2[x]/kx2 1 x 1 1l to construct a (5, 2) linear 

code that will correct any single error.
 30. Find the standard generator matrix for a (4, 2) linear code over Z3 

that encodes 20 as 2012 and 11 as 1100. Determine the entire code 
and the parity-check matrix for the code. Will the code correct all 
single errors?

 31. Assume that C is an (n, k) binary linear code and that, for each posi-
tion i 5 1, 2, . . . , n, the code C has at least one vector with a 1 in the 
ith position. Show that the average weight of a code word is n/2.

 32. Let C be an (n, k) linear code over F such that the minimum weight 
of any nonzero code word is 2t 1 1. Show that not every vector of 
weight t 1 1 in Fn can occur as a coset leader.

 33. Let C be an (n, k) binary linear code over F 5 Z 2. If v [ Fn but  
v o C, show that C < (v 1 C) is a linear code.

 34. Let C be a binary linear code. Show that either every member of C 
has even weight or exactly half the members of C have even weight. 
(Compare with Exercise 23 in Chapter 5.)

 35. Let C be an (n, k) linear code. For each i with 1 # i # n, let Ci 5  
{v [ C | the ith component of v is 0}. Show that Ci is a subcode of C.
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Suggested Readings

Norman Levinson, “Coding Theory: A Counterexample to G. H. Hardy’s 
Con ception of Applied Mathematics,” The American Mathematical 
Monthly 77 (1970): 249–258.

The eminent mathematician G. H. Hardy insisted that “real” mathemat-
ics was almost wholly useless. In this article, the author argues that cod-
ing theory refutes Hardy’s notion. Levinson uses the finite field of order 
16 to construct a linear code that can correct any three errors.

T. M. Thompson, From Error-Correcting Codes Through Sphere Packings, 
to Simple Groups, Washington, D.C.: The Mathematical Association of 
America, 1983.

Chapter 1 of this award-winning book gives a fascinating historical 
 account of the origins of error-correcting codes.
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For introduction of error-correcting codes, 
pioneering work in operating systems and 
programming languages, and the advance-
ment of numerical computation.

Citation for the Piore  
Award, 1979

Richard W. Hamming was born in Chicago, 
Illinois, on February 11, 1915. He graduated 
from the University of Chicago with a B.S. de-
gree in mathematics. In 1939, he received an 
M.A. degree in mathematics from the Univer-
sity of Nebraska and, in 1942, a Ph.D. in math-
ematics from the University of Illinois.

During the latter part of World War II, 
Hamming was at Los Alamos, where he was 
involved in computing atomic-bomb de-
signs. In 1946, he joined Bell Telephone 
Laboratories, where he worked in mathemat-
ics, computing, engineering, and science.

In 1950, Hamming published his famous 
paper on error-detecting and error-correcting 
codes. This work started a branch of infor-
mation theory. The Hamming codes are used 
in many modern computers. Hamming’s 
work in the field of numerical analysis has 
also been of fundamental importance.

Hamming received numerous prestigious 
awards, including the Turing Prize from the 
Association for Computing Machinery, the 
Piore Award from the Institute of Electrical 
and Electronics Engineers (IEEE), and the 
Oender Award from the University of 
Pennsylvania. In 1986 the IEEE Board  
of Directors established the Richard  
W. Hamming Medal “for exceptional con-
tributions to information sciences, systems 
and technology” and named Hamming as 
its first recipient. Hamming died of a heart 
attack on January 7, 1998, at age 82.

To find more information about Ham-
ming, visit:

http://www-groups.dcs.st-and 
.ac.uk/~history/
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An important contributor to coding theory 
was Jessie MacWilliams. She was born in 
1917 in England. After studying at  Cam- 
bridge University, MacWilliams came to  
the United States in 1939 to attend Johns 
Hopkins University. After one year at Johns 
Hopkins, she went to Harvard for a year.

In 1955, MacWilliams became a pro-
grammer at Bell Labs, where she learned 
about coding theory. Although she made a 
major discovery about codes while a pro-
grammer, she could not obtain a promotion 
to a math research position without a Ph.D. 
degree. She completed some of the require-
ments for the Ph.D. while working full-time 
at Bell Labs and looking after her family. 
She then returned to Harvard for a year 
(1961–1962), where she finished her degree. 
Interestingly, both MacWilliams and her 
daughter Ann were studying mathematics at 
Harvard at the same time.

MacWilliams returned to Bell Labs, where 
she remained until her retirement in 1983.  
The Institute of Electrical and Electronics 
Engineers published an issue of its journal 
IEEE on Information Theory Transactions 
containing papers dedicated to her in 1983. 
While at Bell Labs, she made many contribu-
tions to the subject of error-correcting codes, 
including The Theory of Error-Correcting 
Codes, written jointly with Neil Sloane. One 
of her results of great theoretical importance 
is known as the MacWilliams Identity. She 
died on May 27, 1990, at the age of 73.

To find more information about 
MacWilliams, visit:

http://www.awm-math.org/ 
noetherbrochure/ 

MacWilliams80.html
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She was a mathematician who was 
 instrumental in developing the mathemati-
cal theory of error-correcting codes from its 
early development and whose Ph.D. thesis 
includes one of the most powerful theorems 
in coding theory.

vera pless, SIAM News

Jessie MacWilliams
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Vera Pless is a leader in the field of coding 
theory.

Vera Pless was born on March 5, 1931, to 
Russian immigrants on the West Side of 
Chicago. She accepted a scholarship to attend 
the University of Chicago at age 15. The pro-
gram at Chicago emphasized great literature 
but paid little attention to physics and mathe-
matics. At age 18, with no more than one pre-
calculus course in mathematics, she entered 
the prestigious graduate program in mathe-
matics at Chicago, where, at that time, there 
were no women on the mathematics faculty or 
even women colloquium speakers. After pass-
ing her master’s exam, she took a job as a re-
search associate at Northwestern University 
while pursuing a Ph.D. there. In 1957, she 
obtained her degree.

Over the next several years, Pless stayed 
at home to raise her children while teaching 

part-time at Boston University. When she de-
cided to work full-time, she found that 
women were not welcome at most colleges 
and universities. One person told her out-
right, “I would never hire a woman.” Fortu-
nately, there was an Air Force Lab in the area 
that had a group working on error-correcting 
codes. Although she had never even heard of 
coding theory, she was hired because of her 
background in  algebra. When the lab discon-
tinued basic  research, she took a position as 
a research associate at MIT in 1972. In 1975, 
she went to the University of Illinois–Chicago, 
where she remained until her retirement.

During her career, Pless wrote more than 
100 research papers, authored a widely used 
textbook on coding theory, and had 11 Ph. D. 
students.
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32

Fundamental Theorem of Galois Theory
The Fundamental Theorem of Galois Theory is one of the most elegant 
theorems in mathematics. Look at Figures 32.1 and 32.2. Figure 32.1 
depicts the lattice of subgroups of the group of field automorphisms of 

An Introduction to Galois 
Theory

It [Galois’s work] is now considered as one of the pillars of modern 
mathematics.

Edward Frenkel, Love and Math

Today ‘Galois groups’ are ubiquitous in the literature, and the 
group idea has proved to be perhaps the most versatile in all 
mathematics, clarifying many a deep mystery. “When in doubt,” 
the great André Weil advised, look for the group. “That’s the cher-
chez la femme of mathematics.”

Jim Holt, The New York Review of Books, December 5, 2013

}

{e, a, a2, a3, b, ab, a2b, a3b}

e, a  , b, a b

e, a  be, b

{ {

{ {

}

} }

{e}

22 e, a  , ab, a b{ }32

e, a b{ }3e, ab{ }2 e, a  { }2

e, a, a   a2, 3

2

2 2 2 2 2

2 2222

2 2

22

Figure 32.1 Lattice of subgroups of the group of field automorphisms of  
Q(24 2, i ), where a: i S i and 24 2 S 2i 24 2, b: i S 2i, and 24 2 S 24 2.
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Q(24 2 , i). The integer along an upward lattice line from a group H1 to a 
group H2 is the index of H1 in H2. Figure 32.2 shows the lattice of sub-
fields of Q(24 2, i). The integer along an upward line from a field K1 to 
a field K2 is the degree of K2 over K1. Notice that the lattice in Figure 
32.2 is the lattice of Figure 32.1 turned upside down. This is only one of 
many relationships between these two lattices. The Fundamental 
 Theorem of Galois Theory relates the lattice of subfields of an algebraic 
extension E of a field F to the subgroup structure of the group of auto-
morphisms of E that send each element of F to itself. This relationship 
was discovered in the process of attempting to solve a polynomial equa-
tion f (x) 5 0 by radicals.

Before we can give a precise statement of the Fundamental Theorem 
of Galois Theory, we need some terminology and notation.

 Definitions Automorphism, Galois Group, Fixed Field of H 
Let E be an extension field of the field F. An automorphism of E is a ring 
isomorphism from E onto E. The Galois group of E over F, Gal(E/F), is 
the set of all automorphisms of E that take every element of F to itself. 
If H is a subgroup of Gal(E/F ), the set

 EH 5 {x [ E | f(x) 5 x for all f [ H}

is called the fixed field of H.

It is easy to show that the set of automorphisms of E forms a group 
under composition. We leave as exercises (Exercises 3 and 5) the verifi-
cations that the automorphism group of E fixing F is a subgroup of the 
automorphism group of E  and that, for any subgroup H  of  
Gal(E/F), the fixed field EH of H is a subfield of E. Be careful not to 
misinterpret Gal(E/F) as something that has to do with factor rings or 
factor groups. It does not.

2

2

2

2 2 2 2

2 2

2

2 2 2

2 2

Q

Q(i)Q(√2)

Q(√2, i)

Q(√2, i)

Q((12 i)√2) Q((11 i)√2)

4

4 4
Q(√2)4

Q(i√2)4

Q(i√2)

 Figure 32.2 Lattice of subfields of Q(24 2, i).
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The following examples will help you assimilate these definitions. In 
each example, we simply indicate how the automorphisms are defined. 
We leave to the reader the verifications that the mappings are indeed 
automorphisms.

 EXAMPLE 1 Consider the extension Q(22) of Q. Since

Q(22) 5 {a 1 b22 | a, b [ Q}

and any automorphism of a field containing Q must act as the identity 
on Q (Exercise 1), an automorphism f of Q(22) is completely deter-
mined by f(22). Thus,

2 5 f(2) 5 f(2222) 5 (f(22))2,

and therefore f(22) 5 622. This proves that the group Gal(Q(22)/Q) 
has two elements, the identity mapping and the mapping that sends 
a 1 b22 to a 2 b22. 

 EXAMPLE 2 Consider the extension Q(23 2 ) of Q. An automorphism f 
of Q(23 2 ) is completely determined by f(23 2 ). By an argument analo-
gous to that in Example 1, we see that f(23 2 ) must be a cube root of 2. 
Since Q(23 2 ) is a subset of the real numbers and 23 2  is the only real 
cube root of 2, we must have f(23 2 ) 5 23 2 . Thus, f is the identity 
automorphism and Gal(Q(23 2 )/Q) has only one element. Obviously, 
the fixed field of Gal(Q(23 2 )/Q) is Q (23 2 ). 

 EXAMPLE 3 Consider the extension Q(24 2 , i) of Q(i). Any automor-
phism f of Q(24 2 , i) fixing Q(i) is completely determined by  
f(24 2 ). Since

2 5 f(2) 5 f((24 2 )4) 5 (f(24 2 ))4,

we see that f(24 2 ) must be a fourth root of 2. Thus, there are at most 
four possible automorphisms of Q(24 2 , i) fixing Q(i). If we define an 

}{e

}{e, a  2

2

2

}{e, a, a    a2,   3 Q(√2, i)4

Q(√2, i)

Q(i)

2

2

Figure 32.3 Lattice of subgroups of Gal (Q(24 2, i)/Q(i))  
and lattice of subfields of Q(24 2, i ) containing Q(i ).
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automorphism a such that a(i) 5 i and a(24 2 ) 5 i24 2 , then a [ 
Gal(Q(24 2 , i)/Q(i)) and a has order 4. Thus, Gal(Q(24 2 , i)/Q(i)) is a 
cyclic group of order 4. The fixed field of {e, a2} (where e is the identity 
automorphism) is Q(22, i). The lattice of subgroups of Gal(Q(24 2 , i)/ 
Q(i)) and the lattice of subfields of Q(24 2 , i) containing Q(i) are shown 
in Figure 32.3. As in Figures 32.1 and 32.2, the integers along the lines 
of the group lattice represent the index of a subgroup in the group above 
it, and the integers along the lines of the field lattice represent the de-
gree of the extension of a field over the field below it. 

 EXAMPLE 4 Consider the extension Q(23, 25) of Q. Since

Q(23, 25) 5 {a 1 b23 1 c25 1 d2325 | a, b, c, d [ Q},

any automorphism f of Q(23, 25) is completely determined by the 
two values f(23) and f(25). This time there are four automorphisms.

 e a b ab

 23 S 23 23 S 223 23 S 23 23 S 223
 25 S 25 25 S 25 25 S 225 25 S 225

Obviously, Gal(Q(23, 25)/Q) is isomorphic to Z2 % Z2. The fixed field 
of {e, a} is Q(25), the fixed field of {e, b} is Q(23), and the fixed field 
of {e, ab} is Q(2325). The lattice of subgroups of Gal(Q(23, 25)/Q) 
and the lattice of subfields of Q(23, 25) are shown in Figure 32.4. 

e, a, b, ab

{ }e, b { }e, ab{ }e, a

{ }e 

{ }

222

2 2 2

2

2 2 2

2 2

Q(√5 )

Q(√3,√5 )

Q (√3) Q(√3√5 )

Q

Figure 32.4 Lattice of subgroups of Gal(Q(13, 15)/Q) and lattice of subfields  
of Q(13, 15).

Example 5 is a bit more complicated than our previous examples. In 
particular, the automorphism group is non-Abelian.

 EXAMPLE 5 Direct calculations show that v 5 21/2 1 i23/2 satisfies 
the equations v3 5 1 and v2 1 v 1 1 5 0. Now, consider the  extension 
Q(v, 23 2 ) of Q. We may describe the automorphisms of Q(v, 23 2 ) by 
specifying how they act on v and 23 2 . There are six in all.
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    e a b b2 ab ab2

v S v     v S v2  v S v  v S v   v S v2 v S v2

   13 2 S 13 2   13 2 S 13 2   13 2 S v13 2    13 2 S v213 2    13 2 S v213 2   1
3 2 S v13 2

Since ab 2 ba, we know that Gal(Q(v, 23 2 )/Q) is isomorphic to S3. 
(See Theorem 7.2.) The lattices of subgroups and subfields are shown in 
Figure 32.5.

e, a, b, b ,ab, ab{ 2}2

{e}

e,  b, b{ 2} e, a{ } e, ab{ } e, ab{ 2}

3 332

3 2 2 2

3

3 3 32

2 2 2

Q

Q(   ,√2)
3ω

Q(   √2)
3ω Q(    √2)

32ωQ(√2)
3

 ωQ(   )

Figure 32.5 Lattice of subgroups of Gal(Q(v, 23 2)/Q) and lattice  
of subfields of Q(v, 23 2), where v 5 21/2 1 i 23/2.

The lattices in Figure 32.5 have been arranged so that each nontrivial 
proper field occupying the same position as some group is the fixed field 
of that group. For instance, Q(v23 2 ) is the fixed field of {e, ab}. 

The preceding examples show that, in certain cases, there is an inti-
mate connection between the lattice of subfields between E and F and the 
lattice of subgroups of Gal(E/F). In general, if E is an extension of F, and 
we let ^ be the lattice of subfields of E containing F and let & be the 
lattice of subgroups of Gal(E/F), then for each K in ^, the group 
Gal(E/K) is in &, and for each H in &, the field EH is in ^. Thus, we 
may define a mapping g: ^ S & by g(K) 5 Gal(E/K) and a mapping  
f : & S ^ by f (H) 5 EH. It is easy to show that if K and L belong to ^ 
and K # L, then g(K) $ g(L). Similarly, if G and H belong to & and 
G # H, then f (G) $ f (H). Thus, f and g are inclusion-reversing map-
pings between ^ and &. We leave it to the reader to show that for any K 
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in ^, we have (fg)(K) $ K, and for any G in &, we have (gf )(G) $ G. 
When E is an  arbitrary extension of F, these inclusions may be strict. 
However, when E is a suitably chosen extension of F, the Fundamental 
Theorem of Galois Theory, Theorem 32.1, says that f and g are inverses 
of each other, so that the inclusions are equalities. In particular, f and g 
are inclusion-reversing isomorphisms between the lattices ^ and &. 
A stronger result than that given in Theorem 32.1 is true, but our theo-
rem illustrates the fundamental principles involved. The student is 
 referred to [1, p. 285] for additional details and proofs.

 Theorem 32.1 Fundamental Theorem of Galois Theory

Let F be a field of characteristic 0 or a finite field. If E is the splitting 
field over F for some polynomial in F[x], then the mapping from the 
set of subfields of E containing F to the set of subgroups of Gal(E/F) 
given by K S Gal(E/K) is a one-to-one correspondence. Further-
more, for any subfield K of E containing F,

1.  [E:K] 5 |Gal(E/K)| and [K:F] 5 |Gal(E/F)| / |Gal(E/K)|. [The 
index of Gal(E/K) in Gal(E/F) equals the degree of K over F.]

2.  If K is the splitting field of some polynomial in F[x],  
then Gal(E/K) is a normal subgroup of Gal(E/F) and Gal(K/F) 
is isomorphic to Gal(E/F)/Gal(E/K).

3. K 5 EGal(E/K). [The fixed field of Gal(E/K) is K.]
4.  If H is a subgroup of Gal(E/F), then H 5 Gal(E/EH). [The 

 automorphism group of E fixing EH is H.]

Generally speaking, it is much easier to determine a lattice of sub-
groups than a lattice of subfields. For example, it is usually quite diffi-
cult to determine, directly, how many subfields a given field has, and it 
is often difficult to decide whether or not two extensions are the same. 
The corresponding questions about groups are much more tractable. 
Hence, the Fundamental Theorem of Galois Theory can be a great la-
bor-saving device. Here is an illustration. [Recall from  Chapter 20 that 
if f (x) [ F[x] and the zeros of f (x) in some extension of F are a1, a2, 
. . . , an, then F(a1, a2, . . . , an) is the splitting field of f (x) over F.]

 EXAMPLE 6 Let v 5 cos(2p/7) 1 i sin(2p/7), so that v7 5 1, and con-
sider the field Q(v). How many subfields does it have and what are they? 
First, observe that Q(v) is the splitting field of x7 2 1 over Q, so that we 
may apply the Fundamental Theorem of Galois Theory. A simple calcu-
lation shows that the automorphism f that sends v to v3 has order 6. 
Thus,
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[Q(v):Q] 5 |Gal(Q(v)/Q)| $ 6.

Also, since

x7 2 1 5 (x 2 1)(x6 1 x5 1 x4 1 x3 1 x2 1 x 1 1)

and v is a zero of x7 2 1, we see that

|Gal(Q(v)/Q)| 5 [Q(v):Q] # 6.

Thus, Gal(Q(v)/Q) is a cyclic group of order 6. So, the lattice of sub-
groups of Gal(Q(v)/Q) is trivial to compute. See Figure 32.6.

2 3

3 2

φ

2 3

k l

φk l

{

φk l

e}

Figure 32.6 Lattice of subgroups of Gal(Q(v)/Q),  
where v 5 cos(2p/7) 1 i sin(2p/7).

This means that Q(v) contains exactly two proper extensions of Q: 
one of degree 3 corresponding to the fixed field of kf3l and one of de-
gree 2 corresponding to the fixed field of kf2l. To find the fixed field of 
kf3l, we must find a member of Q(v) that is not in Q and that is fixed by 
f3. Experimenting with various possibilities leads us to discover that 
v 1 v21 is fixed by f3 (see Exercise 9), and it follows that Q , Q(v 1 
v21) # Q(v)kf3l. Since [Q(v)kf3l:Q] 5 3 and [Q(v 1 v21):Q] divides 
[Q(v)kf3l:Q], we see that Q(v 1 v21) 5 Q(v)kf3l. A similar argument 
shows that Q(v3 1 v5 1 v6) is the fixed field of kf2l. Thus, we have 
found all subfields of Q(v). 

 EXAMPLE 7 Consider the extension E 5 GF(pn) of F 5 GF(p). Let us 
determine Gal(E / F). By Corollary 2 of Theorem 22.2, E has the form F(b) 
for some b where b is the zero of an irreducible polynomial p(x) of the 
form xn 1 an21x

n21 1 ? ? ? 1 a1x  1 a0, where an21, an22, . . . , a0 belong to 
F. Since any field automorphism f of E must take 1 to itself, it follows that 
f acts as the identity on F. Thus, p(b) 5 0 implies that p(f(b)) 5 0. And 
because p(x) has at most n zeros, we know that there are at most n pos-
sibilities for f(b). On the other hand, by Exercise 49 in Chapter 13, we 
know that the mapping s (a) 5 ap for all a [ E is an  automorphism of 
E, and it follows from the fact that E* is cyclic (Theorem 22.2) that the 
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group ksl has order n (see Exercise 11 in Chapter 22). Thus, Gal(GF(pn)/
GF(p)) < Zn. 

Solvability of Polynomials by Radicals
For Galois, the elegant correspondence between groups and fields 
given by Theorem 32.1 was only a means to an end. Galois sought to 
solve a problem that had stymied mathematicians for centuries. Meth-
ods for solving linear and quadratic equations were known thousands 
of years ago (the quadratic formula). In the 16th century, Italian math-
ematicians developed formulas for solving any third- or fourth-degree 
equation. Their formulas involved only the operations of addition, 
subtraction, multiplication, division, and extraction of roots (radicals). 
For example, the equation

x3 1 bx 1 c 5 0

has the three solutions

A 1 B,
2(A 1 B)/2 1 (A 2 B)2�3 /2,
2(A 1 B)/2 2 (A 2 B)2�3 /2,

where

A � 3

B
�c
2

� A
b3

27
�

c2

4
  and  B � 3

B
�c
2

� A
b3

27
�

c2

4
.

The formulas for the general cubic x3 1 ax2 1 bx 1 c 5 0 and the gen-
eral quartic (fourth-degree polynomial) are even more complicated, but 
nevertheless can be given in terms of radicals of rational expressions of 
the coefficients.

Both Abel and Galois proved that there is no general solution of a 
fifth-degree equation by radicals. In particular, there is no “quintic for-
mula.” Before discussing Galois’s method, which provided a group the-
oretic criterion for the solution of an equation by radicals and led to the 
modern-day Galois theory, we need a few definitions.

Definition Solvable by Radicals
Let F be a field, and let f (x) [ F[x]. We say that f (x) is solvable by radi-
cals over F if f (x) splits in some extension F(a1, a2, . . . , an) of F and 
there exist positive integers k1, . . . , kn such that a1

k1 [ F and ai
ki [ F(a1, 

. . . , ai21) for i 5 2, . . . , n.
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So, a polynomial in F[x] is solvable by radicals if we can obtain all of 
its zeros by adjoining nth roots (for various n) to F. In other words, each 
zero of the polynomial can be written as an expression (usually a messy 
one) involving elements of F combined by the operations of addition, 
subtraction, multiplication, division, and extraction of roots.

 EXAMPLE 8 Let v 5 cos( 2p/8) 1 i sin(2p/8) 522/2 1 i22/2. Then 
x8 2 3 splits in Q(v, 28 3 ), v8 [ Q, and (28 3 )8 [ Q , Q(v). Thus, x8 2 3 
is solvable by radicals over Q. Although the zeros of x8 2 3 are most 
conveniently written in the form 28 3 , 28 3  v, 28 3  v2, . . . , 28 3  v7, the 
 notion of solvable by radicals is best illustrated by writing them in the 
form

 6 28 3 , 6 2� 128 3 , 6 28 3  (22
2 1 2�122

2 ),

 6 28 3 (22
2 2 2�122

2 ). 

Thus, the problem of solving a polynomial equation for its zeros can 
be transformed into a problem about field extensions. At the same time, 
we can use the Fundamental Theorem of Galois Theory to transform a 
problem about field extensions into a problem about groups. This is ex-
actly how Galois showed that there are fifth-degree polynomials that 
cannot be solved by radicals, and this is exactly how we will do it. Be-
fore giving an example of such a polynomial, we need some additional 
group theory.

Definition Solvable Group
We say that a group G is solvable if G has a series of subgroups

{e} 5 H0 , H1 , H2 , ? ? ? , Hk 5 G,

where, for each 0 # i , k, Hi is normal in Hi11 and Hi11/Hi is Abelian.

Obviously, Abelian groups are solvable. So are the dihedral groups 
and any group whose order has the form pn, where p is a prime  (see 
Exercises 28 and 29). The monumental Feit–Thompson Theorem (see 
Chapter 25) says that every group of odd order is solvable. In a certain 
sense, solvable groups are almost Abelian. On the other hand, it  follows 
directly from the definitions that any non-Abelian simple group is not 
solvable. In particular, A5 is not solvable. It follows from Exercise 21 
in Chapter 25 that S5 is not solvable. Our goal is to connect the notion 
of solvability of polynomials by radicals to that of solvable groups. 
The next theorem is a step in this direction.
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 Theorem 32.2 Condition for Gal (E/F) to be Solvable

Let F be a field of characteristic 0 and let a [ F. If E is the splitting 
field of xn 2 a over F, then the Galois group Gal(E/F) is solvable.

PROOF We first handle the case where F contains a primitive nth root of 
unity v. Let b be a zero of xn 2 a in E. Then the zeros of xn 2 a are  
b, vb, v2b, . . . , vn21b, and therefore E 5 F(b). In this case, we claim that 
Gal(E/F) is Abelian and hence solvable. To see this, observe that any au-
tomorphism in Gal(E/F) is completely determined by its action on b. 
Also, since b is a zero of xn 2 a, we know that any element of Gal(E/F) 
sends b to another zero of xn 2 a. That is, any element of Gal(E/F) takes b 
to vib for some i. Let f and s be two elements of Gal(E/F). Then, since v 
[ F, f and s fix v and f(b) 5 v jb and s (b) 5 v kb for some j and k. 
Thus,

(sf)(b) 5 s (f(b)) 5 s (v jb) 5 s (v j)s (b) 5 v jv kb 5 v j1kb,

whereas

(fs)(b) 5 f(s(b)) 5 f(v kb) 5 f(v k)f(b) 5 v kv jb 5 v k1jb,

so that sf and fs agree on b and fix the elements of F. This shows that 
sf 5 fs, and therefore Gal(E/F) is Abelian.

Now suppose that F does not contain a primitive nth root of unity. Let 
v be a primitive nth root of unity and let b be a zero of xn 2 a in E. The 
case where a 5 0 is trivial, so we may assume that b ? 0. Since vb is 
also a zero of xn 2 a, we know that both b and vb belong to E, and there-
fore v 5 vb/b is in E as well. Thus, F(v) is contained in E, and F(v) is 
the splitting field of xn 2 1 over F. Analogously to the case above, for 
any automorphisms f and s in Gal(F(v)/F) we have f(v) 5 v j for 
some j and s (v) 5 v k for some k. Then,

(sf)(v) 5 s (f(v)) 5 s (v j) 5 (s (v)) j 5 (v k) j 
 5 (v j) k 5 (f(v)) k 5 f(v k) 5 f(s (v)) 5 (fs)(v).

Since elements of Gal(F(v)/F) are completely determined by their ac-
tion on v, this shows that Gal(F(v)/F) is Abelian.

Because E is the splitting field of xn 2 a over F(v) and F(v) contains 
a primitive nth root of unity, we know from the case we have already 
done that Gal(E/F(v)) is Abelian and, by Part 2 of Theorem 32.1, the 
series

{e} # Gal(E/F(v)) # Gal(E/F)
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is a normal series. Finally, since both Gal(E/F(v)) and

Gal(E/F )/Gal(E/F(v)) < Gal(F(v)/F)

are Abelian, Gal(E/F) is solvable. 

To reach our main result about polynomials that are solvable by radi-
cals, we need two important facts about solvable groups.

 Theorem 32.3 Factor Group of a Solvable Group Is Solvable

A factor group of a solvable group is solvable.

PROOF Suppose that G has a series of subgroups

{e} 5 H0 , H1 , H2 , ? ? ? , Hk 5 G,

where, for each 0 # i , k, Hi is normal in Hi11 and Hi11/Hi is Abelian. 
If N is any normal subgroup of G, then

{e} 5 H0N/N , H1N/N , H2N/N , ? ? ? , HkN/N 5 G/N

is the requisite series of subgroups that guarantees that G/N is solvable. 
(See Exercise 31.) 

 Theorem 32.4 N and G/N Solvable Implies G Is Solvable

Let N be a normal subgroup of a group G. If both N and G/N are 
solvable, then G is solvable.

PROOF Let a series of subgroups of N with Abelian factors be

N0 , N1 , ? ? ? , Nt 5 N

and let a series of subgroups of G/N with Abelian factors be

N/N 5 H0 /N , H1/N , ? ? ? , Hs /N 5 G/N.

Then the series

N0 , N1 , ? ? ? , Nt 5 H0 , H1 , ? ? ? , Hs 5 G

has Abelian factors (see Exercise 33). 

We are now able to make the critical connection between solvability 
of polynomials by radicals and solvable groups.
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 Theorem 32.5 (Galois) Solvable by Radicals Implies Solvable Group

Let F be a field of characteristic 0 and let f(x) [ F[x]. Suppose that 
f(x) splits in F(a1, a2, . . . , at), where a1

n1 [ F and ai
ni [ F(a1, . . . , 

ai21) for i 5 2, . . . , t. Let E be the splitting field for f(x) over F in 
F(a1, a2, . . . , at). Then the Galois group Gal(E/F) is solvable.

PROOF We use induction on t. For the case t 5 1, we have F # E # 
F(a1). Let a 5 a1

n1 and let L be a splitting field of xn1 2 a over F. Then F 
# E # L, and both E and L are splitting fields of polynomials over F. By 
part 2 of Theorem 32.1, Gal(E/F) < Gal(L/F)/Gal(L/E). It follows from 
Theorem 32.2 that Gal(L/F) is solvable, and from Theorem 32.3 we 
know that Gal(L/F)/Gal(L/E) is solvable. Thus, Gal(E/F) is solvable.

Now suppose t . 1. Let a 5 a1
n1 [ F, let L be a splitting field of  

xn1 2 a over E, and let K # L be the splitting field of xn1 2 a over F. 
Then L is a splitting field of (xn1 2 a) f (x) over F, and L is a splitting 
field of f (x) over K. Since F(a1) # K, we know that f (x) splits in  
K(a2, . . . , at), so the induction hypothesis implies that Gal(L/K) is solv-
able. Also, Theorem 32.2 asserts that Gal(K/F) is solvable, which, from 
Theorem 32.1, tells us that Gal(L/F)/Gal(L/K) is solvable. Hence, Theo-
rem 32.4 implies that Gal(L/F) is solvable. So, by part 2 of Theorem 32.1 
and Theorem 32.3, we know that the factor group Gal(L/F)/Gal(L/E) < 
Gal(E/F) is solvable. 

It is worth remarking that the converse of Theorem 32.3 is true also; 
that is, if E is the splitting field of a polynomial f (x) over a field F of 
characteristic 0 and Gal(E/F) is solvable, then f (x) is solvable by radi-
cals over F.

It is known that every finite group is a Galois group over some field. 
However, one of the major unsolved problems in algebra, first posed  
by Emmy Noether, is determining which finite groups can occur as 
 Galois groups over Q. Many people suspect that the answer is “all of 
them.” It is known that every solvable group is a Galois group over Q. 
John Thompson has recently proved that certain kinds of simple groups, 
including the Monster, are Galois groups over Q. The article by Ian 
Stewart listed among this chapter’s suggested readings provides more 
information on this topic.

Insolvability of a Quintic
We will finish our introduction to Galois theory by explicitly exhibit-
ing a polynomial that has integer coefficients and that is not solvable 
by radicals over Q.
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Consider g(x) 5 3x5 2 15x 1 5. By Eisenstein’s Criterion (Theorem 
17.4), g(x) is irreducible over Q. Since g(x) is continuous and g(22) 5 
261 and g(21) 5 17, we know that g(x) has a real zero between 22 
and 21. A similar analysis shows that g(x) also has real zeros between 0 
and 1 and between 1 and 2.

Each of these real zeros has multiplicity 1, as can be verified by long 
division or by appealing to Theorem 20.6. Furthermore, g(x) has no 
more than three real zeros, because Rolle’s Theorem from calculus 
guarantees that between each pair of real zeros of g(x) there must be a 
zero of g9(x) 5 15x4 2 15. So, for g(x) to have four real zeros, g9(x) 
would have to have three real zeros, and it does not. Thus, the other two 
zeros of g(x) are nonreal complex numbers, say, a 1 bi and a 2 bi. (See 
Exercise 65 in Chapter 15.)

Now, let’s denote the five zeros of g(x) by a1, a2, a3, a4, a5. Since any 
automorphism of K 5 Q(a1, a2, a3, a4, a5) is completely determined by its 
action on the a’s and must permute the a’s, we know that Gal(K/Q) is iso-
morphic to a subgroup of S5, the symmetric group on five symbols. Since 
a1 is a zero of an irreducible polynomial of degree 5 over Q, we know that 
[Q(a1):Q] 5 5, and therefore 5 divides [K:Q]. Thus, the Fundamental The-
orem of Galois Theory tells us that 5 also divides |Gal(K/Q)|. So, by 
 Cauchy’s Theorem (corollary to Theorem 24.3), we may conclude that 
Gal(K/Q) has an element of order 5. Since the only elements in S5 of or-
der 5 are the 5-cycles, we know that Gal(K/Q) contains a 5-cycle. The 
mapping from C to C, sending a 1 bi to a 2 bi, is also an element of 
Gal(K/Q). Since this mapping fixes the three real zeros and interchanges 
the two complex zeros of g(x), we know that Gal(K/Q) contains a 2- cycle. 
But, the only subgroup of S5 that contains both a 5-cycle and a 2-cycle is 
S5. (See Exercise 25 in Chapter 25.) So, Gal(K/Q) is isomorphic to S5. 
 Finally, since S5 is not solvable (see Exercise 27), we have succeeded in 
exhibiting a fifth-degree polynomial that is not solvable by radicals.

Exercises

Seeing much, suffering much, and studying much are the three pillars 
of learning.

Benjamin Disraeli

  1. Let E be an extension field of Q. Show that any automorphism of E 
acts as the identity on Q. (This exercise is referred to in this chapter.)

  2. Determine the group of field automorphisms of GF(4).
  3. Let E be an extension field of the field F. Show that the automorphism 

group of E fixing F is indeed a group. (This exercise is referred to in 
this chapter.)
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  4. Given that the automorphism group of Q(22, 25, 27) is isomor-
phic to Z2 % Z2 % Z2, determine the number of subfields of Q(22, 
25, 27) that have degree 4 over Q.

  5. Let E be an extension field of a field F and let H be a subgroup of 
Gal(E/F). Show that the fixed field of H is indeed a field. (This 
 exercise is referred to in this chapter.)

  6. Let E be the splitting field of x4 1 1 over Q. Find Gal(E/Q). Find all 
subfields of E. Find the automorphisms of E that have fixed fields 
Q(22), Q(2�  2 ), and Q(i). Is there an automorphism of E whose 
fixed field is Q?

  7. Let f (x) [ F[x] and let the zeros of f (x) be a1, a2, . . . , an. If K 5 
F(a1, a2, . . . , an), show that Gal(K/F ) is isomorphic to a group of 
permutations of the ai’s. [When K is the splitting field of f (x) over F, 
the group Gal(K/F ) is called the Galois group of f (x).]

  8. Show that the Galois group of a polynomial of degree n has order  
dividing n!

  9. Referring to Example 6, show that the automorphism f has order 6. 
Show that v 1 v21 is fixed by f3 and v3 1 v5 1 v6 is fixed by f2. 
(This exercise is referred to in this chapter.)

 10. Let E 5 Q(22, 25). What is the order of the group Gal(E/Q)? 
What is the order of Gal(Q(210)/Q)?

 11. Suppose that F is a field of characteristic 0 and E is the splitting 
field for some polynomial over F. If Gal(E/F ) is isomorphic to  
Z20 % Z2, determine the number of subfields L of E there are such 
that L contains F and 
a. [L:F ] 5 4.
b. [L:F ] 5 25.
c. Gal(E/L) is isomorphic to Z5.

 12. Determine the Galois group of x2 2 10x 1 21 over Q. (See Exercise 7 
for the definition).

 13. Determine the Galois group of x2 1 9 over R. (See Exercise 7 for 
the definition).

 14. Suppose that F is a field of characteristic 0 and E is the splitting 
field for some polynomial over F. If Gal(E/F ) is isomorphic to D6, 
prove that there are exactly three fields L such that E $ L $ F and 
[E:L] 5 6.

 15. Suppose that E is the splitting field for some polynomial over GF(p). 
If Gal(E/GF(p)) 5 p6, how many fields are there strictly between E 
and GF(p)?

 16. Let p be a prime. Suppose that |Gal(E/F )| 5 p2. Draw all possible 
subfield lattices for fields between E and F.
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 17. Suppose that F is a field of characteristic 0 and E is the splitting 
field for some polynomial over F. If Gal(E/F ) is isomorphic to A4, 
show that there is no subfield K of E such that [K:F ] 5 2.

 18. Determine the Galois group of x3 2 1 over Q and x3 2 2 over Q. 
(See Exercise 7 for the definition.)

 19. Suppose that K is the splitting field of some polynomial over a field  
F of characteristic 0. If [K:F ] 5 p2q, where p and q are distinct primes, 
show that K has subfields L1, L2, and L3 such that [K:L1] 5 p, [K:L2] 
5 p2, and [K:L3] 5 q.

 20. Suppose that E is the splitting field of some polynomial over a field F 
of characteristic 0. If Gal(E/F ) is isomorphic to D5, draw the subfield 
lattice for the fields between E and F.

 21. Suppose that F , K , E are fields and E is the splitting field of 
some polynomial in F[x]. Show, by means of an example, that K 
need not be the splitting field of some polynomial in F[x].

 22. Suppose that E is the splitting field of some polynomial over a field 
F of characteristic 0. If [E:F ] is finite, show that there is only a  
finite number of fields between E and F.

 23. Suppose that E is the splitting field of some polynomial over a field 
F of characteristic 0. If Gal(E/F ) is an Abelian group of order 10, 
draw the subfield lattice for the fields between E and F.

 24. Let v be a nonreal complex number such that v5 5 1. If f is the 
 automorphism of Q(v) that carries v to v4, find the fixed field of kfl.

 25. Determine the isomorphism class of the group Gal(GF(64)/GF(2)).
 26. Determine the isomorphism class of the group Gal(GF(729)/GF(9)).

Exercises 27, 28, and 29 are referred to in this chapter.

 27. Show that S5 is not solvable.
 28. Show that the dihedral groups are solvable.
 29. Show that a group of order pn, where p is prime, is solvable.
 30. Show that Sn is solvable when n # 4.
 31. Complete the proof of Theorem 32.3 by showing that the given 

 series of groups satisfies the definition for solvability.
 32. Show that a subgroup of a solvable group is solvable.
 33. Let N be a normal subgroup of G and let K/N be a normal subgroup 

of G/N. Prove that K is a normal subgroup of G. (This exercise is 
referred to in this chapter.)

 34. Show that any automorphism of GF( pn) acts as the identity on 
GF( p).
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 35. If G is a finite solvable group, show that there exist subgroups of G

{e} 5 H0 , H1 , H2 , ? ? ? , Hn 5 G

  such that Hi11/Hi has prime order.
 36. Show that the polynomial x 5 2 6x  1 3 over Q is not solvable by  

radicals.
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54532 | An Introduction to Galois Theory

57960_ch32_ptg01_530-546.indd   545 10/27/15   4:18 PM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



He [Hall] was preeminent as a group theo-
rist and made many fundamental discover-
ies; the conspicuous growth of interest 
in group theory in the 20th century owes 
much to him.

j. e. roseblade

Philip Hall was born on April 11, 1904, in 
London. Abandoned by his father shortly 
after birth, Hall was raised by his mother, a 
dressmaker. He demonstrated academic prow-
ess early by winning a scholarship to Christ’s 
Hospital, where he had several outstanding 
mathematics teachers. At Christ’s Hospital, 
Hall won a medal for the best English essay, 
the gold medal in mathematics, and a scholar-
ship to King’s College, Cambridge.

Although abstract algebra was a field ne-
glected at King’s College, Hall studied 
Burnside’s book Theory of Groups and some 
of Burnside’s later papers. After graduating 
in 1925, he stayed on at King’s College for 
further study and was elected to a fellowship 
in 1927. That same year, Hall discovered a 
major “Sylow-like” theorem about solvable 
groups: If a solvable group has order mn, 
where m and n are relatively prime, then 
every subgroup whose order divides m is 
contained in a group of order m and all sub-
groups of order m are conjugate. Over the 
next three decades, Hall developed a general 

theory of finite solvable groups that had a 
profound influence on John Thompson’s 
spectacular achievements of the 1960s. In 
the 1930s, Hall also developed a general the-
ory of groups of prime-power order that has 
become a foundation of modern finite group 
theory. In addition to his fundamental contri-
butions to finite groups, Hall wrote many 
seminal papers on infinite groups.

Among the concepts that have Hall’s name 
attached to them are Hall subgroups, Hall 
 algebras, Hall–Littlewood polynomials, Hall 
divisors, the marriage theorem from graph 
theory, and the Hall commutator collecting 
process. Beyond his own discoveries, Hall had 
an enormous influence on algebra through his 
research students. No fewer than one dozen 
have become eminent mathematicians in their 
own right. Hall died on December 30, 1982.

To find more information about Hall, 
visit:

http://www-groups.dcs.st-and 
.ac.uk/~history/
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Cyclotomic Extensions

“. . . To regard old problems from a new angle requires creative imagina-
tion and marks real advances in science.”

Albert Einstein

Innovation is taking two things that already exist and putting them to-
gether in a new way.

Tom Freston

33

Motivation
For the culminating chapter of this book, it is fitting to choose a topic 
that ties together results about groups, rings, fields, geometric construc-
tions, and the history of mathematics. The so-called cyclotomic exten-
sions is such a topic. We begin with the history.

The ancient Greeks knew how to construct regular polygons of 3, 4, 
5, 6, 8, 10, 12, 15, and 16 sides with a straightedge and compass. And, 
given a construction of a regular n-gon, it is easy to construct a regular 
2n-gon. The Greeks attempted to fill in the gaps (7, 9, 11, 13, 14,   
17, . . .) but failed. More than 2200 years passed before anyone was able 
to advance our knowledge of this problem beyond that of the Greeks. 
Incredibly, Gauss, at age 19, showed that a regular 17-gon is construct-
ible, and shortly thereafter he completely solved the problem of exactly 
which n-gons are constructible. It was this discovery of the constructi-
bility of the 17-sided regular polygon that induced Gauss to dedicate his 
life to the study of mathematics. Gauss was so proud of this accomplish-
ment that he requested that a regular 17-sided polygon be engraved on 
his tombstone.

Gauss was led to his discovery of the constructible polygons through 
his investigation of the factorization of polynomials of the form xn 2 1 
over Q. In this chapter, we examine the factors of xn 2 1 and show how 
Galois theory can be used to determine which regular n-gons are con-
structible with a straightedge and compass. The irreducible factors of  
xn 2 1 are important in number theory and combinatorics.
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Cyclotomic Polynomials
Recall from Example 2 in Chapter 16 that the complex zeros of xn 2 1 
are 1, v 5 cos(2p/n) 1 i sin(2p/n), v2, v3, . . . , vn21. Thus, the split-
ting field of xn 2 1 over Q is Q(v). This field is called the nth cyclo-
tomic extension of Q, and the irreducible factors of xn 2 1 over Q are 
called the cyclotomic polynomials.

Since v 5 cos(2p/n)1 i sin(2p/n) generates a cyclic group of order n 
under multiplication, we know from Corollary 3 of Theorem 4.2 that the 
genera tors of kvl are the elements of the form vk, where 1 # k # n and 
gcd(n, k) 5 1. These generators are called the primitive nth roots of unity. 
Recalling that we use f(n) to denote the number of positive integers less 
than or equal to n and relatively prime to n, we see that for each positive 
integer n there are precisely f(n) primitive nth roots of unity. The poly-
nomials whose zeros are the f(n) primitive nth roots of unity have a spe-
cial name.

Definition Cyclotomic Polynomial
For any positive integer n, let v1, v2, . . . , vf(n) denote the primitive nth 
roots of unity. The nth cyclotomic polynomial over Q is the polynomial 
Fn(x) 5 (x 2 v1)(x 2 v2) ? ? ? (x 2 vf(n)).

In particular, note that Fn(x) is monic and has degree f(n). In 
 Theorem 33.2 we will prove that Fn(x) has integer coefficients, and in 
Theorem 33.3 we will prove that Fn(x) is irreducible over Z.

 EXAMPLE 1 F1(x) 5 x 2 1, since 1 is the only zero of x 2 1. F2(x) 5 x 1 
1, since the zeros of x 2 2 1 are 1 and 21, and 21 is the only primitive root. 
F3(x) 5 (x 2 v)(x 2 v2), where v 5 cos(2p/3) 1 i sin(2p/3) 5 (21 1  
i23)/2, and direct calculations show that F3(x) 5 x2 1 x 1 1. Since  
the zeros of x4 2 1 are 61 and 6i and only i and 2i are primitive, F4(x) 5 
(x 2 i)(x 1 i) 5 x2 1 1. 

In practice, one does not use the definition of Fn(x) to compute it. 
Instead, one uses the formulas given in the exercises and makes recur-
sive use of the following result.

 Theorem 33.1 x n 2 1 5 Pd |n Fd(x)

For every positive integer n, xn 2 1 5 Pd|nFd(x), where the product 
runs over all positive divisors d of n.
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Before proving this theorem, let us be sure that the statement  
is clear. For n 5 6, for instance, the theorem asserts that x6 2 1 5  
F1(x)F2(x)F3(x)F6(x), since 1, 2, 3, and 6 are the positive divisors of 6.

PROOF Since both polynomials in the statement are monic, it suffices to 
show that they have the same zeros and that all zeros have multi- 
plicity 1. Let v 5 cos(2p/n) 1 i sin(2p/n). Then kvl is a cyclic group of  
order n, and kvl contains all the nth roots of unity. From Theorem 4.3 we 
know that for each j, |v j| divides n so that (x 2 v j) appears as a factor in 
F|v j|(x). On the other hand, if x 2 a is a linear factor of Fd(x) for some 
divisor d of n, then ad 5 1, and therefore an 5 1. Thus, x 2 a is a factor 
of xn 2 1. Finally, since no zero of xn 2 1 can be a zero of Fd(x) for two 
different d’s, the result is proved. 

Before we illustrate how Theorem 33.1 can be used to calculate Fn(x) 
recursively, we state an important consequence of the theorem.

 Theorem 33.2 Fd(x) has Integer Coefficients

For every positive integer n, Fn(x) has integer coefficients.

PROOF The case n 5 1 is trivial. By induction, we may assume that  
g(x) 5 P

d6n
d|n Fd (x) has integer coefficients. From Theorem 33.1 we

know that xn 2 1 5 Fn(x)g(x), and, because g(x) is monic, we may 
carry out the division in Z[x] (see Exercise 49 in Chapter 16). Thus, 
Fn(x) [ Z[x]. 

Now let us do some calculations. If p is a prime, we have from Theo-
rem 33.1 that x p 2 1 5 F1(x)Fp(x) 5 (x 2 1)Fp(x), so that  
Fp(x) 5 (x p 2 1)/(x 2 1) 5 x p21 1 x p22 1 ? ? ? 1 x 1 1. From Theo-
rem 33.1 we have

x6 2 1 5 F1(x)F2(x)F3(x)F6(x),

so that F6(x) 5 (x6 2 1)/((x 2 1)(x 1 1)(x2 1 x 1 1)). So, by long  
division, F6(x) 5 x2 2 x 1 1. Similarly, F10(x) 5 (x10 2 1)/ 
((x 2 1)(x 1 1)(x4 1 x3 1 x2 1 x 1 1)) 5 x4 2 x3 1 x2 2 x 1 1.

The exercises provide shortcuts that often make long division unnec-
essary. The values of Fn(x) for all n up to 15 are shown in Table 33.1. 
The software for the computer exercises provides the values for Fn(x) 
for all values of n up to 1000. Judging from Table 33.1, one might be 
led to conjecture that 1 and 21 are the only nonzero coefficients of the 
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 cyclotomic polynomials. However, it has been shown that every integer is 
a coefficient of some cyclotomic polynomial.

The next theorem reveals why the cyclotomic polynomials are  
important.

 Theorem 33.3 (Gauss) Fd(x) is Irreducible Over Z

The cyclotomic polynomials Fn(x) are irreducible over Z.

PROOF Let f (x) [ Z[x] be a monic irreducible factor of Fn(x).  Because 
Fn(x) is monic and has no multiple zeros, it suffices to show that every 
zero of Fn(x) is a zero of f (x).

Since Fn(x) divides xn 2 1 in Z[x], we may write xn 2 1 5 f (x)g(x), 
where g(x) [ Z[x]. Let v be a primitive nth root of unity that is a zero of 
f (x). Then f (x) is the minimal polynomial for v over Q. Let p be any 
prime that does not divide n. Then, by Corollary 3 of Theorem 4.2,  
v p is also a primitive nth root of unity, and therefore 0 5 (v p)n 2 1 5 
f (v p)g(v p), and so f (v p) 5 0 or g(v p) 5 0. Suppose f (v p) 2 0. Then 
g(v p) 5 0, and so v is a zero of g(x p). Thus, from Theorem 21.3, f (x) 
divides g(x p) in Q[x]. Since f (x) is monic, f (x) actually divides g(x p) 
in Z[x] (see Exercise 49 in Chapter 16). Say g(x p) 5 f (x)h(x), where 
h(x) [ Z[x]. Now let g(x), f (x), and h(x) denote the polynomials in 
Zp[x] obtained from g(x), f (x), and h(x), respectively, by reducing 
each coefficient modulo p. Since this reduction process is a ring ho-
momorphism from Z[x] to Z p[x] (see Exercise 11 in Chapter 16), we 

Table 33.1 The Cyclotomic Polynomials Fn(x) up to n 5 15
 n Fn(x)

 1 x 2 1
 2 x 1 1
 3 x2 1 x 1 1
 4 x2 1 1
 5 x4 1 x3 1 x2 1 x 1 1
 6 x2 2 x 1 1
 7 x6 1 x5 1 x4 1 x3 1 x2 1 x 1 1
 8 x4 1 1
 9 x6 1 x3 1 1
 10 x4 2 x3 1 x2 2 x 1 1
 11 x10 1 x9 1 x8 1 x7 1 x6 1 x5 1 x4 1 x3 1 x2 1 x 1 1
 12 x4 2 x2 1 1
 13 x12 1 x11 1 x10 1 x9 1 x8 1 x7 1 x6 1 x5 1 x4 1 x3 1 x2 1 x 1 1
 14 x6 2 x5 1 x4 2 x3 1 x2 2 x 1 1
 15 x8 2 x7 1 x5 2 x4 1 x3 2 x 1 1
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have g(x p) 5 f (x)h(x) in Z p[x]. From Exercise 33 in Chapter 16 and 
Corollary 5 of Theorem 7.1, we then have (g(x))p 5 g(x p) 5 f (x)h(x), 
and since Z p[x] is a unique factorization domain, it follows that g(x) 
and f (x) have an irreducible factor in Zp[x] in common; call it m(x). 
Thus, we may write f (x) 5 k1(x)m(x) and g(x) 5 k2(x)m(x), where 
k1(x), k2(x) [ Zp[x]. Then, viewing xn 2 1 as a member of Zp[x], 
we have xn 2 1 5 f (x)g(x) 5 k1(x)k2(x)(m(x))2. In particular, x n 2 1 
has a multiple zero in some extension of Z p. But because p does not 
 divide n, the derivative nxn21 of xn 2 1 is not 0, and so nxn21 and xn 2 1 
do not have a common factor of positive degree in Zp[x]. Since this 
contradicts Theorem 20.5, we must have f (v p) 5 0.

We reformulate what we have thus far proved as follows: If b is 
any primitive nth root of unity that is a zero of f (x) and p is any prime 
that does not divide n, then b p is a zero of f (x). Now let k be any inte ger 
between 1 and n that is relatively prime to n. Then we can write k 5 
p1 p2 ? ? ? pt, where each pi is a prime that does not divide n (repetitions 
are permitted). It follows then that each of v, v p1, (v p1) p2, . . . , 
(v p1 p2???pt–1) pt 5 vk is a zero of f (x). Since every zero of Fn(x) has the 
form v k, where k is between 1 and n and is relatively prime to n, we 
have proved that every zero of Fn(x) is a zero of f (x). This completes 
the proof. 

Of course, Theorems 33.3 and 33.1 give us the factorization of  
xn 2 1 as a product of irreducible polynomials over Q. But Theorem 33.1 
is also useful for finding the irreducible factorization of xn 2 1 over Zp. 
The next example provides an illustration. Irreducible factors of xn 2 1 
over Zp are used to construct error-correcting codes.

 EXAMPLE 2 We determine the irreducible factorization of x6 2 1 over Z2 
and Z3. From Table 33.1, we have x6 2 1 5 (x 2 1)(x 1 1)(x2 1  
x 1 1)(x2 2 x 1 1). Taking all the coefficients on both sides mod 2, we 
obtain the same expression, but we must check that these factors are ir-
reducible over Z2. Since x2 1 x 1 1 has no zeros in Z2, it is irreducible 
over Z2 (see Theorem 17.1). Finally, since 21 5 1 in Z2, we have the 
 irreducible factorization x6 2 1 5 (x 1 1)2(x2 1 x 1 1)2. Over Z3,  
we  again start with the factorization x6 2 1 5 (x 2 1)(x 1 1)(x2 1  
x 1 1)(x2 2 x 1 1) over Z and view the coefficients mod 3. Then 1 is  
a zero of x2 1 x 1 1 in Z3, and by long division we obtain x2 1 x 1 1 5  
(x 2 1)(x 1 2) 5 (x 1 2)2. Similarly, x2 2 x 1 1 5 (x 2 2)(x 1 1) 5  
(x 1 1)2. So, the irreducible factorization of x6 2 1 over Z3 is (x 1 1)3 ? 

(x 1 2)3. 
We next determine the Galois group of the cyclotomic extensions of Q.
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 Theorem 33.4 Gal (Q(v)/Q ^ U(n)

Let v be a primitive nth root of unity. Then Gal(Q(v)/Q) < U(n).

PROOF Since 1, v, v2, . . . , v n21 are all the nth roots of unity, Q(v) is 
the splitting field of x n 2 1 over Q. For each k in U(n), v k is a primitive 
nth root of unity, and by the lemma preceding Theorem 20.4, there is a 
field automorphism of Q(v), which we denote by fk, that carries v to 
v k and acts as the identity on Q. Moreover, these are all the automor-
phisms of Q(v), since any automorphism must map a primitive nth root 
of unity to a primitive nth root of unity. Next, observe that for  
every r, s [ U(n),

(frfs)(v) 5 fr(v
s) 5 (fr(v))s 5 (v r)s 5 v rs 5 frs(v).

This shows that the mapping from U(n) onto Gal(Q(v)/Q) given by  
k S f k is a group homomorphism. Clearly, the mapping is an isomor-
phism, since v r 2 v s when r, s [ U(n) and r 2 s. 

The next example uses Theorem 33.4 and the results of Chapter 8 to 
demonstrate how to determine the Galois group of cyclotomic extensions.

 EXAMPLE 3 Let a 5 cos(2p/9) 1 i sin(2p/9) and let b 5 cos(2p/15) 1 
i sin(2p/15). Then

Gal(Q(a)/Q) < U(9) < Z6

and

 Gal(Q(b)/Q) < U(15) < U(5) % U(3) < Z4 % Z2. 

The Constructible Regular n-gons
As an application of the theory of cyclotomic extensions and Galois 
 theory, we determine exactly which regular n-gons are constructible with 
a straightedge and compass. But first we prove a technical lemma.

 Lemma Q (cos(2pn)) # Q (v)

Let n be a positive integer and let v 5 cosA2p/nB 1 i sinA2p/nB. Then 
QAcosA2p/nBB # Q(v).

PROOF Observe that from (cos(2p/n) 1 i sin(2p/n))(cos(2p/n) 2  
i sin(2p/n)) 5 cos2(2p/n) 1 sin2(2p/n) 5 1, we have cos(2p/n) 2  
i sin(2p/n) 5 1/v. Moreover, (v 1 1/v)/2 5 (2cos( 2p/n))/2 5 
cos(2p/n). Thus, cos(2p/n) [ Q(v). 
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 Theorem 33.5 (Gauss, 1796) Constructibility Criteria for a Regular n-gon

It is possible to construct the regular n-gon with a straightedge and 
compass if and only if n has the form 2kp1p2 ? ? ? pt, where k $ 0 and 
the pi’s are distinct primes of the form 2m 1 1.

PROOF If it is possible to construct a regular n-gon, then we can construct 
the angle 2p/n and therefore the number cos(2p/n). By the results of 
Chapter 23, we know that cos(2p/n) is constructible only if [Q 
(cos(2p/n)):Q] is a power of 2. To determine when this is so, we will use 
Galois theory.

Let v 5 cos(2p/n) 1 i sin(2p/n). Then |Gal(Q(v)/Q)| 5 [Q(v):Q] 5 
f(n). By the lemma on the preceding page, Q(cos(2p/n)) # Q(v), and  
by Theorem 32.1 we know that

[Q(cos(2p/n)):Q] 5 |Gal(Q(v)/Q)|/|Gal(Q(v)/Q(cos(2p/n)))|
 5 f(n)/|Gal(Q(v)/Q(cos(2p/n)))|.

Recall that the elements s of Gal(Q(v)/Q) have the property that s(v) 5 
vk for 1 # k # n. That is, s(cos(2p/n) 1 i sin(2p/n)) 5 cos(2pk/n) 1 i 
sin(2pk/n). If such a s belongs to Gal(Q(v)/Q(cos(2p/n))), then we must 
have cos(2pk/n) 5 cos(2p/n). Clearly, this holds only when k 5 1 and k 5 
n 2 1. So, |Gal(Q(v)/Q(cos(2p/n)))| 5 2, and therefore [Q(cos(2p/
n)):Q] 5 f(n)/2. Thus, if an n-gon is constructible, then f(n)/2 must be a 
power of 2. Of course, this implies that f(n) is a power of 2.

Write n 5 2kp1
n1p2

n 2 ? ? ? pt
nt, where k $ 0, the pi’s are distinct  

odd primes, and the ni’s are positive. Then f(n) 5 |U(n)| 5 
|U(2k)||U( p1

n1)||U( p2
n2)| ? ? ? |U( pt

nt)| 5 2k21p1
n121( p1 2 1)p2

n221 

( p2 2 1)? ? ? pt
n t21( pt 2 1) must be a power of 2. Clearly, this implies 

that each ni 5 1 and each pi 2 1 is a power of 2. This completes the 
proof that the condition in the statement is necessary.

To prove that the condition given in Theorem 33.5 is also sufficient, 
suppose that n has the form 2kp1p2 ? ? ? pt, where the pi’s are distinct odd 
primes of the form 2m 1 1, and let v 5 cos(2p/n) 1 i sin(2p/n). By 
Theorem 33.3, Q(v) is a splitting field of an irreducible polynomial over 
Q, and therefore, by the Fundamental Theorem of Galois Theory, f(n) 5 
[Q(v):Q] 5 |Gal(Q(v)/Q)|. Since f(n) is a power of 2 and Gal(Q(v)/Q) 
is an Abelian group, it follows by induction (see Exercise 15) that there 
is a series of subgroups

H0 , H1 , ? ? ? , Ht 5 Gal(Q(v)/Q),

where H0 is the identity, H1 is the subgroup of Gal(Q(v)/Q) of order 2 
that fixes cos(2p/n), and |Hi11:Hi| 5 2 for i 5 0, 1, 2, . . . , t 2 1. By the 
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Fundamental Theorem of Galois Theory, we then have a series of sub-
fields of the real numbers

Q 5 EHt
 , EHt–1

 , ? ? ? , EH1
 5 Q(cos(2p/n)),

where [EHi21
:EHi

] 5 2. So, for each i, we may choose bi [ EHi21
 such

that EHi21
 5 EHi

(bi). Then bi is a zero of a polynomial of the form  
x 2 1 bi x 1 ci [ EHi

[x], and it follows that EHi21
 5 EHi

(2b2
i � 4ci). 

Thus, it follows from Exercise 3 in Chapter 23 that every element of 
Q(cos(2p/n)) is constructible. 

It is interesting to note that Gauss did not use Galois theory in his 
proof. In fact, Gauss gave his proof 15 years before Galois was born.

Some authors write the expression 2m 1 1 in the statement of Theo-
rem 33.5 in the form 22k

 1 1. These expressions are equivalent since if a 
prime p . 2 can be written in the form 2m 1 1 then m must be a power 
of 2 (see Exercise 21).

Exercises

Difficulties should act as a tonic. They should spur us to greater exertion.
B. C. Forbes

  1. Determine the minimal polynomial for cos(p/3) 1 i sin(p/3) over Q.
  2. Factor x12 2 1 as a product of irreducible polynomials over Z.
  3. Factor x8 2 1 as a product of irreducible polynomials over Z2, Z3,  

and Z5.
  4. For any n . 1, prove that the sum of all the nth roots of unity is 0.
  5. For any n . 1, prove that the product of the nth roots of unity is 

(21)n11.
  6. Let v be a primitive 12th root of unity over Q. Find the minimal 

polynomial for v4 over Q.
  7. Let F be a finite extension of Q. Prove that there are only a finite 

number of roots of unity in F.
  8. For any n . 1, prove that the irreducible factorization over Z of 

xn21 1 xn22 1 ? ? ? 1 x 1 1 is PFd (x), where the product runs over 
all positive divisors d of n greater than 1.

  9. If 2n 1 1 is prime for some n $ 1, prove that n is a power of 2. 
(Primes of the form 2n 1 1 are called Fermat primes.)

 10. Prove that Fn(0) 5 1 for all n . 1.

554 Special Topics
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 11. Prove that if a field contains the nth roots of unity for n odd, then it 
also contains the 2nth roots of unity.

 12. Let m and n be relatively prime positive integers. Prove that the 
splitting field of xmn 2 1 over Q is the same as the splitting field of 
(xm 2 1)(xn 2 1) over Q.

 13. Prove that F2n(x) 5 Fn(2x) for all odd integers n . 1.
 14. Prove that if p is a prime and k is a positive integer, then Fpk(x) 5 

Fp(x
p k 21). Use this to find F8(x) and F27(x).

 15. Prove the assertion made in the proof of Theorem 33.5 that there ex-
ists a series of subgroups H0 , H1 , ? ? ? , Ht with |Hi11:Hi| 5 2 for 
i 5 0, 1, 2, . . . , t 2 1. (This exercise is referred to in this chapter.)

 16. Prove that x9 2 1 and x7 2 1 have isomorphic Galois groups over Q. 
(See Exercise 7 in Chapter 32 for the definition.)

 17. Let p be a prime that does not divide n. Prove that Fpn(x) 5  
Fn(x

p)/Fn(x).
 18. Prove that the Galois groups of x10 2 1 and x 8 2 1 over Q are not  

isomorphic.
 19. Let E be the splitting field of x 5 2 1 over Q. Show that there is a 

unique field K with the property that Q , K , E.
 20. Let E be the splitting field of x 6 2 1 over Q. Show that there is no 

field K with the property that Q , K , E.
 21. If p . 2 is a prime of the form 2m 1 1, prove that m is a power of 2.
 22. Let v 5 cos(2p/15) 2 i sin(2p/15). Find the three elements of 

Gal(Q(v)/Q) of order 2.

Computer Exercises

Computer exercises for this chapter are available at the website:

http://www.d.umn.edu/~jgallian
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He [Gauss] lives everywhere in 
 mathematics.

e. t. bell, Men of Mathematics

Carl Friedrich Gauss, considered by many 
to be the greatest mathematician who has ever 
lived, was born in Brunswick, Germany, on 
April 30, 1777. While still a teenager, he made 
many fundamental discoveries. Among these 
were the method of “least squares” for han-
dling statistical data, and a proof that a   
17-sided regular polygon can be constructed 
with a straightedge and compass (this result 
was the first of its kind since discoveries by the 
Greeks 2000 years earlier). In his Ph.D. dis-
sertation in 1799, he proved the Fundamental 
Theorem of Algebra.

Throughout his life, Gauss largely ig-
nored the work of his contemporaries and, in 
fact, made enemies of many of them. Young 
mathematicians who sought encouragement 

from him were usually rebuffed. Despite this 
fact, Gauss had many outstanding students, 
including Eisenstein, Riemann, Kummer, 
Dirichlet, and Dedekind.

Gauss died in Göttingen at the age of 77 
on February 23, 1855. At Brunswick, there 
is a statue of him. Appropriately, the base is 
in the shape of a 17-point star. In 1989, 
Germany issued a bank note (see page 117) 
depicting Gauss and the Gaussian distribu-
tion.

To find more information about Gauss, 
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/

Carl Friedrich Gauss
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We are watching him [Bhargava] very 
closely. He is going to be a superstar.
He’s amazingly mature mathematically.
He is changing the subject in a  fundamental 
way.

peter sarnak

Manjul Bhargava was born in Canada on 
August 8, 1974, and grew up in Long Island, 
New York. After graduating from Harvard in 
1996, Bhargava went to Princeton to pursue 
his Ph.D. under the direction of Andrew 
Wiles (see biography after Chapter 18). 
Bhargava investigated a “composition law” 
first formulated by Gauss in 1801 for com-
bining two quadratic equations (equations in 
a form such as x2 1 3xy 1 6y2 5 0) in a way 
that was very different from normal addition 
and revealed a lot of information about num-
ber systems. Bhargava tackled an aspect of 
the problem in which no progress had been 
made in more than 200 years. He not only 
broke new ground in that area but also dis-
covered 13 more composition laws and de-
veloped a  coherent mathematical framework 
to explain them. He then applied his theory 
of composition to solve a number of funda-
mental  problems concerning the distribu-
tion of  extension fields of the rational num-
bers and of other, related algebraic objects. 
What made Bhargava’s work especially re-
markable is that he was able to explain all 
his revolutionary ideas using only elemen-
tary mathematics. In commenting on 
Bhargava’s results, Wiles said, “He did it in 
a way that Gauss himself could have under-
stood and appreciated.”

Among Bhargava’s many awards are the 
Blumenthal Award for the Advancement of 
Research in Pure Mathematics, the SASTRA 
Ramanujan Prize, the Cole Prize in number 
theory (see page 415), the Fermat Prize, the 
Infosys Prize, election to the National Academy 
of Sciences, and the Fields Medal (see page 
414). In 2002 he was named one of Popular 
Science magazine’s “Brilliant 10,” in celebra-
tion of scientists who are shaking up their fields.

In addition to doing mathematics, 
Bhargava is an accomplished tabla player 
who has studied with the world’s most 
 distinguished tabla masters. He performs  
 extensively in the New York and Boston 
areas. To hear him play the tabla, visit 

http://www.npr.org/templates/story/ 
story.php?storyId=4111253

To find more  information about Bhargava, 
visit 

http://www.wikipedia.org 

and

http:// www.d.umn.edu/~jgallian/ 
manjulMH4.pdf
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Selected Answers

Failures, repeated failures, are finger posts on the road to achieve-
ment. One fails forward toward success.

C. S. Lewis

For some exercises only partial answers are provided. Many of the 
proofs given below are merely sketches. In these cases, the student 
should supply the complete proof.

Chapter 0

In short, if we adhere to the standard of perfec-
tion in all our endeavors, we are left with nothing 
but mathematics and the White Album.

daniel gilbert, 
Stumbling on Happiness

 1. {1, 2, 3, 4}; {1, 3, 5, 7}; {1, 5, 7, 11}; {1, 3, 
7, 9, 11, 13, 17, 19}; {1, 2, 3, 4, 6, 7, 8, 9, 
11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24}

  3. 12, 2, 2, 10, 1, 0, 4, 5
  5. By using 0 as an exponent if necessary, we 

may write a 5 p1
m1 . . . pk

mk and b 5 p1
n1 . . . 

pk
nk, where the p’s are distinct primes and the 

m’s and n’s are nonnegative. Then lcm(a, b) 5  
p1

s1 . . . pk
sk, where si 5 max(mi, ni), and 

gcd(a, b) 5 p1
t1 . . . pk

tk, where ti 5 min(mi, 
ni). Then lcm(a, b) ? gcd(a, b) 5 p1

m11n1 . . . 
pk

mk1nk 5 ab.
  7. Write a 5 nq1 1 r1 and b 5 nq2 1 r2, where 

0 # r1, r2 , n. We may assume that r1 $ r2. 
Then a 2 b 5 n(q1 2 q2) 1 (r1 2 r2), where 
r1 2 r2 $ 0. If a mod n 5 b mod n, then r1 5 
r2 and n  divides a 2 b. If n divides a 2 b, 
then by the uniqueness of the remainder, we 
have r1 2 r2 5 0.

  9. Use Exercise 7.
 11. Use Theorem 0.2.
 13. By Theorem 0.2 there are integers s and t such 

that ms 1 nt 5 1. Then m(sr) 1 n(tr) 5 r.

 15. Let p be a prime greater than 3. By the 
 division algorithm, we can write p in the 
form 6n 1 r, where r satisfies 0 # r , 6. 
Now  observe that 6n, 6n 1 2, 6n 1 3, and 
6n 1 4 are not prime.

 17. Since st divides a 2 b, both s and t divide  
a 2 b. The converse is true when gcd(s, t) 5 1.

 19. Use Euclid’s Lemma and the Fundamental 
Theorem of Arithmetic.

 21. Use proof by contradiction.

 23. � 30
41

�
�17
41  i

 25. x NAND y is 1 if and only if both inputs are 
0; x XNOR y is 1 if and only if both inputs 
are the same.

 27. Let S be a set with n 1 1 elements and pick 
some a in S. By induction, S has 2n subsets 
that do not contain a. But there is a one-to-
one correspondence between the subsets of S 
that do not contain a and those that do. So, 
there are 2 ? 2n 5 2n11 subsets in all.

 29. Consider n 5 200! 1 2.
 31. Say p1p2 

. . . pr 5 q1q2 
. . . qs, where the p’s 

and q’s are primes. By the Generalized 
 Euclid’s Lemma, p1 divides some qi, say q1 
(we may relabel the q’s if necessary). Then 
p1 5 q1 and p2 

. . . pr 5 q2 
. . . qs. Repeating 

this argument at each step, we obtain p2 5 
q2, . . . , pr 5 qr and r 5 s.

A1
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 33. Suppose that S is a set that contains a and 
whenever n $ a belongs to S, then n 1 1 [ S. 
We must prove that S contains all integers 
greater than or equal to a. Let T be the set of 
all integers greater than a that are not in S and 
suppose that T is not empty. Let b be the 
smallest integer in T (if T has no negative 
 integers, b exists because of the Well Ordering 
Principle; if T has negative integers, it can 
have only a finite number of them so that  
there is a smallest one). Then b 2 1 [ S, and 
therefore b 5 (b 2 1) 1 1 [ S.

 35. For n 5 1, observe that 13 1 23 1 33 5 36. 
Assume that n3 1 (n 1 1)3 + (n 1 2)3 5 9m 
for some integer m. We must prove that (n 1 
1)3 1 (n 1 2)3 1 (n 1 3)3 is a multiple of 9. 
Using the induction  hypothesis we have that 
(n 1 1)3 1 (n 1 2)3 1 (n 1 3)3 5 9m 2 n3 1 
(n 1 3)3 5 9m 2 n3 1 n3 1 3 ? n2 ? 3 1 3 ? n 
? 9 1 33 5 9m 1 9n2 1 27n 1 27.

 37. The statement is true for any divisor of  
83 2 4 5 508.

 39. 6 p.m.
 41. Observe that the number with the decimal rep-

resentation a9a8 . . . a1a0 is a9 ? 109 1 a8 ? 108 
1 . . . 1 a1 ? 10 1 a0. Then use Exercise 9 
and the fact that ai10i mod 9 5 ai mod 9 to de-
duce that the check digit is (a9 1 a8 1 . . . 1 
a1 1 a0) mod 9.

 43. For the case in which the check digit is not 
involved, see the answer to Exercise 41. If a 
transposition involving the check digit c 5 
(a1 1 a2 1 . . . 1 a10) mod 9 goes unde-
tected, then a10 5 (a1 1 a2 1 . . . 1 a9 1 c) 
mod 9. Substitution yields 2(a1 1 a2 1 . . . 
1 a9 ) mod 9 5 0. Therefore, modulo 9, we 
have 10(a1 1 a2 1 . . . 1 a9) 5 a1 1 a2 
1 . . . 1 a9 5 0. It follows that c 5 a10. In 
this case the transposition does not yield an 
error.

 45. Say the number is a8a7 . . . a1a0 5 a8 ? 108 1 
a7 ? 107 1 . . . 1 a1 ? 10 1 a0. Then the error 
is  undetected if and only if (ai10i 2 ai910i) 
mod 7 5 0. Multiplying both sides by 5i and 
noting that 50 mod 75 1, we  obtain (ai 2 ai9) 
mod 7 5 0.

 47. 4
 51. Cases where (2a 2 b 2 c) mod 11 5 0 are 

undetected.
 53. The check digit would be the same.
 55. 4302311568

 57. 2.  Since b is  one- to- one, b(a (a1)) 5 
b(a (a2)) implies that a (a1) 5 a (a2); and 
since a is  one- to- one, a1 5 a2.

  3.  Let c [ C. There is a b in B such that b(b) 
5 c and an a in A such that a(a) 5 b. Thus, 
(ba)(a) 5 b(a(a)) 5 b(b) 5 c.

  4.  Since a is  one- to- one and onto, we may 
define a21(x) 5 y if and only if a( y) 5 x. 
Then a21(a(a)) 5 a and a(a21(b)) 5 b.

 59. No. (1, 0) [ R and (0, 21) [ R, but (1, 21) 
o R.

 61. a belongs to the same subset as a. If a and b 
belong to the subset A, then b and a also 
 belong to A. If a and b belong to the subset 
A and b and c belong to the subset B, then  
A 5 B, since the  distinct subsets of P are 
disjoint. So, a and c belong to A.

 63. The last digit of 3100 is the value of 3100 mod 
10. Observe that 3100 mod 10 is the same as  
((34 mod 10)25 mod 10 and 34 mod 10 5 1. 
Similarly, the last digit of 2100 is the value of 
2100 mod 10. Observe that 25 mod 10 5 2 so 
that 2100 mod 10 is the same as (25 mod 10)20 
mod 10 5 220 mod 10 5 (25)4 mod 10 5 24 
mod 10 5 6.

 65. Apply g�1 to both sides of ag � bg.

Chapter 1

When solving problems, dig at the roots instead 
of just hacking at the leaves.  

anthony j. d’angelo,  
The College Blue Book

  1. Three rotations—08, 1208, 2408—and three 
 reflections across lines from vertices to 
 midpoints of opposite sides. See the back in-
side cover for a picture.

  3. a. V  b. R270  c. R0  d. R0, R180, H, V, 
D,  D9 e. none

  5. Dn has n rotations of the form k(3608/n), 
where k 5 0, . . . , n 2 1. In addition, Dn has 
n reflections. When n is odd, the axes of 
 reflection are the lines from the vertices to the 
midpoints of the opposite sides. When n is 
even, half of the axes of reflection are 
 obtained by joining  opposite vertices; the other 
half, by joining midpoints of opposite sides.

  7. A rotation followed by a rotation either fixes 
every point (and so is the identity) or fixes 
only the center of rotation. However, a 
 reflection fixes a line.

A2 Selected Answers
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  9. Observe that 1 ? 1 5 1; 1(21) 5 21; (21)1 
5 21; (21)(21) 5 1. These  relationships 
also hold when 1 is replaced by “rotation” 
and 21 is replaced by “reflection.”

 11. Thinking geometrically and observing that 
even powers of elements of a dihedral group 
do not change orientation, we note that each 
of a, b and c appears an even number of times 
in the expression. So, there is no change in 
orientation. Thus, the expression is a rotation.

 13. In D4, HD 5 DV but H 2 V.
 15. R0, R180, H, V
 17. See answer for Exercise 15.
 19. In each case, the group is D6.
 21. First observe that squaring R0, R180 or any 

reflection gives R0 and squaring R90 or R270 
gives R180. Thus X2Y 5 Y or X2Y 5 R180Y. 
Since Y Z R90 we have X2Y 5 R180Y and X2Y 
5 R90. Thus R180Y 5 R90. Solving for Y 
gives Y � R270.

 23. 1808 rotational symmetry
 25. Their only symmetry is the identity.

Chapter 2

There are no secrets to success. It is the result of 
preparation, hard work, and learning from failure.

colin powell

  1. c, d
  3. none
  5. 7; 13; n 2 1; 

3

13
�

2

13
 i

  7. Does not contain the identity; closure fails.
  9. Under multiplication modulo 4, 2 does not 

have an inverse. Under multiplication modulo 
5, each element has an  inverse.

 11. a11, a6, a4, a.
 13. a. 2a 1 3b b. 22a 1 2(2b 1 c) c. 23(a 

1 2b) 1 2c 5 0
 15. Observe that a5 � e implies that a�2 � a3 

and b7 � e implies that b14 � e and therefore 
b�11 � b3. Thus, a�2b�11 � a3b3. Moreover, 
1a2b42�2 � 1 1a2b42�122 � 1b�4a�222 �
1b3a322 � b3a3b3a3.

 17. Since the inverse of an element in G is in G, 
H 8 G. Let g belong to G. Then g21 belongs 
to H and therefore (g21)21 5 g belongs to 
G. So, G 8 H.

 19. Use the fact that det (AB) 5 (det A)(det B).
 21. 29

 23. For n $ 0, use induction. For n , 0, note 
that e 5 (ab)0 5 (ab)n(ab)2n 5 (ab)na2nb2n 
so that anbn 5 (ab)n. In a non-Abelian group 
(ab)n need not equal anbn.

 25. Use the Socks–Shoes Property.
 27. For the case n . 0, use induction. For  

n , 0, note that e 5 (a21ba)n(a21ba)2n 5 
(a21ba)n (a21b2na) and solve for (a21ba)n.

 29. {1, 3, 5, 9, 13, 15, 19, 23, 25, 27, 39, 45}
 31. Suppose x appears in a row labeled with a 

twice; say, x 5 ab and x 5 ac. Then cancel-
lation yields b 5 c. But we use distinct 
 elements to label the columns.

 33. Use Exercise 31.
 35. a21cb21; aca21

 37. If x3 5 e and x 2 e, then (x21)3 5 e and  
x 2 x21. So nonidentity solutions come in 
pairs. If x2 2 e, then x21 2 x and (x21)2 2 e. 
So solutions to x2 2 e come in pairs.

 39. Observe that aa21b 5 ba21a.
 41. If F1F2 5 R0, then F1F1 5 F1F2 and by can-

cellation F1 5 F2.
 43. Since FRk is a reflection we know that (FRk)

(FRk) 5 R0. So Rk FRk 5 F21 5 F.
 45. a. R3 b. R c. R5F
 47. Since a2 5 b2 5 (ab)2 5 e, we have aabb 5 

abab. Now cancel on the left and right.

 49. The matrix c a b

c d
d  is in GL(2, Z2) if and

  only if ad Z bc. This happens when a and d 
are 1 and at least 1 of b and c is 0, and when 
b and c are 1 and at least 1 of a and d is 0.

  c 1 1

0 1
d  and c 1 0

1 1
d  do not commute.

 51. Let a be any element in G and write x 5 ea. 
Then a21x 5 a21(ea) 5 (a21e)a 5 a21a 5 e. 
Then solving for x we obtain x 5 ae 5 a.

Chapter 3

Success is the ability to go from one failure to 
another with no loss of enthusiasm.

sir winston churchill

  1. |Z12| 5 12; |U(10)| 5 4; |U(12)| 5 4; 
|U(20)| 5 8; |D4| 5 8

  In Z12, |0| 5 1; |1| 5 |5| 5 |7| 5 |11| 5 12; 
|2| 5 |10| 5 6; |3| 5 |9| 5 4; |4| 5 |8| 5 3; 
|6| 5 2.

  In U(10), |1| 5 1; |3| 5 |7| 5 4; |9| 5 2.

A3Selected Answers
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  In U(12), |1| 5 1; |5| 5 2; |7| 5 2; |11| 5 2.
  In U(20), |1| 5 1; |3| 5 |7| 5 |13| 5 |17| 5 

4; |9| 5 |11| 5 |19| 5 2.
  In D4, |R0| 5 1; |R90| 5 |R270| 5 4; |R180| 5 

|H| 5 |V| 5 |D| 5 |D9| 5 2.
  In each case, notice that the order of the 

 element divides the order of the group.
  3. In Q, |0| 5 1 and all other elements have 

 infinite order. In Q*, |1| 5 1, |21| 5 2, and 
all other elements have infinite order.

  5. Each is the inverse of the other.
  7. (a4c22b4)21 5 b24c2a24 5 b3c2a2

  9. D4; D4; it contains {R0, R180, H, V}
 11. If n is a positive integer, the real solutions of 

xn 5 1 are 1 when n is odd and 61 when  
n is even. So, the only elements of finite  
order in R* are 61.

 13. By Exercise 27 of Chapter 2 we have 
e � 1xax�12n � xanx�1 if and only if 
an � e.

 15. Suppose G �Hh K . Pick h [ H with  
h o k. Pick k [ K  with k o H. Then, 
hk [ G but hk o H and hk o K. U(8) 5 
{1,3} h {1,5} h {1,7}.

 17. U4(20) 5 {1, 9, 13, 17}; U5(20) 5 {1, 11}; 
U5(30) 5 {1, 11}; U10(30) 5 {1, 11}. To 
prove that Uk(n) is a subgroup, it suffices to 
show that it is closed. Suppose that a and b 
 belong to Uk(n). We must show that in U(n), ab 
mod k 5 1. That is, (ab mod n) mod k 5 1. Let 
n 5 kt and ab 5 qn 1 r where 0 # r , n. 
Then (ab mod n) mod k 5 r mod k 5  
(ab 2 qn) mod k 5 (ab 2 qkt) mod k 5 ab 
mod k 5 (a mod k)(b mod k) 5 1 ? 1 5 1. H is 
not a subgroup because 7 [ H but 7 ? 7 5 9 is 
not 1 mod 3.

 19. Suppose that m 6 n and am � an. Then 
e � ana�m � an�m. This contradicts the 
 assumption that a has infinite order.

 21. If a has infinite order, then e, a, a2, . . . are 
all distinct and belong to G, so G is infinite.  
If |a| 5 n, then e, a, a2, . . . , an 2 1 are 
 distinct and belong to G.

 23. By brute force, show that k4 5 1 for all k.
 25. By Exercise 24, either every element  

of H  is even or exactly half are even.  
Since H  has odd order the latter cannot  
occur.

 27. By Exercise 26, either every element of H  is 
a rotation or exactly half are rotations. Since 
H has odd order the latter cannot occur.

 29. Since n is even, Dn contains R180. Let F be 
any reflection in Dn. Then the set {R0, R180, 
F, R180F} is closed and therefore is a sub-
group of Dn.

 31. k2l, k3l, k6l
 33. Suppose that H is a subgroup of D3 of  order 4. 

Since D3 has only two elements of order 2, H 
must contain R120 or R240. By closure, it fol-
lows that H must contain R0, R1 2 0 , and R240 
as well as some reflection F. But then H must 
also contain the reflection R120F.

 35. If x [ Z(G), then x [ C(a) for all a, so x [ 
>a[G C(a). If x [ >a[G C(a), then xa 5 ax 
for all a in G, so x [ Z(G).

 37. The case that k � 0 is trivial. Let x [ C1a2. 
If k is positive, then by induction on k, 
xak�1 � xaak� axak � aakx � ak�1x. The 
case where k is negative now follows from 
Exercise 34. In a group, if x commutes with 
a, then x commutes with all powers of a. If x 
commutes with ak for some k, then x need 
not commute with a.

 39.  In Z6, H 5 {0,1,3,5} is not closed.
 41. a.  First observe that because kSl is a sub-

group of G containing S, it is a member 
of the intersection. So, H 8 kSl. On the 
other hand, since H is a subgroup of G 
and H contains S, by definition kSl 8 H.

  b.  Let K 5 {s1
n1 s2

n2 … sm
nm | m $ 1, si [ S,  

ni [ Z}. Then because K satisfies the 
subgroup test and contains S, we have  
kSl 8 K. On the other hand, if L is any 
subgroup of G that contains S, then L 
also contains K by closure. Thus, by part 
a, H 5 kSl contains K.

 43. Mimic the proof of Theorem 3.5.
 45. No. In D4 , C1R1802 � D4 . Yes. Elements in 

the center commute with all elements.
 47. For the first part, see Example 4. For the 

second part, use D4.
 49. Let G be a group of even order. Observe that 

for each element x of order greater than 2 x 
and x�1are distinct elements of the same 
 order. So, because elements of order greater 
than 2 come in pairs, there is an even 
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 number of elements of order greater than 2 
( possibly 0). This means that the number of 
elements of order 1 or 2 is even. Since the 
identity is the unique element of order 1, it 
follows that the number of order 2 is odd.

 51. First observe that (ad)n/d 5 an 5 e, so 0ad 0  is 
at most n/d. Moreover, there is no positive 
integer t , n/d such that 1ad2t � adt � e, for 
otherwise |a| Z n.

 53. Note that c 1 1

0 1
d

n

� c 1 n

0 1
d .

55. For any positive integer n, a rotation of 3608/n 
has order n. A rotation of 22° has infinite order.

 57. Inscribe a regular n-gon in a circle. Then  every 
element of Dn  is a symmetry of the  circle.

 59. Let |g| 5 m and write m 5 nq 1 r, where  
0 # r , n. Then gr 5 gm2nq  5 gm(gn)2q 5 
(gn)2q belongs to H. So, r 5 0.

 61. 1 [ H. Let a, b [ H. Then (ab21)2 5 a2(b2)21, 
which is the product of two rationals. 2 can be 
 replaced by any positive integer.

 63. {1,9,11,19}

 65. Let c a b

c d
d  and c a� b�

c� d�
d
 
belong to H. It 

  suffices to show that a 2 a9 1 b 2 b9 1  
c 2 c9 1 d 2 d9 5 0. This follows from a 1 
b 1 c 1 d 5 0 5 a9 1 b9 1 c9 1 d9. If 0 is 
replaced by 1, H is not a subgroup.

 67. If 2a and 2b [ K, then 2a(2b)21 5 2a2b [ K, 
since a 2 b [ H.

 69. c
2 0

0 2
d

�1

� c
1
2 0

0 1
2

d  is not in H.

 71. If a 1 bi and c 1 di [ H, then (a 1 bi) (c 1 
di)21 5 (ac 1 bd) 1 (bc 2 ad)i and (ac 1 
bd)2 1 (bc 2 ad)2 5 1, so that H is a sub-
group. H is the unit circle in the complex plane.

 73. Since ee 5 e is in HZ(G), it is nonempty. 
Let h1z1 and h2z2 belong to HZ(G). Then 
h1z1(h2z2)

21 5 h1z1z2
21h2

21 5 h1h2
21z1z2

21 
[ HZ (G).

 75. Use Exercise 74.
 77. Use Theorem 0.2.

Chapter 4

A mistake is to commit a misunderstanding
bob dylan

  1. For Z6, generators are 1 and 5; for Z8, gener-
ators are 1, 3, 5, and 7; for Z20, generators 
are 1, 3, 7, 9, 11, 13, 17, and 19.

  3. k20l 5 {20, 10, 0}; k10l 5 {10, 20, 0};  
ka20l 5 {a20, a10, a0}; ka10l 5 {a10, a20, a0]

  5. k3l 5 {3, 9, 7, 1}; k7l 5 {7, 9, 3, 1}
  7. U(8) or D3
  9. Six subgroups; generators are the divisors of 

20. Six subgroups; generators are ak, where 
k is a divisor of 20. 

 11. By definition, a�1 [ kal. So, ka�1l 8 kal. 
By definition, a � 1a�12�1

 [ ka�1l. So, 
kal 8 ka�1l.

 13. k21l > k10l 5 k18l 5 k6l In the general case 

kaml >  kanl � kakl, where k 5 lcm  

(m, n) mod 24.
 15. |g| divides 12 is equivalent to g12 � e . So, if 

a12 � e  and b12 � e , then 
1ab�1212 � a121b122�1 � ee�1 � e. The 
same argument works when 12 is replaced 
by any integer (see Exercise 47 of 
Chapter 3).

 17. |a| is infinite or |a| is finite and gcd(|a|,2) = 
gcd(|a|,12)

 19. one
 21. a. |a| divides 12. b. |a| divides m. c. By 

 Theorem 4.3, |a| 5 1, 2, 3, 4, 6, 8, 12, or 24. 
If |a| 5 2, then a8 5 (a2)4 5 e4 5 e. A 
 similar argument eliminates all other 
 possibilities except 24.

 23. Yes, by Theorem 4.3. The subgroups of Z are 
of the form knl � {0, 6n, 62n, 63n, . . .}, n 
5 0, 1, 2, 3, . . . . The subgroups of kal are of 
the form kanl for n 5 0, 1, 2, 3, . . . .

 25. For the first part, apply Theorem 4.3 to the 
subgroup of rotations; Dn has n elements of 
order 2 when n is odd and n 1 1 elements of 
order 2 when n is even.

 27. See Example 15 of Chapter 2.
 29. 1000000, 3000000, 5000000, 7000000; by 

Theorem 4.3, k1000000l is the unique sub-
group of order 8, and only those on the list 
are generators. a1000000, a3000000, a5000000, 
a7000000; by Theorem 4.3, ka1000000l is the 
unique subgroup of order 8, and only those 
on the list are generators.

 31. Let G 5 {a1, a2, . . . , ak}. Now let |ai| 5 ni. 
Consider n 5 n1n2 

. . . nk.
 33. The lattice is a vertical line with successive 

terms from top to bottom kp0l, kp1l, kp2l, . . ., 
kpn21l, k0l.

 35. Suppose that a/b generates are positive 
 rationals under multiplication. Because 
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ka/bl � k1a/b2�1l � kb/al we may assume 
that 1 6 a/b. Then from 1 , a / b , (a / b)2 , 
(a / b)3 , . . ., we see that ka/bl  does not con-
tain any rational number k strictly between 
a/b and (a/b)2.

 37. For 6, use Z25. For n, use Z2n21.
 39. Suppose that |ab| � n. Then 1ab2n � e  im-

plies that bn � a�n[kal, which is finite. 
Thus bn � e.

 41. 50; 104
 43. all divisors of 60
 45. The argument given in the proof of the cor-

ollary to Theorem 4.4 shows that in an infi-
nite group, the number of elements of finite 
order n is a multiple of f(n) or there is an 
infinite number of elements of order n.

 47. It follows from Example 15 in Chapter 2 
and Example 12 in Chapter 0 that the group  
H 5 kcos(3608Yn) 1 i sin(3608Yn)l is a 
 cyclic group of order n and every member of 
this group satisfies xn 2 1 5 0. Moreover, 
since every element of order n satisfies  
xn 2 1 5 0 and there can be at most n  such 
elements, all complex numbers of order n 
are in H. Thus, by Theorem 4.4, C* has 
 exactly f(n) elements of order n.

 49. Let x [ Z(G) and |x| 5 p where p is prime. 
Say y [ G with |y| 5 q where q is prime. 
Then (xy)pq 5 e  and therefore |xy| 5 1, p, 
or q. If |xy| 5 1, then p 5 q. If |xy| 5 p, 
then e 5 (xy)p 5 yp and q divides p. Thus, q 
5 p. A similar argument applies if |xy| 5 q.

 51. An infinite cyclic group does not have an 
 element of prime order. A finite cyclic group 
can have only one subgroup for each divisor 
of its order. A subgroup of order p has 
 exactly p 2 1 elements of order p. Another 
element of order p would give another 
 subgroup of order p.

 53. 1 ? 4, 3 ? 4, 7 ? 4, 9 ? 4; x4, 1x423, 1x427, 1x429
 55. 1 of order 1; 33 of order 2; 2 of order 3; 10 

of order 11; 20 of order 33
 57. 1, 2, 10, 20. In general, if an Abelian group 

contains cyclic subgroups of order m and n 
where m and n are relatively prime, then it 
contains subgroups of order d for each divi-
sor d of mn.

 59. Say a and b are distinct elements of order 2. 
If a and b commute, then ab is a third ele-
ment of order 2. If a and b do not commute, 
then aba is a third element of order 2.

 61. Use Exercise 34 of Chapter 3 and Theorem 4.3.
 63. 1 and 2
 65. Observe that among the integers from 1 to 

pn, the pn21 integers p, 2p, 3p, . . . , pn21p are 
 exactly the ones that are not relatively prime 
to p.

 67. 12 or 60; 48
 69. 3; 2; 6
 71. Since 1ab280 � 1a52161b1625 � ee � e we 

know that |ab| divides 80. The two cases |ab| 
divides 16 and |ab| divides 40 both lead to a 
contradiction. So |ab| � 80.

 73. 54: 16; 48
 75. Since m and n are relatively prime, it suffices 

to show both m and n divide k. By Corollary 
2 of Theorem 4.1, it is enough to show that 
ak � e. Note that ak [ kal >  kbl, and since 
kal >  kbl is a subgroup of both kal and kbl, 
we know that 0 kal >  kbl 0  must divide both 
0 kal 0  and 0 kbl 0 . Thus, 0 kal >  kbl 0  5 1.

 77. First note that x ? e. If x3 � x5, then 
x2 � e. By Corollary 2 Theorem 4.1 and 
Theorem 4.3 we then have |x| divides both 2 
and 15. Thus |x| � 1 and x � e. If x3 � x9, 
then x6 � e and therefore |x| divides 6 and 
15. This implies that |x| � 3. Then 
|x13| � |x1x324| � |x| � 3. If x5 � x9, then 
x4 � e and |x| divides both 4 and 15, and 
therefore x � e.

Chapter 5

Mistakes are often the best teachers.
james a. froude

  1. a. a21 5 c 1 2 3 4 5 6

2 1 3 5 4 6
d   

  b.  

ba � c 1 2 3 4 5 6

1 6 2 3 4 5
d

  c.   
ab � c 1 2 3 4 5 6

6 2 1 5 3 4
d

  3. a. (15)(234)  b. (124)(35)(6)  c. (1423)
  5. a. 3  b. 12  c. 6  d. 6  e. 12  f. 2
  7. 12
  9. For S6, the possible orders are 1, 2, 3, 4, 5, 6; 

for A6, 1, 2, 3, 4, 5; for A7, 1, 2, 3, 4, 5, 6, 7.
 11. (12345)(678)(9,10)(11,12)
 13. Let a(x1) 5 a(x2). Then x1 5 a(a(x1)) 5 

a(a(x2)) 5 x2. For any s in S, we have 
a(a(s)) 5 s.

 15. even; odd
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 17. An even number of 2-cycles followed by an 
even number of 2-cycles gives an even 
 number of 2-cycles in all. So the Finite Sub-
group Test is verified.

 19. Suppose that a can be written as a product of 
m 2- cycles and b can be written as a product 
of n 2- cycles. Then ab can be written as a 
product of m 1 n 2- cycles. Now observe that 
m 1 n is even if and only if m and n are both 
even or both odd.

 21. the number of odd cycles in the product is 
even.

 23. Suppose H contains at least one odd permu-
tation, s. Imitate the proof of Theorem 5.7 
with s in place of (12).

 25. The identity is even; the set is not closed.
 27. (8 · 7. 6 · 5. 4 · 3 · 2 · 1)/(2 · 2 · 2 · 2 · 4!)
 29. 180; 75
 31. In S7, b 5 (2457136). In S9, b 5 (2457136) 

or b 5 (2457136)(89).
 33. Since |1a1a2a3a42 1a5a62| � 4 such an x  would 

have order 8. But the elements in S10 of order 8 
are 8-cycles or the disjoint product of 8- cycle 
and a 2-cycle. In both cases the square of such 
an element is the product of two 4- cycles.

 35. Let a, b [ stab(a). Then ab(a) 5 a(b(a)) 
5 a(a) 5 a. Also, a(a) 5 a implies 
a21(a(a)) 5 a21(a) or a 5 a21(a).

 37. m is a multiple of 6 but not a multiple of 30.
 39. k112342l; {(1),(12),(34),(12)(34)}.
 41. Let a 5 (123) and b 5 (145).
 43. (123)(12) 2 (12)(123) in Sn (n $ 3).
 45. The Finite Subgroup Test shows that H is a 

subgroup. |H| 5 2(n 2 2)!.
 47. Theorem 5.2 shows that disjoint cycles com-

mute. For the other half, we may assume that 
the two cycles are (ab) and (ad). Then  observe 
that (ab)(ad) 5 (adb) and (ad)(ab) 5 (abd).

 49. R0, R180, H, V
 51. The permutation corresponding to the rota-

tion of 360/n degrees, (1, 2, . . . , n), is an 
even permutation so all rotations are even.

 53. Cycle decomposition shows that any noniden-
tity element of A5 is a 5-cycle, a 3-cycle, or a 
product of a pair of disjoint 2-cycles. Then, 
observe that there are (5 ? 4 ? 3 ? 2 ? 1)/5 5 24 
group elements of the form (abcde), (5 ? 4 ? 
3)/3 5 20 group elements of the form (abc), 
and (5 ? 4 ? 3 ? 2)/(2 ? 2 ? 2) 5 15 group ele-
ments of the form (ab)(cd).

 55. If a has odd order k and a is an odd permu-
tation, then e 5 ak would be odd.

 57. Hint: (13)(12) 5 (123) and (12)(34) 5 
(324)(132).

 59. Verifying that a * s(b) 2 b * s(a) is done by 
examining all cases. To prove the  general 
case,  observe that si(a) * si11(b) 2 s i(b) * 
s i11(a) can be written in the form si(a) * 
s(si(b)) 2 si(b) * s(si(a)), which is the case 
already done. If a transposition  were not de-
tected, then s(a1) * . . . * si(ai) * si11(ai11) * 
. . . * sn(an) 5 s(a1) * . . . * si(ai11) * 
si11(ai) * . . . * sn(an), which  implies si(ai) * 
si11(ai11) 5 si(ai11) * si11(ai).

 61. By Theorem 5.4 it is enough to prove that 
 every 2-cycle can be expressed as a product of 
elements of the form (1k). To this end, observe 
that if a ? 1, b ? 1, then (ab) 5 (1a)(1b)(1a).

 63. By case-by-case analysis, H is a subgroup 
for n 5 1, 2, 3, and 4. For n $ 5, observe 
that (12)(34) and (12)(35) belong to H but 
their product does not.

 65. The product of an element of Z(A4) of order 
2 and an element of A4 of order 3 would have 
order 6. But A4 has no element of order 6.

 67. TAAKTPKSTOOPEDN

Chapter 6

Think and you won’t sink.
b. c. forbes, Epigrams

  1. Try n → 2n.
  3. f(xy) 5 2xy � 2x 2y �  f(x)f(y).
  5. Try 1 → 1, 3 → 5, 5 → 7, 7 → 11.
  7. D12 has elements of order 12 and S4 does not.
  9. Since Te(x) 5 ex 5 x for all x, Te is the 

 identity. For the second part, observe that Tg 8 
(Tg)

21 5 Te 5 Tgg21 5 Tg 8 Tg21 and cancel.

 11. 3a � 2b.
 13. For any x in the group, we have (fgfh)(x) 5 

fg(fh(x)) 5 fg(hxh21) 5 ghxh21g21 5 (gh)
x(gh)21 5 fgh(x).

 15. fR90
 and fR0

 disagree on H; fR90
 and fH 

 disagree on R90; fR90
 and fD disagree on R90. 

The remaining cases are similar.
 17. Let a [ Aut(G). We show that a21 is 

 operation-preserving: a21(xy) 5 a21(x)
a21(y) if and only if a(a21(xy)) 5 a(a21(x)
a21(y)), that is, if and only if xy 5 a(a21(x))
a(a21(y)) 5 xy. So a21 is operation- 
preserving. That Inn(G) is a group follows 
from the equation fgfh 5 fgh.

A7Selected Answers

57960_ans_ptg01_A01-A32.indd   7 10/28/15   12:41 PM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 19.  Since b 5 f(a) 5 af(1), it follows that f(1) 
5 a21b and therefore f(x) 5 a21bx. [Here 
a21 is the multiplicative inverse of a mod n, 
which exists because a [ U(n).]

 21. Note that both H and K are isomorphic to 
the group of all permutations on four sym-
bols, which is isomorphic to S4. The same is 
true when 5 is replaced by n, since both H 
and K are isomorphic to Sn21.

 23. Recall that, when n is even, Z(Dn) 5{R0, 
R180}. Since R180 and f(R180) are not the iden-
tity and belong to Z(Dn), they must be equal.

 25. Z60 contains cyclic subgroups of orders 12 
and 20, and any cyclic group that has sub-
groups or orders 12 and 20 must be divisible 
by 12 and 20. So, 60 is the smallest order of 
any cyclic group that has subgroups isomor-
phic to Z12 and Z20.

 27. See Example 15 of Chapter 2.
 29. That a is one-to-one follows from the fact 

that r21 exists modulo n. The operation-pre-
serving condition is Exercise 9 in Chapter 0.

 31. Use property 2 of Theorem 6.2.
 33. The inverse of a one-to-one function is one-

to-one. For any g [ G, we have f21(f(g)) 
5 g, and therefore f21 is onto. To verify 
that f21 is operation-preserving, see the an-
swer to Exercise 15 of this chapter.

 35. Tg(x) 5 Tg(y) if and only if gx 5 gy or x 5 
y. This shows that Tg is a one-to-one func-
tion. Let y [ G. Then Tg(g

21y) 5 y, so that 
Tg is onto.

 37. Apply the appropriate definitions.
 39. See Exercise 35 in Chapter 4.

 41. Try a 1 bi → c
a �b

b a
d .

 43. Yes, by Cayley’s Theorem.
 45. Observe that fg(y) 5 gyg21 and fzg(y) 5 

zgy(zg)21 5 zgyg21z21 5 gyg21 since z [ 
Z(G). So, fg 5 fzg.

 47. fg 5 fh implies gxg21 5 hxh21 for all x. 
This implies h21gx(h21g)21 5 x, and therefore 
h21g [ Z(G).

 49.  By Exercise 47 fa � fb implies b�1a is in 
Z1Sn2 and by Exercise 58 in Chapter 5, 
Z1Sn2 � 5e6.

 51. Since both f and g take e to itself, H is not 
empty. Assume a and b belong to H. Then 
f(ab21) 5 f(a)f(b21) 5 f(a)f(b)21 5 
g(a)g(b)21 5 g(a)g(b 21) 5 g(ab21). Thus, 
ab21 is in H.

 53. Since f(e) 5 e 5 e21, H is not empty. As-
sume that a and b belong to H. Then f(ab) 
5 f(a)f(b)  5 a21b21 5 b21a21 5 (ab)21, 
and H is closed under multiplication. More-
over, because f(a21) 5 f(a)21 5 (a21)21, 
we have that H is closed under inverses.

 55. Since � 1 is the unique element of C* of  
order 2, f1 � 12 � � 1. Since i and � i 
are the only elements of C* of order 4, 
f1i2 � i or � i.

 57. Z120, D60, S5. Z120 is Abelian, the other two 
are not. D60 has an element of order 60 and 
S5 does not.

 59. Observe that D 5 R90V and H 5 R90D.
 61. TR90

� 1R0R90R180R2702 1HD�VD2;TD 

� 1R0D2 1R90V2 1R180D� 2 1R270H2.
 63. Consider the mapping f(x) 5 x2 and note 

that 2 is not in the image.
 65. Use the fact that if a . 0, then a 5 2a2a. 

For the second part, use the first part to-
gether with the fact that the inverse of an 
automorphism is an automorphism.

 67. Say f is an isomorphism from Q to R1 and 
f takes 1 to a. It follows that the integer r 
maps to ar and the rational r/s maps to ar/s. 
But ar/s 2 ap for any r/s.

Chapter 7

Use missteps as stepping stones to deeper 
 understanding and greater achievement .

susan taylor

  1. H, 1 1 H, 2 1 H
  3. a. yes  b. yes  c. no
  5. 8/2 5 4, so there are four cosets. Let  H 5 

{1, 11}. The cosets are H, 7H, 13H, 19H.  
 7. ,a4., a,a4.
  9.  H 5 {a1, a2, a3, a4}, a5H 5 {a5, a8, a6, a7}, 

a9H 5 {a9, a11, a12, a10}. There are six left 
cosets of H is S4.

 11. Let ga belong to g(H d K), where a is in  
H d K. Then by definition ga is in gH d gK. 
Now let x [ gH d gK. Then x 5 gh for some 
h [ H, and x 5 gk for some k [ K. Cancel-
lation then gives h 5 k. Thus, x [ g(H d K).

 13. Suppose that h [ H and h , 0. Then hR1 
# hH 5 H. But hR1 is the set of all nega-
tive real numbers. Thus, H 5 R*.

15. 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
 17. Use Lagrange’s Theorem (Theorem 7.1) and 

Corollary 3.
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 19. By Exercise 18, we have 56 mod 7 5 1 . So, 
using mod 7, we have 515 5 56 ? 56 ? 52 ? 5 
5 1 ? 1 ? 4 ? 5 5 6; 713 mod 11 5 2.

 21. Use Corollary 4 of Lagrange’s Theorem 
(Theorem 7.1) together with Theorem 0.2.

 23. First observe that for all n � 3  the subgroup 
of rotations of Dn is isomorphic to Zn. If n is 
even let F be any reflection in Dn. Then the 
set {R0, R180, F, FR180} is closed and there-
fore a subgroup of order 4. Now suppose 
that Dn has a subgroup K of order 4. If K is 
cyclic then it has a rotation of order 4 and 
therefore 4 divides n. If K is not cyclic, then 
it has three elements of order 2. Since there 
is only one rotation of order 2, K must con-
tain two reflections F1 and F2. But then F1F2 
is a rotation and has order 2 so n is even.

 25. Since G has odd order, no element can have 
order 2. Thus, for each x 2 e, we know that 
x 2 x21. So, we can write the product of all 
the elements in the form ea1a1

21a2a2
21 . . . 

anan
21 5 e.

 27. Let H be the subgroup of order p and K be the 
subgroup of order q. Then H < K has p 1 q 
2 1 , pq elements. Let a be any  element in 
G that is not in H < K. By  Lagrange’s Theo-
rem, |a| 5 p, q, or pq. But |a| 2 p, for if so, 
then kal 5 H. Similarly, |a| 2 q.

 29. 1, 3, 11, 33. If some x has order 33, then 
|x11| � 3. Otherwise, use the Corollary to 
Theorem 4.4. 

 31. No. Observe that by Lagrange’s Theorem, 
the elements of a group of order 55 must 
have orders 1, 5, 11, or 55; then use the cor-
ollary of Theorem 4.4.

 33. Observe that |G:H| = |G| / |H|, |G:K| = 
|G| / |K|, and |K:H| = |K| / |H|.

 35. Since the reflections in a dihedral group 
have order 2, the generators of the subgroups 
of orders 12 and 20 must be rotations. The 
smallest rotation subgroup of a dihedral 
group that contains rotations of orders 12 
and 20 must have order divisible by 12 and 
20 and therefore must be a multiple of 60. 
So, D60 is the smallest such dihedral group.

 37. Let a have order 3 and b be an element of or-
der 3 not in kal. Then kal kbl is a subgroup of 
G of order 9. Now use Lagrange's Theorem.

 39. Since |H > K |is a common divisor of 24 
and 20 it must divide 4. But groups of  
orders 1, 2 and 4 are Abelian.

 41. Let a [ G and |a| 5 5. Then the set kalH 
has exactly 5?|H|/|kal d H| elements and 
|kal d H| divides |kal| 5 5. It follows that 
|kal d H| 5 5 and therefore kal d H 5 kal.

 43. Certainly, a [ orbG(a). Now suppose that  
c [ orbG(a) > orbG(b). Then c 5 a(a) and  
c 5 b(b) for some a and b, and therefore 
(b21a)(a) 5 b. So, if x [ orbG(b), then x 5 
g(b) 5 (gb21a)(a) for some g. This proves 
that orbG(b) # orbG(a). By symmetry, 
orbG(a) # orbG(b).

 45.  a.  stabG(1) 5 {(1), (24)(56)}; orbG(1) 5 
{1, 2, 3, 4}

  b.  stabG(3) 5 {(1), (24)(56)}; orbG(3) 5 
{3, 4, 1, 2}

  c.  stabG(5) 5 {(1), (12)(34), (13)(24), (14)
(23)}; orbG(5) 5 {5, 6}

 47. Consider the mapping from G to G defined 
by f(x) 5 x2 and let |G| 5 2k 1 1. Use the 
observation that x 5 xe 5 xx2k11 5 x2k12 5 
(x2)k11 to prove that f is one-to-one and Ex-
ercise 12 of Chapter 5 to show that f is onto.

 49. Use Theorem 7.2.
 51. Suppose that H is a subgroup of A5 of order 

30. We claim that H contains all 20 elements 
of A5 that have order 3. To verify this, assume 
that there is some a in A5 of order 3 that is not 
in H. Then A5 5 H < aH. It follows that a2H 
5 H or a2 5 aH. Since the latter implies that 
a [ H, we have that a2H 5 H, which implies 
that a2 [ H. But then kal 5 ka2l # H, which 
is a contradiction of our assumption that a is 
not in H. The same argument, shows that H 
must contain all 24 elements of order 5. Since 
uHu 5 30, we have a contradiction.

 53. Observe that a(ai) 5 ai11, a
2(ai) 5 ai12, . . . , 

ak(ai) 5 ai, where all subscripts are taken 
mod k.

 55. If H is a subgroup of S5 of order 60 other than 
A5, then it follows from Theorem 7.2 that 
|A5xH| � 30, which contradicts Exercise 51.

 57. Suppose that B [ G and det (B) 5 2. Then det 
(A21B) 5 1, so that A21B [ H and therefore  
B [ AH. Conversely, for any Ah [ AH we 
have det (Ah) 5 det (A)det (h) 5 2 ? 1 5 2.

 59. It is the set of all permutations that carry 
face 2 to face 1.

61. aH 5 bH if and only if det (a) 5 6det (b).
 63. Closure of the set follows from using ab2 5 

b2a3.
 65. 50
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Chapter 8

Practice isn't the thing you do when you're good. 
It's the thing you do that makes you good.

malcolm gladwell

  1. Closure and associativity in the product fol-
low from the closure and associativity in 
each component. The identity in the product 
is the n-tuple with the identity in each com-
ponent. The inverse of (g1, g2, . . . , gn) is 
(g1

21, g2
21, . . . , gn

21).
  3. Use g → (g, eH) and h → (eG, h).
  5. To show that Z % Z is not cyclic, note that  

(a, b 1 1) o k(a, b)l.
 7. Use (g1, g2) → (g2, g1). In general, G1 % G2

 
. . . % Gn is isomorphic to the external  direct 
product of any rearrangement of G1, G2, . . . ,  
Gn.

  9. Look at Z6%Z2.
 11. There are 12 elements of order 4. Observe by 

Theorem 4.4 that as long as d divides n, the 
number of elements of order  d in a cyclic 
group depends only on d. So, in both Z8000000 
and Z4 there are f(4) 5 2 elements of order 
4 and f(2) 5 1 element of order 2. Simi-
larly for Zm % Zn.

 13.  Zn2 and Zn % Zn
 15. Try a 1 bi → (a, b).
 17. Use Exercise 3 and Theorem 4.3.
 19. km/rl % kn/sl
 21. Since k(g, h)l # kgl % khl, a necessary and 

sufficient condition for equality is that lcm 
(|g|,|h|) 5 |(g, h)| 5 |kgl % khl)| 5 |g||h|. 
This is equivalent to gcd (|g|,|h|) 5 1.

 23. In the general case there are (3n 2 1)/2.

 25. Map c a b

c d
d  to (a, b, c, d). Let Rk denote R

   % R % ? ? ? % R (k factors). Then the group 
of m 3 n matrices under addition is isomor-
phic to Rmn.

 27. (g, g)(h, h)21 5 (gh21, gh21). When G 5 R, 
G % G is the plane and H is the line y 5 x.

 29. k(3, 0)l, k(3, 1)l, k(3, 2)l, k(0, 1)l
 31. lcm(6,10,15) 5 30; lcm(n1, n2, . . . , nk).
 33. {0, 400} % {0, 50, 100, 150}
 35. Compare the number of elements of order 2 

in each group.
 37. The mapping f(3m6n) 5 (m, n) is an isomor-

phism. The mapping f(3m9n) 5 (m, n) is not 
well-defined, since f(3290) Z f(3091).

 39. In both cases they are the same.
 41. U5(35) 5 {1, 6, 11, 16, 26, 31}; U7(35) 5  

{1, 8, 22. 29}.
 43. C* has only one element of order 2, whereas 

Z2 % Z2 has three elements of order 2.
 45. 12
 47. Aut(U(25)) < Aut(Z20) < U(20) < U(4) % 

U(5) < Z2 % Z4
 49. 2k 2 1; 2t 2 1, where t is the number of the 

integers n1, n2, . . . , nk that are even.
 51. f1182 � 6; 0 (Z2 % Z3 % Z3  is not cyclic).
 53. Since (2, 0) has order 2, it must map to an el-

ement in Z12 of order 2. The only such ele-
ment in Z12 is 6. The isomorphism defined 
by (1, 1) x → 5x with x 5 6 takes (2, 0) to 6. 
Since (1, 0) has order 4, it must map to an el-
ement in Z12 of order 4. The only such ele-
ments in Z12  are 3 and 9. The first case oc-
curs for the isomorphism defined by (1, 1) x 
→ 7x with x 5 9 [recall that (1, 1) is a gener-
ator of Z4 % Z3]; the second case occurs for 
the isomorphism defined by (1, 1) x → 5x 
with x 5 9.

 55. Since a [ Zm and b [ Zn, we know that |a| 
divides m and |b| divides n. So, |(a, b)| 5 
lcm(|a|, |b|) divides lcm(m, n).

 57. Z, Z3, Z4, Z6
 59. Observe that every nonidentity element of 

Zp % Zp has order p and each subgroup of 
order p  contains p 2 1 of them. So, there are 
exactly (p22 1)/(p 2 1) 5 p 1 1 subgroups 
of order p.

 61. Look at Z % Z2.
63. U(165) < U(11) % U(15) < U(5) % U(33) < 

U(3) % U(55) < U(3) % U(5) % U(11)
 65. Mimic the analysis for elements of order 12 

in U(105) in this chapter. The number is 14.
 67. 60. 
 69. They are both isomorphic to Z4 % Z10.
 71. U125110002 �  51, 251, 501, 7516.
 73. Since U1pq2 � U1p2 % U1q2 � Zp�1 % 

Zq�1 if follows that k �   lcm (p � 1, q � 1).
 75. |U12002| � 80;  |U1502 % U142| � 40.
 77. U8(40) < U(5) < Z4
 79. None. Because gcd (18,12) 5 6, Step 3 of 

the Sender part of the algorithm fails. 
 81. Because the block 2505 exceeds the modu-

lus 2263, sending 2505e mod 2263 is the 
same as sending 242e mod 2263 which 
 decodes as 242 instead of 2505.
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Chapter 9

There’s a mighty big difference between good, 
sound reasons and reasons that sound good.

burton hillis

  1. No.
  3. HR90 5 R270 H; DR270 5 R90D; R90V 5 VR270
  5. Say i , j and let h [ Hi > Hj. Then / 

h [ H1H2 
. . . Hi 

. . . Hj21 > Hj 5 {e}.
  7. Recall that if A and B are matrices, then det 

(ABA21) 5 (det A)(det B)(det A)21.
  9. Let x [ G. If x [ H, then xH 5 H 5 Hx. If 

x o H, then xH is the set of elements in G, 
not in H. But Hx is also the set of elements 
in G, not in H.

 11. Let G � kal. Then G/H � kaHl
 13. in H.
 15. 2
 17. H 5 {0 1 k20l, 4 1 k20l, 8 1 k20l, 12 1 

k20l, 16 1 k20l}; G/H 5 {0 1 k20l 1 H, 1 1 
k20l 1 H, 2 1 k20l 1 H, 3 1 k20l 1 H}

 19. Observe that in a group G if |a| � 2 and 
{e,a} is a normal subgroup then xax�1 � a 
for all x in G. Thus a [ Z(G). So, the  
only normal subgroup of order 2 in Dn is 
{R0, R180} when n is even.

 21. By Theorem 9.5, the group has an element 
a of order 3 and an element b of order 11. 
Then |ab| 5 33.

 23. |G1||G2|/|H1||H2|.
 25. Z4 % Z2.
 27. Yes; no
 29. The subgroups would have orders 2 or 4 

and therefore are Abelian. But the internal 
direct products of Abelian groups are 
 Abelian.

 31. Certainly, every nonzero real number is of 
the form 6r, where r is a positive real num-
ber. Real numbers commute, and  
R1 > {1, 21} 5 {1}.

 33. No. If G 5 H 3 K, then |g| 5 lcm(|h|, |k|), 
provided that |h| and |k| are finite. If |h| or 
|k| is infinite, so is |g|.

 35. For the first question, note that k3l > k6l 5 
{1} and k3lk6l > k10l 5 {1}. For the second 
question, observe that 12 5 32162. So k3lk6l 
> k12l Z {1}.

 37. Say |g| 5 n. Then (gH)n 5 gnH 5 eH 5 H. 
Now use Corollary 2 to Theorem 4.1.

 39. Let x belong to G and h belong to H. Then 
xhx–1H 5 (xh)x–1H 5 (xh)Hx–l H 5 xhHx–l 

H 5 xHx–1 H 5 xx–1H 5 H, so xhx–l  
belongs to H.

 41. Suppose that H is a proper subgroup of Q of 
index n. Then Q/H is a finite group of order 
n. By Corollary 4 of Theorem 7.1, we know 
that for every x in Q we have nx is in H. 
Now observe that the function f(x) 5 nx 
maps Q onto Q. So, Q # H.

 43. Take G 5 Z6, H 5 {0, 3}, a 5 1, and b 5 9.
 45. Use Lagrange’s Theorem and Exercise 9 of 

this chapter.
 47. By Lagrange, |H d K| divides both 63 and 45. 

If  |H d K| 5 9, then H d K is Abelian by The-
orem 9.7. If |H d K| 5 3, then H d K is cyclic 
by the Corollary of Theorem 7.1. If |H d K| 5 
1, then H > K 5{e}.

 49. Use the G/Z Theorem.
 51. Suppose that K  is a normal subgroup of G  

and let gH[G/H and kH[K/H. Then 
gHkH1gH2�1 � gHkHg�1H � gkg�1H[K/H. 
Now suppose that K/H is a normal subgroup 
of G/H and let g[G and k[K. Then 
gkg�1H � gHkHg�1H � gHkH1gH2�1[K/H 
so gkg�1[K.

 53. Say H has index n. Then (R*)n 5 {x n | x [ 
R*} # H. If n is odd, then (R*)n 5 R*;  
if n is even, then (R*)n 5 R1. So, H 5 R* 
or H 5 R1.

 55. Use Exercise 9 and observe that VK 2 KV.
 57. Look at S3.
 59. Let N 5 kal, H 5 kakl, and x [ G. Then, 

x(ak)mx21 5 (xamx21)k 5 (ar)k 5 (ak)r [ H.
 61. gcd(|x|, |G/H|) 5 1 implies gcd(|xH|, |G/H|) 

5 1. But |xH| divides |G/H|. Thus |xH| 5 1 
and therefore xH 5 H.

 63. Observe that for every positive integer 
n, 11 � i2n  is not a real number. So,  
11 � i2 R* has infinite order.

 65. Use Theorems 9.4 and 9.3.
 67. Say |gH| 5 n. Then |g| 5 nt (by Exercise 

37) and |gt| 5 n. For the second part, con-
sider Z/kkl.

 69. Use Theorem 9.3 and Theorem 7.3.
 71. If A5 had a normal subgroup of order 2 then,  

by Exercise 70, it would have an element of 
the form 1ab2 1cd2 that commutes with every 
element of A5. Try (abc). 
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 Chapter 10

It’s always helpful to learn from your mistakes, 
because then your mistakes seem worthwhile.

garry marshall

  1. Note that det(AB) 5 (det A)(det B).
  3. Note that ( f 1 g)9 5 f 9 1 g9.
  5. Observe that (xy)r 5 xryr. Odd values of r 

yield an isomorphism. For even values of r 
the kernel is {1, 21}.

  7. (sf)(g1g2) 5 s(f(g1g2)) 5 s(f(g1)f(g2)) 5 
s(f(g1))s(f(g2)) 5 (sf)(g1)(sf)(g2). Ker f 
is a normal subgroup of Ker sf. |H|/|K| 5 
[Ker sf:Ker f].

 9. f((g, h) (g9, h9)) 5 f((gg9, hh9)) 5 gg9 5 
f((g, h))f((g9, h9)). The kernel is {(e, h) |  
h [ H}.

 11. Consider f: Z % Z S Za % Zb given by 
f((x, y)) 5 (x mod a, y mod b) and use The-
orem 10.3.

 13. (a, b) S b is a homomorphism from A % B 
onto B with kernel A % {e}.

 15. 3, 13, 23
 17. Suppose f is such a homomorphism. By 

Theorem 10.3, Ker f 5 k(8, 1)l, k(0, 1)l, or 
k(8, 0)l. In these cases, (1, 0) 1 Ker f has 
order either 16 or 8. So, (Z16 % Z2) / Ker f is 
not isomorphic to Z4 % Z4.

 19. Since |Ker f| is not 1 and divides 17, f is 
the trivial map.

 21. k5l
 23. |f�11H2| � | H ||Ker f|. 
 25. 4 onto; 10 to
 27. For each k with 0 # k # n 2 1, the mapping 

1 S k determines a homomorphism.
 29. Use Theorem 10.3 and properties 5, 7, and 8 

of Theorem 10.2.
 31. f21(7) 5 7 Ker f 5 {7, 17}
 33. 11Ker f
 35. f((a, b) 1 (c, d)) 5 f((a 1 c, b 1 d)) 5  

(a 1 c) 2 (b 1 d) 5 a 2 b 1 c 2 d 5 f 
((a, b)) 1 f((c, d)). Ker f 5 {(a, a) | a [ Z}. 
f21(3) 5 {(a 1 3, a) | a [ Z}.

 37. Use the property of complex numbers that  
|xy| 5 |x||y| and the First Isomorphism 
 Theorem.

 39. f(xy) 5 (xy)6 5 x6y6 5 f(x)f(y). Ker f 5 
kcos 60° 1 i sin 60°l.

 41. Show that the mapping from K to KN/N 
given by k S kN is an onto homomorphism 
with kernel K > N.

 43. Since the eight elements of A4 of order 3 
must map to an element of order that divides 
3, by Lagrange’s Theorem, each of them 
must map to the identity. But then the kernel 
has at least 8 elements and its order and 
 divides 12. So, the kernel has order 12.

 45. D4, {e}, Z2, Z2 % Z2
 47. It is divisible by 10. 10 can be replaced by 

any positive integer.
 49. It is infinite. Look at Z.
 51. Let g be the natural homomorphism from G 

onto G/N. Let H be a subgroup of G/N and 
let g21(H) 5 H. Then H is a subgroup of G 
and H/N 5 g(H) 5 g(g21(H)) 5 H.

 53. The mapping g S fg is a homomorphism 
with kernel Z(G).

 55. ( f 1 g)(3) 5 f(3) 1 g(3). The kernel is the 
set of elements in Z[x] whose graphs pass 
through the point (3, 0). 3 can be replaced 
by any integer.

 57. Let g belong to G. Since f1g2 belongs to  
Z2 % Z2 5 k(1, 0)l x k(0, 1)l x k(1, 1)l,  
it follows that G 5 f21(k(1, 0)l) x f21 

(k(0, 1)l) x f21(k(1, 1)l). Moreover, each of 
these three subgroups is proper and by prop-
erty 8 of Theorem 10.2 normal.

 59. Note that if z[Z1G2 then for all x[G, we 
have f1x2f1z2 � f1xz2 � f1zx2 � f1z2f1x2. 
Since f is onto H, we have f1z2[Z1H2.

 61. Mimic Example 17.
 63. Let f be a homomorphism from S3 to G. Since 

|f(S3)| must divide 6, we have that |f(S3)| 5 
1, 2, 3, or 6. In the first case, f maps every 
 element to 0. If |f(S3)| 5 2, then n is even  
and f maps the even permutations to 0 and the 
odd permutations to an element of order 2. 
The case that |f(S3)| 5 3 cannot occur, 
 because it implies that Ker f is a normal sub-
group of order 2, whereas S3 has no normal 
subgroup of order 2. The case that |f(S3)| 5 6 
cannot occur, because it implies that f is an 
isomorphism from a non-Abelian group to an 
Abelian group.

 65. f(zw) 5 z2w2 5 f(z) f(w). Ker f 5 {1, 21} 
and, because f is onto C* we have by  
Theorem 10.3, C*/{1, 21} is isomorphic  
to C*. 

  When C*  is replaced by R* we have that f 
is onto R� and by Theorem 10.3, R*/{1,–1} 
is isomorphic to R�.
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Chapter 11

Ever tried. Ever failed. No matter. Try again. Fail 
again. Fail better.

samuel beckett

  1. n 5 4; Z4, Z2 % Z2
  3. n 5 36; Z9 % Z4, Z3 % Z3 % Z4, Z9 % Z2 % 

Z2, Z3 % Z3 % Z2 % Z2
  5. The only Abelian groups of order 45 are Z45 

and Z3 % Z3 % Z5. In the first group, |3| 5 15; 
in the second one, |(1, 1, 1)| 5 15. Z3 % Z3 % 
Z5 does not have an element of order 9.

  7. Z9 % Z3 % Z4; Z9 % Z3 % Z2 % Z2
  9. Z4 % Z2 % Z3 % Z5
 11. By the Fundamental Theorem, any finite 

 Abelian group G is isomorphic to some direct 
product of cyclic groups of prime-power 
 order. Now go across the direct product and, 
for each distinct prime you have, pick off the 
largest factor of the prime power. Next, com-
bine all of these into one factor (you can do 
this, since the subscripts are relatively 
prime). Let us call the order of this new 
 factor n1. Now repeat this process with the 
remaining original factors and call the order 
of the  resulting factor n2. Then n2 divides n1, 
since each prime-power divisor of n2 is also 
a prime-power divisor of n1. Continue in this 
fashion. Example: If 

  G < Z27 % Z3 % Z125 % Z25 % Z4 % Z2 % Z2,

  then

  G < Z27 ? 125 ? 4 % Z3 ? 25 ? 2 % Z2.

  Now note that 2 divides 3 ? 25 ? 2 and 3 ? 25 ? 2 
divides 27 ? 125 ? 4.

13. Z2 % Z2
 15. a. 1  b. 1  c. 1  d. 1  e. 1  f. There is a 

unique Abelian group of order n if and only if 
n is not divisible by the square of any prime.

 17. This is equivalent to asking how many Abe-
lian groups of order 16 have no elements of 
order 8. From the Fundamental Theorem of 
Finite Abelian Groups the only choices are Z4 
% Z4, Z4 % Z2 % Z2, and Z2 % Z2 % Z2 % Z2.

 19. Z2 % Z2
 21. Z3 % Z3
 23. n is square-free (no prime factor of n occurs 

more than once).

 25. Among the first 11 elements in the table, 
there are nine elements of order 4. None of 
the other isomorphism classes has this many.

 27. Z4 % Z2 % Z2; one internal direct product is 
k7l 3 k101l 3 k199l.

 29. 3; 6; 12
 31. Z4 % Z4
 33. Use Theorems 11.1, 8.1, and 4.3.
 35. |kalK| 5 |a||K|/|kal > K| 5 |a||K| 5 |a||K|p 

5 |G|p 5 |G|
 37. By the Fundamental Theorem of Finite Abe-

lian Groups, it suffices to show that every 
group of the form Zp1

n1 % Zp2
n2 % . . . % Zpk

nk 
is a subgroup of a U-group. Consider first a 
group of the form Zp1

n1 % Zp2
n2 ( p1 and p2 

need not be distinct). By Dirichlet’s Theorem, 
for some s and t there are distinct primes q and 
r such that q 5 tp

1
n1 1 1 and r 5 sp

2
n2 1 1. 

Then U(qr) 5 U(q) % U(r) < Ztp1
n1 % Zsp2

n2, 
and this latter group contains a subgroup iso-
morphic to Zp1

n1 % Zp2
n2. The general case 

follows in the same way.
 39. Look at D4.

Chapter 12

Mistakes are the portals of discovery. 
james joyce

  1. For any n . 1, the ring M2(Zn) of 2 3 2 matri-
ces with entries from Zn is a finite noncommu-
tative ring. The set M2(2Z ) of 2 3 2 matrices 
with even integer entries is an infinite non-
commutative ring that does not have a unity.

  3. In R, consider 5n12 0  n [ Z 6.
  5. The proofs given for a group apply to a ring 

as well.
  7. In Zp, nonzero elements have multiplicative 

inverses. Use them.
  9. If a and b belong to the intersection, then 

they belong to each member of the 
 intersection. Thus, a 2 b and ab belong to 
each member of the intersection. So, a 2 b 
and ab belong to the  intersection.

 11. Rule 3: 0 5 0(2b) 5 (a 1 (2a))(2b) 5 
a(2b) 1 (2a)(2b) 5 2(ab) 1 (2a)(2b).  
So, ab 5 (2a)(2b).

  Rule 4: a(b 2 c) 5 a(b 1 (2c)) 5 ab 1 
a(2c) 5 ab 1 (2(ac)) 5 ab 2 ac.

  Rule 5: Use rule 2.
  Rule 6: Use rule 3.
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 13. Hint: Z is a cyclic group under addition, and 
every subgroup of a cyclic group is cyclic.

 15. For positive m and n, observe that (m ? a)(n ? 
b) 5 (a 1 a 1 . . . 1 a)(b 1 b 1 . . . 1 b) 
5 (ab 1 ab 1 . . . 1 ab), where the last 
term has mn summands. Similar arguments 
apply in the  remaining cases.

 17. From Exercise 15, we have (n ? a)(m ? a) 5 
(nm) ? a2 5 (mn) ? a2 5 (m ? a)(n ? a).

 19. Let a, b belong to the center. Then (a 2 b)x 5 
ax 2 bx 5 xa 2 xb 5 x(a 2 b). Also, (ab)x 
5 a(bx) 5 a(xb) 5 (ax)b 5 (xa)b 5 x(ab).

 21. (x1, . . . , xn)(a1, . . . , an) 5 (x1, . . . , xn) for 
all xi in Ri if and only if xiai 5 xi for all xi in 
Ri and i 5 1, . . . , n.

 23. {1, 21, i, 2i}
 25. f (x) 5 1 and g(x) 5 21.
 27. If a is a unit, then b 5 a(a21b).
 29. Consider a21 2 a22b.
 31. Try the ring M2(Z).
 33. Note that 2x 5 (2x)3 5 8x3 5 8x.
 35. For Z6, use n 5 3. For Z10, use n 5 5. Say  

m 5 p2t, where p is a prime. Then (pt)n 5 0 
in Zm, since m divides (pt)n.

 37. Every subgroup of Zn is closed under 
 multiplication.

 39. ara 2 asa 5 a(r 2 s)a. (ara)(asa) 5 ara2sa 
5 arsa. a1a 5 a2 5 1, so 1 [ S.

 41. The Subring Test is satisfied.
 43. Look at (1, 0, 1) and (0, 1, 1).
 45. Observe that n ? 1 2 m ? 1 5 (n 2 m) ? 1. Also, 

(n ? 1)(m ? 1) 5 (nm) ? ((1)(1)) 5 (nm) ? 1.
 47. {m/2n | m [ Z, n [ Z1}
 49. (a 1 b)(a 2 b) 5 a2 1 ba 2 ab 2 b2 5 a2 

2 b2 if and only if ba 2 ab 5 0.
 51. Z2 % Z2; Z2 % Z2 % . . . (infinitely many  copies)
 53. If 1a, b2  is a zero-divisor in R % S  then 

there is a 1c, d2 ? 10, 02  such that 
1a, b2 1c, d2 � 10, 02. Thus ac � 0  and 
bd � 0. So, a  or b  is a zero-divisor or ex-
actly one of a or b  is 0. Conversely, if a  is 
a zero-divisor in R  then there is a c ? 0  in 
R  such that ac � 0 . In this case
1a, b2 1c, 02 � 10, 02. A similar argument 
 applies if b  is a zero-divisor. If a � 0  and 
b ? 0  then 1a, b2 1x, 02 � 10, 02  where x  is 
any nonzero element in A . A similar argu-
ment applies if a ? 0  and b � 0.

 55. Fix some a in R, a ? 0. Then there is a b in R 
such that ab 5 a. Now if x in R and x ? 0 then 
there is an element c in R such that ac 5 x. 
Then xb �  acb �  c1ab2 �  ca �  x. 
Thus b is the unity. To show that every nonzero 
element r of R has an inverse note that since 
rR �  R there is an element s in R such that 
rs �  b.

 57. Let a [ R. Then 0 � ab2 � ab � 1ab � a2b  
so that ab � a � 0 . Similarly, ba � a � 0.

Chapter 13

Work now or wince later.
b. c. forbes, Epigrams

  1. The verifications for Examples 1– 6 follow 
from elementary properties of real and 
 complex numbers. For Example 7, note that

c 1 0

0 0
d c 0 0

0 1
d � c 0 0

0 0
d .

  For Example 8, note that (1, 0)(0, 1) 5 (0, 0).
  3. Let ab 5 0 and a 2 0. Then ab 5 a ? 0, so  

b 5 0.
  5. Let k [ Zn. If gcd(k, n) 5 1, then k is a unit. 

If gcd(k, n) 5 d . 1, write k 5 sd. Then 
k(n/d) 5 sd(n/d) 5 sn 5 0.

  7. Let s [ R, s 2 0. Consider the set S 5 {sr | 
r [ R}. If S 5 R, then sr 5 1 (the unity) for 
some r. If S 2 R, then there are distinct 
r1 and r2 such that sr1 5 sr2. In this case, 
s(r1 2 r2) 5 0. To see what happens when 
the “finite” condition is dropped, consider Z.

  9. Take a 5 (1, 1, 0), b 5 (1, 0, 1), and c 5  
(0, 1, 1).

 11. (a1 1 b1
2d) 2 (a2 1 b22d) 5 (a1 2 a2) 1 

(b1 2 b2)2d; (a1 1 b12d)(a2 1 b2
2d) 5 

(a1a2 1 b1b2d) 1 (a1b2 1 a2b1)2d. Thus, the 
set is a ring. Since Z[2d] is a subring of the 
ring of complex numbers, it has no zero- 
divisors.

 13. The even integers.
 15. (1 2 a)(1 1 a 1 a2 1 . . . 1 an21 ) 5 1  

1 a 1 a2 1 . . . 1 an21 2 a 2 a2 2 . . . 
2 an 5 1 2 an 5 1 2 0 5 1.

 17. Suppose a 2 0 and an 5 0 (where we take n 
to be as small as possible). Then a ? 0 5 0 5 
an 5 a ? an21, so by cancellation, an21 5 0.
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 19. If a2 � a and b2 � b, then 1ab22 � a2b2 � ab. 
The other cases are  similar.

 21. Let f(x) 5 x on [21, 0], f(x) 5 0 on (0, 1], 
g(x) 5 0 on [21, 0], and g(x) 5 x on (0, 1]. 
Then f(x) and g(x) are in R and f(x)g(x) 5 0 
on [21, 1].

 23. Suppose that a is an idempotent and an � 0. 
By the previous exercise, a � 0.

 25. (3 1 4i)2 5 3 1 4i.
 27. a2 5 a implies a(a 2 1) 5 0. So if a is a 

unit, a 2 1 5 0 and a 5 1.
 29. See Theorems 3.1 and 12.3.
 31. Note that ab 5 1 implies aba 5 a. Thus 0 5 

aba 2 a 5 a(ba 2 1). So, ba 2 1 5 0.
 33. A subdomain of an integral domain D is a 

subset of D that is an integral domain under 
the operations of D. To show that P is a 
 subdomain, show that it is a subring and 
contains 1. Every  subdomain contains 1 and 
is closed under addition and subtraction, so 
every subdomain contains P. |P| 5 char D 
when char D is prime and |P| is infinite 
when char D is 0.

 35. Use Theorems 13.3, 13.4, and 7.1  
(Lagrange’s Theorem).

 37. By Exercise 36, 1 is the only element of an 
integral domain that is its own multiplicative 
inverse if and only if 1 5 21. This is true 
only for fields of characteristic 2.

 39. a. Since a3 5 b3, a6 5 b6. Then a 5 b  
because we can cancel a5 from both sides 
(since a5 5 b5).

  b.  Use the fact that there exist integers s and t 
such that 1 5 sn 1 tm, but remember that 
you cannot use negative exponents in a ring.

 41. (1 2 a)2 5 1 2 2a 1 a2 5 1 2 2a 1 a 5  
1 2 a.

 43. Z8
 45. Let S 5 {a1, a2, . . . , an} be the nonzero ele-

ments of the ring. First show that S 5 {a1a1, 
a1a2, . . . , a1an}. Thus, a1 5 a1ai for some i. 
Then ai is the unity, for if ak is any element 
of S, we have a1ak 5 a1aiak, so that a1(ak 2 
aiak) 5 0.

 47. Say |x| 5 n and |y| 5 m with n , m. 
 Consider (nx)y 5 x(ny).

 49. a. Use the Binomial Theorem.
  b. Use part a and induction.
  c. Look at Z4.
 51. Use Theorems 13.4 and 9.5 and Exercise 47.

 53. n c a b

c d
d  5 c 0 0

0 0
d
 
for all members of 

  M2(R) if and only if na 5 0 for all a in R.
 55. Use Exercise 54.
 57. a. 2  b. 2, 3  c. 2, 3, 6, 11  d. 2, 3, 9, 10
 59. 2
 61. See Example 10.
 63. Use Exercise 29 and part a of Exercise 49.
 65. Choose a 2 0 and a 2 1 and consider 1 1 a.
67. f(x) 5 f(x . 1) 5 f(x) . f(1), so f(1) 5 1. 

Also, 1 5 f(1) 5 f(xx21) 5 f(x) f(x21).

 69. Since a field of order 27 has characteristic 3, 
we have 3a 5 0 for all a. From this, we have  
6a 5 0 and 5a 5 2a.

Chapter 14

The paradox of excellence is that it is built upon 
the foundations of necessary failure.

matthew syed

  1. Let r1a and r2a belong to kal. Then r1a 2 r2a 
5 (r1 2 r2)a [ kal. If r [ R and r1a [ kal, 
then r(r1a) 5 (rr1)a [ kal.

  3. Clearly, I is not empty. Now observe that 
(r1a1 1 . . . 1 rnan) 2 (s1a1 1 . . . 1 snan) 5 
(r1 2 s1)a1 1 . . . 1 (rn 2 sn)an [ I. Also, if  
r [ R, then r(r1a1 1 . . . 1 rnan) 5 (rr1)a1 1 
. . . 1 (rrn)an [ I. That I # J follows from 
closure under addition and multiplication by 
elements from R.

  5. Let a 1 bi, c 1 di [ S. Then (a 1 bi) 2  
(c 1 di) 5 a 2 c 1 (b 2 d)i and b 2 d is 
even. Also, (a 1 bi)(c 1 di) 5 ac 2 bd 1 
(ad 1 cb)i and ad 1 cb is even. Finally,  
(1 1 2i)(1 1 i) 5 21 1 3i o S.

  7. Since ar1 2 ar2 5 a(r1 2 r2) and (ar1)r 5 
a(r1r), 4R 5 {. . . , 216, 28, 0, 8, 16, . . .}.

  9. If n is prime, use Euclid’s Lemma (Chapter 
0). If n is not prime, say n 5 st where s , n 
and t , n; then st belongs to nZ but s and t 
do not.

 11. a. a 5 1  b. a 5 2  c. a 5 gcd(m, n)
 13. a. a 5 12
  b.  a 5 48. To see this, note that every  element 

of k6lk8l has the form 6t18k1  1 6t28k2 1 
. . . 1 6tn8kn 5 48s [ k48l. So, k6lk8l # 
k48l. Also, since 48 [ k6lk8l, we have k48l 
# k6lk8l.

  c. a 5 mn
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 15. Let r [ R. Then r 5 1r [ A.
 17. Let u [ I be a unit and let r [ R. Then  

r 5 r(u21u) 5 (ru21)u [ I.
 19. Observe that k2l and k3l are the only 

 nontrivial ideals of Z6, so both are maximal. 
More generally, Zpq, where p and q are 
 distinct primes, has exactly two maxi-
mal ideals.

 21. Clearly, I is closed under subtraction. Also, 
if b1, b2, b3, and b4 are even, then every 

  entry of c a1 a2

a3 a4
d c b1 b2

b3 b4
d  is even.

 23. Use the observation that every member of R 
can be written in the form 

c 2q1 � r1 2q2 � r2

2q3 � r3 2q4 � r4
d .

  Then note that 

c 2q1 � r1 2q2 � r2

2q3 � r3 2q4 � r4
d � I � c r1 r2

r3 r4
d � I.

 25. (br1 1 a1) 2 (br2 1 a2) 5 b(r1 2 r2) 1  
(a1 2 a2) [ B; r9(br 1 a) 5 b(r9r) 1 r9a [ 
B since r9a is in A.

 27. Use Exercise 17.
 29. Let I � k3, x2 � 1l. Using the condition  

that 3 � I � 0 � I we see that when  adding 
and multiplying in Z�x�/I we may treat the 
coset representatives Z[x]/I as members of 
Z3�x�. Then we see that Z�x�/I 5 
50 � I, 1 � I, 2 � I, x � I, x � 1 � I, 
x � 2 � I, 2x � I, 2x � 1 � I, 2x � 2 � I6.
Moreover, 1 � I and 2 � I are their own 
 inverses; 

  1x � I2 12x � I2 � 2x2 � I � 1 � I; 
1x � 1 � I2 1x � 2 � I2 � 1 � I;

  12x � 1 � I2 12x � 2 � I2 � 1 � I.
 31. Since every element of kxl has the form xg(x), 

we have kxl # I. If f(x) [ I, then f(x) 5 anx
n 

1 . . . 1 a1x 5 x(anx
n21 1 . . . 1 a1) [ kxl.

 33. Suppose f(x) 1 A 2 A. Then f(x) 1 A 5 f(0) 
1 A and f(0) 2 0. Thus,

1 f1x2 �  A2�1 �  
1

f 102  �  A.

  This shows that R/A is a field. Now use 
 Theorem 14.4.

 35. Since (3 1 i)(3 2 i) 5 10, 10 1 k3 1 il 5 0 
1 k3 1 il. Also, i 1 k3 1 il 5 23 1 k3 1 il 
5 7 1 k3 1 il. So, Z[i]/k3 1 il 5 {k 1  
k3 1 il | k 5 0, 1, . . . , 9}, since 1 1 k3 1 il 
has additive order 10.

 37. Use Theorems 14.3 and 14.4.
 39. Since every f(x) in kx, 2l has the form f(x) 5 

xg(x) 1 2h(x), we have f(0) 5 2h(0), so that f(x) 
[ I. If f(x) [ I, then f(x) 5 anx

n 1 ? ? ? 1 a1x 1 
2k 5 x(anx

n21 1 ? ? ? 1 a1) 1 2k [ kx, 2l. I is 
prime and maximal. Z[x]/I has two elements.

 41. 3x 1 1 1 I
 43. Every ideal is a subgroup. Every subgroup 

of a cyclic group is cyclic.
 45. Let I be any ideal of R % S and let IR 5  

{r [ R | (r, s) [ I for some s [ S} and IS 5 
{s [ S | (r, s) [ I for some r [ R}. Then IR is 
an ideal of R and IS is an ideal of S. Let IR 5 
krl and IS 5 ksl. Since, for any (a, b) [ I 
there are elements a9 [ R and b9 [ S such 
that (a, b) 5 (a9r, b9s) 5 (a9, b9)(r, s), we 
have that I = k(r, s)l.

 47. Say b, c [ Ann(A). Then (b 2 c)a 5 ba 2 ca 
5 0 2 0 5 0. Also, (rb)a 5 r(ba) 5 r ? 0 5 0.

 49. a. k3l  b. k3l  c. k3l
 51. Suppose (x 1 N(k0l))n 5 0 1 N(k0l). We 

must show that x [ N(k0l). We know that xn 
1 N(k0l) 5 0 1 N(k0l), so that xn [ N(k0l). 
Then, for some m, (xn)m 5 0, and therefore  
x [ N(k0l).

 53. The set Z2[x]/kx2 1 x 1 1l has only four 
 elements and each of the nonzero ones has a 
multiplicative inverse. For example, 
(x 1 kx2 1 x 1 1l)(x 1 1 1 kx2 1 x 1 1l) 
5 1 1 kx2 1 x 1 1l.

 55. x 1 2 1 kx2 1 x 1 1l is not zero, but its 
square is.

 57. If f and g [ A, then ( f 2 g)(0) 5 f (0) 2 

g(0) is even and ( f ? g)(0) 5 f (0) ? g(0) is 

even. f(x) 5 12 [ R and g(x) 5 2 [ A, but 

f(x)g(x) o A.
 59. Hint: Any ideal of R/I has the form A/I, 

where A is an ideal of R.

 61. In Z, k2l > k3l 5 k6l is not prime.
 63. According to Theorem 13.3 we need only 

determine the additive order of 1 � k2 � il. 
Since 511 � k2 � il2 � 5 � k2 � il �  
12 � i2 12 � i2 � k2 � il � 0 � k2 � il, 
we know that 1 � k2 � il has order 5.

 65. The set K of all polynomials whose coeffi-
cients are even is closed under subtraction and 
multiplication by elements from Z [x] and 
therefore K is an ideal. By Theorem 14.3 to 
show that K is prime it suffices to show that 
Z [x]/K has no zero-divisors. Suppose that 
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f1x2 � K and g1x2 � K are nonzero elements 
of Z [x]/K. Since K absorbs all terms that have 
even coefficients we may assume that f1x2 �
amxm � . . . � a0 and g1x2 � bnx

n � . . . � b0 
are in Z [x] and am and bn are odd integers. 
Then 1f1x2 � K2 1g1x2 � K2 � ambnx

m�n

� ... � a0b0 � K and amen is odd. So, 
f1x2g1x2 � K is nonzero.

 67. Use the fact that R/I is an integral domain to 
show that R/I 5 {I, 1 1 I}.

 69. kxl , kx, 2nl , kx, 2n21l , . . . , kx, 2l
 71. Taking r 5 1 and s 5 0 shows that a [ I. 

Taking r 5 0 and s 5 1 shows that b [ I. 
If J is any ideal that contains a and b, then it 
contains I because of the closure conditions.

Chapter 15

For every problem there is a solution which is 
simple, clean and wrong.

h. l. mencken

  1. Property 3: f(A) is a subgroup because f is 
a group homomorphism. Let s [ S and 
f(r) 5 s. Then sf(a) 5 f(r)f(a) 5 f(ra) 
and f(a)s 5 f(a)f(r) 5 f(ar).

  Property 4: Let a and b belong to f21(B) 
and r belong to R. Then f(a) and f(b) are in 
B. So, f(a) 2 f(b) 5 f(a) 1 f(2b) 5 f(a 
2 b) [ B. Thus, a 2 b [ B. Also, f(ra) 5 
f(r)f(a) [ B and f(ar) 5 f(a)f(r) [ B. 
So, ra and ar [ f21(B).

  3. We already know the mapping is an isomor-
phism of groups. Let F(x 1 Ker f) 5 f(x). 
Note that F((r 1 Ker f)(s 1 Ker f)) 5  
F(rs 1 Ker f) 5 f(rs) 5 f(r)f(s) 5 F(r 1 
Ker f)F(s 1 Ker f). 

  5. f(2 1 4) 5 f(1) 5 5, whereas f(2) 1 f(4) 
5 0 1 0 5 0.

   7. Observe that (x 1 y)/1 5 x/1 1 y/1 and 
(xy)/1 5 (x/1)(y/1).

  9. a 5 f(1) 5 f(1·1) 5 f(1)f(1) 5 aa 5 a2. 
For the example look at Z6.

 11. If a and b (b 2 0) belong to every member 
of the collection, then so do a 2 b and ab21. 
Thus, by Exercise 29 in Chapter 13, the 
 intersection is a subfield.

 13. Apply the definition.
 15. Multiplication is not preserved.
 17. Yes.
 19. The set of all polynomials passing through 

the point (1, 0).

 21. For Z6 to Z6, 1 S 0, 1 S 1, 1 S 3, and 1 S 4 
each define a homomorphism. For Z20 to Z30, 
1 S 0, 1 S 6, 1 S 15, and 1 S 21 each de-
fine a homomorphism.

 23. The zero map and the identity map.
 25. Use Exercise 24.
 27. Say 1 is the unity of R. Let s 5 f(r) be any 

element of S. Then f(1)s 5 f(1)f(r) 5 
f(1r) 5 f(r) 5 s. Similarly, sf(1) 5 s.

 29. Observe that an idempotent must map to an 
idempotent. So, (1, 0) and (0, 1) must map to 0 
or 1. It follows that (a, b) S a, (a, b) S b, and 
(a, b) S 0 are the only ring homomorphisms.

 31. Say m 5 akak21 . . . a1a0 and n 5 bkbk21 . . . b1b0. 
Then m 2 n 5 (ak 2 bk)10k 1 (ak21 
2 bk21)10k21 1 . . . 1 (a1 2 b1)10 1 (a0 2 b0). 
Now use the test for divisibili ty by 9.

 33. Use the appropriate divisibility tests.
 35. Mimic Example 8.
 37. Observe that the mapping f from  Zn 3x4 is 

isomorphic to Zn given by f1f1x2 2 �  f102 is 
a ring-homomorphism onto Zn with kernel 
kxl and use Theorem 15.3

 39. The ring homomorphism from Z % Z to Z 
given by f1a, b2 � a takes (1, 0) to 1. Or 
define f from Z6 to Z6 by f1x2 � 3x and let 
R � Z6 and S � f1Z62. Then 3 is a zero- 
divisor in R and f132 � 3 is the unity of S.

 41. Observe that (2 ? 1075 1 2) mod 3 5 1 and 
(10100 1 1) mod 3 5 2 5 21 mod 3.

 43. This follows directly from Theorem 13.3 
and Theorem 10.1, part 3.

 45. No. The kernel must be an ideal.
 47. a. Suppose ab [ f21(A). Then f(a)f(b) [ 

A, so that a [ f21(A) or b [ f21(A).
  b. Consider the natural homomorphism from  

R to S/A. Then use Theorems 15.3 and 14.4.
 49. a.  f((a, b) 1 (a9, b9)) 5 f((a 1 a9, b 1 b9)) 5 

a 1 a9 5 f((a, b)) 1 f((a9, b9)), so f pre-
serves addition. Also, f((a, b)(a9, b9)) 
5 f((aa9, bb9)) 5 aa9 5 f((a, b))f((a9, b9)).

  b.  f(a) 5 f(b) implies that (a, 0) 5 (b, 0), 
which implies that a 5 b. f(a 1 b) 5 (a 1 b, 
0) 5 (a, 0) 1 (b, 0) 5 f(a) 1 f(b). Also, 
f(ab) 5 (ab, 0) 5 (a, 0)(b, 0) 5 f(a)f(b).

  c. Use (r, s) S (s, r).
 51. Observe that x4 5 1 has two solutions in R 

but four in C.
 53. Use Exercises 46 and 52.
 55. If a / b 5 a9 / b9 and c / d 5 c9 / d9, then 

ab9 5 ba9 and cd9 5 dc9. So, acb9d9 5 (ab9)
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(cd9) 5 (ba9)(dc9) 5 bda9c9. Thus, ac / bd 
5 a9c9/ b9d9 and therefore (a / b)(c / d) 5  
(a9/ b9)(c9/ d9).

 57. First note that any field containing Z and i 
must contain Q[i]. Then prove (a 1 bi)/(c 
1 di) [ Q[i].

 59. The subfield of E is {ab21 | a, b [ D, b 2 0}.
 61. Reflexive and symmetric properties follow 

from the commutativity of D. For transitiv-
ity, assume a/b ; c/d and c/d ; e/f. Then 
adf 5 (bc)f 5 b(cf ) 5 bde, and cancellation 
yields af 5 be.

 63. Try ab21 S a/b.
 65. The mapping a 1 bi S a 2 bi is a ring 

 isomorphism of C.
 67. Certainly the unity 1 is contained in every sub-

field. So, if a field has characteristic p, the sub-
field {0, 1, . . . , p 2 1} is contained in every 
subfield. If a field has characteristic 0, then {(m 
? 1)(n ? 1)21 | m, n [ Z, n 2 0} is a subfield 
contained in every subfield. This subfield is iso-
morphic to Q [map (m ? 1)(n ? 1)21 to m/n].

 69. The mapping f(x) 5 (x mod m, x mod n) 
from Zmn to Zm { Zn is a ring isomorphism.

Chapter 16

You know my methods. Apply them!
sherlock holmes,

The Hound of the Baskervilles*

  1. f 1 g 5 3x4 1 2x3 1 2x 1 2; f ? g 5 2x7 1 
3x6 1 x5 1 2x4 1 3x2 1 2x 1 2.

  3. 1, 2, 4, 5
  5. Write f(x) 5 (x 2 a)q(x) 1 r(x). Since deg 

(x 2 a) 5 1, deg r(x) 5 0 or r(x) 5 0. So 
r(x) is a constant. Also, f(a) 5 r(a).

  7. x3 1 1 and x3 1 x2 1x 11
  9. 4x2 1 3x 1 6 is the quotient and 6x 1 2 is 

the remainder.
 11. Let f(x), g(x) [ R[x]. By inserting terms 

with the coefficient 0, we may write
f(x) 5 anx

n 1 . . . 1 a0
  and

g(x) 5 bnx
n 1 . . . 1 b0.

  Then

  f( f(x) 1 g(x)) 5  f(an 1 bn)x
n 1 . . . 1 

f(a0 1 b0)

  5  (f(an) 1 f(bn))x
n 1 . . . 1 f(a0) 1 f(b0)

  5  (f(an)x
n 1 . . . 1 f(a0)) 1 (f(bn)x

n 1 . . 
. 1 f(b0))

  5 f( f(x)) 1 f(g(x)).
  Multiplication is done similarly.
 13. Use Corollary 1 of Theorem 16.2. 
 15. It is its own inverse.
 17. No. See Exercise 19.
 19. If f(x) 5 anx

n 1 . . . 1 a0 and g(x) 5 bmxm 1 
. . . 1 b0, then f(x) ? g(x) 5 anbmxm1n 1 . . . 
1 a0b0.

 21. Let m be the multiplicity of b in q(x). Then 
we may write f(x) 5 (x 2 a)n (x 2 b)m q9(x), 
where q9(x) is in F[x] and q9(b) Z 0. This 
means that b is a zero of f(x) of multiplicity 
at least m. If b is a zero of f(x) greater than 
m, then b is a zero of g(x) 5 f(x)/(x 2 b)m 5 
(x 2 a)nq9(x). But then 0 5 g(b) 5 (b 2 a)n 
q9(b), and therefore q9(b) 5 0.

 23. Hint: F[x] is a PID. So kf(x), g(x)l 5 ka(x)l 
for some a(x) [ F[x]. Thus, a(x) divides 
both f(x) and g(x). This means that a (x) is a 
 constant.

 25. If f(x) 2 g(x), then deg[f(x) 2 g(x)] , deg 
p(x). But the minimum degree of any 
 member of kp(x)l is deg p(x).

 27. Start with (x 2 1/2)(x 1 1/3) and clear 
 fractions.

 29. “Long divide” x 2 a into f(x) and induct on 
deg f(x).

 31. By Theorem 16.5, I 5 kx 2 1l.
 33. Use Corollary 2 of Theorem 15.5 and 

 Exercise 11 in this chapter.
 35. For any a in U(p), ap21 5 1, so every mem-

ber of U(p) is a zero of xp21 2 1. Now use 
the Factor Theorem and a degree argument.

 37. C(x) (field of quotients of C[x])
 39. Use Exercise 38.
 41. Observe that, modulo 101, (50!)2 5 (50!)

(21)(22) . . . (250) 5 (50!)(100)(99) . . . 
(51) 5 100! and use  Exercise 36.

 43. Take R 5 Z and I 5 k2l.
 45. Use Theorem 16.3.
 47. Write f(x) 5 (x 2 a)g(x). Use the product 

rule to compute f 9(x).
 49. Say deg g(x) 5 m, deg h(x) 5 n, and g(x) has 

leading coefficient a. Let k(x) 5 g(x) 2 
axm2nh(x). Then deg k(x) , deg g(x) and 
h(x) divides k(x) in Z[x] by induction. So, 
h(x) divides k(x) 1 axm2nh(x) 5 g(x) in Z[x].

 51. If f(x) takes on only finitely many values, then 
there is at least one a in Z with the property 
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that f(x) 5 a for infinitely many x in Z. But 
then g(x) 5 f(x) 2 a has infinitely many zeros. 
This contradicts Corollary 3 of Theorem 16.2.

 53. Use Theorem 15.3, Theorem 14.4, and Ex-
ample 13 in Chapter 14.

 55. Let f(x) = anx
n 1 an21x

n21 1 ) 1 a1x 1 a0 
and assume that p/q is a zero of f(x), where 
p and q are integers and n is even. We may 
assume that p and q are relatively prime. 
Substituting p/q for x and clearing fractions, 
we have anp

n 1 an21p
n21 q 1 ) 1 a1pq 

n21 

52a0q
n. If p is even, then the left side is 

even. If p is odd, then each summand on the 
left side is odd and since there is an even 
number of summands, the left side is still 
even. Because a0 is odd, we then have that q 
is even. It follows that anp

n 52 (an21p
n21 q 

1 ) 1 a1pq 
n21 1 a0q

n) is even, since the 
right side is divisible by q. This implies that 
p is even. This contradicts the assumption 
that p and q are relatively prime.

 57. Consider the remainder when x43 is divided 
by x2 1 x 1 1.

 59. Observe that every term of f (a) has the form 
cia

i and cia
i mod m 5 cib

i mod m. To prove 
the second statement, assume that there is 
some integer k such that f (k) 5 0. If k is 
even, then because k mod 2 5 0, we have by 
the first statement 0 5 f(k) mod 2 5 f(0) 
mod 2 so that f(0) is even. This shows that k 
is not even. If k is odd, then k mod 2 5 1, so 
by the first statement f(k) 5 0 is odd. This 
contradiction completes the proof.

 61. A solution to x25 2 1 5 0 in Z37 is a solution 
to x25 5 1 in U(37). So, by Corollary 2 of  
Theorem 4.1, |x| divides 25. Moreover, we 
must also have that |x| divides |U(37)| 5 36.

Chapter 17

Experience enables you to recognize a mistake 
when you make it again.

franklin p. jones*

  1. Use Theorem 17.1.
  3. If f(x) is not primitive, then f(x) 5 ag(x), 

where a is an integer greater than 1. Then a 
is not a unit in Z[x] and f(x) is reducible.

  5. a. If f(x) 5 g(x)h(x), then af(x) 5 ag(x)h(x).

  b.  If f(x) 5 g(x)h(x), then f(ax) 5 g(ax)
h(ax).

  c.  If f(x) 5 g(x)h(x), then f(x 1 a) 5 g(x 1 
a)h(x 1 a).

  d. Try a 5 1.
  7. Suppose that r � 1/r � 2k � 1 where k is 

an integer. Then r2 � 2kr � r � 1 � 0. It 
follows from Exercise 4 of this chapter that 
r is an integer. But the mod 2 irreducibility 
test shows that the polynomial x2 2 (2k 1 1) 
x � 1 is irreducible over Q and an irreduc-
ible quadratic polynomial cannot have a 
zero in Q.

  9. Use part a Exercise 5 and clear fractions.
 11. Find an irreducible polynomial p(x) of de-

gree 2 over Z5. Then Z5[x]/kp(x)l is a field of 
order 25.

 13. Note that 21 is a zero. No, since 4 is not a 
prime.

 15. Let f (x) 5 x4 1 1 and g(x) 5 f (x 1 1) 5 x4 
1 4x3 1 6x2 1 4x 1 2. Then f (x) is irreduc-
ible over Q if g(x) is. Eisenstein’s  Criterion 
shows that g(x) is irreducible over Q. To see 
that x4 1 1 is  reducible over R, observe that 
x82 1 5 (x4 1 1)(x42 1), so any complex 
zero of x4 1 1 is a complex zero of x82 1. 
Also note that the complex zeros of x4 1 1 
must have order 8 (when considered as an 
element of C). Let v  5 22/2 1 i22/2. 
Then Example 2 in Chapter 16 tells us that 
the complex zeros of x4 1 1 are v, v3, v5, 
and v7, so x4 1 1 5 (x 2 v) (x 2 v3)(x 2 
v5)(x 2 v7). But we may pair these factors 
up as ((x 2 v) (x 2 v7)) ((x 2 v3)(x 2 v5)) 
5 (x2222 x 1 1) . (x2 1 22 x 11) to fac-
tor using reals (see DeMoivre’s Theorem, 
Example 12 in Chapter 0).

 17. If there is an a in Zp such that a2 5 21, then 
x4 1 1 5 (x2 1 a)(x2 2 a).

  If there is an a in Zp such that a2 5 2, then 
x4 1 1 5 (x2 1 ax 1 1)(x2 2 ax 1 1).

  If there is an a in Zp such that a2 5 22, then 
x4 1 1 5 (x2 1 ax 2 1)(x2 2 ax 2 1).

  To show that one of these three cases must 
occur, consider the group homomorphism 
from Zp* to itself given by x → x2. Since the 
kernel is {1, 21}, the image H has index 2 
(we may assume that p 2 2). Suppose that 
neither 21 nor 2 belongs to H. Then, since 
there is only one coset other than H, we have 
21H 5 2H. Thus, H 5 (21H)(21H) 5 
(21H)(2H) 5 22H, so that 22 is in H.
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 19. (x 1 3)(x 1 5)(x 1 6)
 21. 1 has multiplicity 1, 3 has multiplicity 2.
 23. a.  Consider the number of distinct 

 expressions of the form (x 2 c)(x 2 d).
  b.  Reduce the problem to the case 

 considered in part a.
 25. Use Exercise 24, and imitate Example 10.
 27. Map Z3[x] onto Z3[i] by f (x) → f (i). This is a 

ring homomorphism with kernel kx2 1 1l.
 29. x2 1 1, x2 1 x 1 2, x2 1 2x 1 2
 31. We know that an(r/s)n 1 an21(r/s)n21 1 . . . 

1 a0 5 0. So anr
n 1 san21r

n21 1 . . . 1 sna0 
5 0. This shows that s | anr

n and r | sna0. 
Now use Euclid’s Lemma and the fact that r 
and s are relatively prime.

 33. Suppose that p1x2 can be written in the form 
g1x2h1x2 where deg g1x2 6  deg p1x2 and 
deg h1x2 6 deg p1x2 with g1x2, h1x2 [ F�x�. 
By Theorem 14.4 F�x�/kp1x2l is a field with 
0 � kp1x2l � p1x2 � kp1x2l � g1x2h1x2 �  
kp1x2l � 1g1x2 � kp1x2l2 1h1x2 � kp1x2l2. 
Thus g1x2 � kp1x2l � 0 � kp1x2l or 
h1x2 � kp1x2l � 0 � kp1x2l. This implies 
that g1x2 [ kp1x2l or h1x2 [ kp1x2l. In either 
case we have contradicted Theorem 16.4.

 35. Since ( f 1 g)(a) 5 f(a) 1 g(a) and ( f ? g)
(a) 5 f(a)g(a), the mapping is a 
 homomorphism. Clearly, p(x) belongs to the 
kernel. By Theorem 17.5, kp(x)l is a maxi-
mal ideal, so the kernel is kp(x)l.

 37. The mapping a → a 1 kp(x)l is an isomor-
phism.

 39. f(x) is primitive.
 41. The analysis is identical except that 0 # q, r, 

t, u # n. Now, just as when n 5 2, we have  
q 5 r 5 t 5 1, but this time 0 # u # n. 
 However, when u . 2, P(x) 5 x(x 1 1) 
(x2 1 x 1 1)(x2 2 x 1 1)u has (2u 1 2)x2u13 
as one of its terms. Since the coefficient of 
x2u13 represents the number of dice with the 
label 2u 1 3, the coefficient cannot be nega-
tive. Thus, u # 2, as before.

 43. Although the probability of rolling any par-
ticular sum is the same with either pair of 
dice, the probability of rolling doubles is dif-
ferent (1/6 with ordinary dice, 1/9 with Si-
cherman dice). Thus, the probability of go-
ing to jail is different. Other probabilities 
are also affected. For example, if in jail one 
cannot land on Virginia by rolling a pair of 

2’s with Sicherman dice, but one is twice as 
likely to land on St. James with a pair of 3’s 
with the Sicherman dice as with ordinary 
dice.

Chapter 18

If you have great talents, industry will improve 
them; if you have but moderate abilities, industry 
will supply their deficiency. 

sir joshua reynolds

  1. 1. |a2 2 db2| 5 0 implies a2 5 db2. Thus, 
a 5 0 5 b, since otherwise d 5 1 or d 
is divisible by the square of a prime.

  2. N((a 1 b2d)(a9 1 b92d)) 5 N(aa9 1 
dbb9 1 (ab9 1 a9b)2d) 5 |(aa9 1 dbb9)2 
2 d(ab9 1 a9b)2| 5 |a2a92 1 d 2b2b92 2 
da2b92 2 da92b2| 5 |a2 2 db2||a92 2 db92| 
5 N(a 1 b2d)N(a9 1 b92d).

  3. If xy 5 1, then 1 5 N(1) 5 N(xy) 5 N(x)
N(y) and N(x) 5 1 5 N(y). If N(a 1 b2d) 
5 1, then 61 5 a2 2 db2 5 (a 1 b2d)(a 2 
b2d) and a 1 b2d is a unit.

  4. This property follows directly from 
 properties 2 and 3.

   3. Let I 5 <Ii. Let a, b [ I and r [ R. Then 
a [ Ii for some i and b [ Ij for some j. 
Thus, a, b [ Ik, where k 5 max{i, j}. So, a 
2 b [ Ik # I and ra, ar [ Ik # I.

  5. Clearly, kabl # kbl. If kabl 5 kbl, then b 5 
rab, so that 1 5 ra and a is a unit.

  If a is a unit then b 5 a21 (ab) [ kabl. Thus 
kbl # kabl

  7. Say x 5 a 1 bi and y 5 c 1 di. Then
xy 5 (ac 2 bd ) 1 (bc 1 ad )i.

  So
d(xy) 5 (ac 2 bd )2 1 (bc 1 ad )2 5 (ac)2 1 

(bd )2 1 (bc)2 1 (ad )2.
  On the other hand,
  d(x)d(y) 5 (a2 1 b2)(c2 1 d2) 5 a2c2 1 

b2d2 1 b2c2 1 a2d2.
  9. Suppose a 5 bu, where u is a unit. Then d(b) 

# d(bu) 5 d(a). Also, d(a) # d(au21) 5 d(b).
 11. m 5 0 and n 5 21 give q 5 2i, r 5 22 2 2i.
 13. 3 ? 7 and 11 � 22�52 11 � 22�52. Mimic 

Example 8 to show that these are 
 irreducible.

 15. Observe that 10 5 2 ? 5 and 10 5 
12 � 2�62 12 � 2�62 and mimic 
 Example 8. A PID is a UFD.
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 17. Suppose 3 5 ab, where a, b [ Z[i] and 
 neither is a unit. Then 9 5 d(3) 5 d(a)d(b), 
so that d(a) 5 3. But there are no integers 
such that a2 1 b2 5 3. Observe that 2 5 
2i(1 1 i)2 and 5 5 (1 1 2i)(1 2 2i).

 19. Use Exercise 1 with d 5 21. 5 and 1 1 2i; 
13 and 3 1 2i; 17 and 4 1 i.

 21. Mimic Example 1.

 23. 1�1 � 252 11 � 252 5 4 5 2 ? 2. Now use 

Exercise 22.
 25. Use the fact that x is a unit if and only if 

N(x) 5 1.

 27. 1 5 N (ab) 5 N(a)N(b), so that N(a) 5 1 5 
N(b).

 29. Suppose that bc 5 pt in Zn. Then there exists 
an integer k such that bc 5 pt 1 kn. This 
implies that p divides bc in Z, and by 
 Euclid's Lemma we know that p divides b or 
p divides c.

 31. See Example 3.
 33. p | (a1a2 

. . . an21)an implies that p | a1a2 
. . . an21 

or p | an. Thus, by induction, p divides some ai.
 35. Use Exercise 10 and Theorem 14.4.
 37. Suppose R satisfies the ascending chain 

 condition and there is an ideal I of R that is 
not finitely generated. Then pick a1 [ I. Since 
I is not finitely generated, ka1l is a proper sub-
set of I, so we may choose a2 [ I but a2 o 
ka1l. As before, ka1, a2l is proper, so we may 
choose a3 [ I but a3 o ka1, a2l. Continuing in 
this fashion, we obtain a chain of infinite 
length ka1l , ka1, a2l , ka1, a2, a3l , . . ..

Now suppose every ideal of R is finitely 
generated and there is a chain I1 , I2 , I3 , 
. . .. Let I 5 <Ii. Then I 5 ka1, a2, . . . , anl. 
Since I 5 <Ii, each ai belongs to some mem-
ber of the union, say Ii9. Letting k 5 max {i9 
| i 5 1, . . . , n}, we see that all ai [ Ik. Thus, 
I # Ik and the chain has length at most k.

 39. Say I 5 ka 1 bil. Then a2 1 b2 1 I 5 (a 1 
bi)(a 2 bi) 1 I 5 I and a2 1 b2 [ I. For any  
c, d [ Z, let c 5 q1(a

2 1 b2) 1 r1 and d 5 
q2(a

2 1 b2) 1 r2, where 0 # r1, r2 , a2 1 b2. 
Then c 1 di 1 I 5 r1 1 r2i 1 I.

 41. N16 � 22�72 � 64 � N11 � 32�72. For 
the other part, use Exercise 25.

 43. Theorem 18.1 shows that primes are irreduc-
ible. So, assume that a is an irreducible in a 
UFD R and that a | bc in R. We must show 
that a | b or a | c. Since a | bc, there is an ele-
ment d in R such that bc 5 ad. Now replace 

b, c, and d by their factorizations as a prod-
uct of irreducibles and use uniqueness.

 45. See Exercise 21 in Chapter 0.
 47. 13 5 (2 1 3i)(2 2 3i); 5 1 i 5 (1 1 i)((3 22i)

Chapter 19

When I was young I observed that nine out of 
 every ten things I did were failures, so I did ten 
times more work.

george bernard shaw

  1. Rn has basis {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), 
. . . , (0, 0, . . . , 1)}; M2(Q) has basis

 
e c 1 0

0 0
d , c 0 1

0 0
d , c 0 0

1 0
d , c 0 0

0 1
d f ;

  Zp[x] has basis {1, x, x2, . . .}; C has basis {1, i}.
  3. (a2x

2 1 a1x 1 a0) 1 (a2 9x
2 1 a1 9x 1 a0 9) 5 

(a2 1 a2 9)x
2 1 (a1 1 a1 9)x 1 (a0 1 a09) and  

a(a2x
2 1 a1x 1 a0) 5 aa2x

2 1 aa1x 1 aa0. A 
basis is {1, x, x2}. Yes.

  5. Linearly dependent, since 23(2, 21, 0) 2 
(1, 2, 5) 1 (7, 21, 5) 5 (0, 0, 0).

  7. Suppose au 1 b(u 1 v) 1 c(u 1 v 1 w) 5 0. 
Then (a 1 b 1 c)u 1 (b 1 c)v 1 cw 5 0. 
Since {u, v, w} are linearly independent, we 
obtain c 5 0, b 1 c 5 0, and a 1 b 1 c 5 
0. So, a 5 b 5 c 5 0.

  9. If the set is linearly independent, it is a 
 basis. If not, then delete one of the vectors 
that is a linear combination of the others 
(see Exercise 8). This new set still spans V. 
Repeat this process until you obtain a linearly 
independent subset. Since the set is finite, 
you will eventually obtain a linearly 
 independent set that still spans V.

 11. Let u1, u2, u3 be a basis for U and w1, w2, w3 
be a basis for W. Use the fact that u1, u2, u3, 
w1, w2, w3 are linearly dependent over F. 
In general, if dim U 1 dim W . dim V, 
then U > W 2 {0}.

 13. no
 15. yes; 2

 
17. c a a � b

a � b b
d � c a� a� � b�

a� � b� b�
d  � 

c a � a� a � b � a� � b�

a � b � a� � b� b � b�
d  and 

c c a a � b

a � b a
d � c ac ac � bc

ac � bc bc
d .

 19. Suppose B is a basis. Then every member of 
V is some linear combination of elements of 

A21Selected Answers

57960_ans_ptg01_A01-A32.indd   21 10/28/15   12:42 PM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



B. If a1v1 1 . . . 1 anvn 5 a 91 v1 1 . . . 1 
a 9n vn, where vi [ B, then (a1 2 a 91)v1 1 . . . 1 
(an 2 an9)vn 5 0 and ai 2 a 9i  5 0 for all i. 
Conversely, if every member of V is a unique 
linear combination of  elements of B, cer-
tainly B spans V. Also, if a1v1 1 . . . 1 anvn 
5 0, then a1v1 1 . . . 1 anvn 5  
0v1 1 . . . 1 0vn and ai 5 0 for all i.

 21. Since w1 5 a1u1 1 a2u2 1 . . . 1 anun and a1 
2 0, we have u1 5 a1

21(w1 2 a2u2 2 . . . 2 
anun), and therefore u1 [ kw1, u2, . . . , unl. 
Clearly, u2, . . . , un [ kw1, u2, . . . , unl. 
Hence every linear combination of  
u1, . . . , un is in kw1, u2, . . . , unl.

 23. {(1, 0, 1, 1), (0, 1, 0, 1)}
 25. Study the proof of Theorem 19.1.
 27. If V and W are vector spaces over F, then 

the mapping must preserve addition and 
 scalar multiplication. That is, T: V → W 
must satisfy T(u 1 v) 5 T(u) 1 T(v) for all 
vectors u and v in V, and T(au) 5 aT(u) for 
all vectors u in V and scalars a in F. A 
 vector space isomorphism from V to W is a 
one-to-one linear transformation from V 
onto W.

 29. Suppose v and u belong to the kernel and a is 
a scalar. Then T(v 1 u) 5 T(v) 1 T(u) 5 0 1 
0 5 0 and T(av) 5 aT(u) 5 a ? 0 5 0.

 31. Let {v1, v2, . . . , vn} be a basis for V. Map 
a1v1 1 a2v2 1 . . . 1 anvn to (a1, a2,. . . , an).

 33. No, for 1 is not in the span of such a set.
 35. Write a1f � a2f� � p � anf 

1n2 � 0 and 
take the derivative n times to get a1 � 0. 
Similarly, get all other a� ˛s � 0. So, the set is 
linearly independent and has the same di-
mension as Pn.

 37. Suppose that V � h n

i�1Vi where n is mini-
mal and F is the field. Then no Vi is the 
union of the other Vj’s for otherwise n is not 
minimal. Pick v1 [ V1 so that v1 [ Vj for all 
j ? 1. Pick v2 [ V2 so that v2 [ Vj for all 
j ? 2. Consider the infinite set 
L � 5v1 � av2 | a[F6. We claim that each 
member of L is contained in at most one Vi. 
To verify this suppose both u � v1 � av2 
and w � v1 � bv2 belong to some Vi. Then 
u � w � 1a � b2v2[Vi h  V2. By the way 
that v2 was chosen this implies that i � 2. 
Also, bu � aw � 1b � a2v1[Vi h  V1, 
which implies that i � 1. This contradiction 
establishes the claim. Finally, since each 

member of L belongs to at most one Vi, the 
union of the Vi has at most n elements of L. 
But the union of the Vi is V and V contains L.

Chapter 20

All things are difficult before they are easy.
thomas fuller 

  1. {a52/3 1 b51/3 1 c | a, b, c e Q}.
  3. Q12�32
  5. Q12�32 
  7. Since ac 1 b [ F(c) we have F(ac 1 b) # 

F(c). But c 5 a21(ac 1 b) 2a21b, so F(c) 

# F(ac 1 b).
  9. a5 5 a2 1 a 1 1; a22 5 a2 1 a 1 1; a100 5 a2

 11. The set of all expressions of the form

  (anp
n 1 an21p

n21 1 . . . 1 a0)/(bmpm 1 
bm21p

m21 1 . . . 1 b0),

  where bm 2 0.
 13. x7 2 x 5 x(x6 2 1) 5 x(x3 1 1)(x3 2 1) 5 

x(x 2 1)3(x 1 1)3; x10 2 x 5 x(x9 2 1) 5 
x(x 2 1)9 (see Exercise 49 in Chapter 13).

 15. Hint: Use Exercise 49 in Chapter 13.
 17. a 5 4/3, b 5 2/3, c 5 5/6
 19. Use the fact that 1 1 i 5 2(4 2 i) 1 5 and 

4 2 i 5 5 2 (1 1 i).
 21. If the zeros of f(x) are a1, a2, . . . , an, then the 

zeros of f(x 1 a) are a1 2 a, a2 2 a, . . . , an 2 
a. Now use Exercise 20.

 23. Q and Q(22)
 25. 64
 27. Let F 5 Z3[x]/kx3 1 2x 1 1l and denote the 

cosets x 1 kx3 1 2x 1 1l by b and 2 1  
kx3 1 2x 1 1l by 2. Then x3 1 2x 1 1 5 
(x 2 b)(x 2 b 2 1)(x 1 2b 1 1).

 29. Suppose that f: Q(2�3) → Q(23) is an 
isomorphism. Since f(1) 5 1, we have 
f(23) 5 23.

  Then 23 5 f(23) 5 f( 2�32�3) 5  
[f( 2�3)]2. This is impossible, since  
f( 2�3) is a real number.

 31. Use long division.
 33. Use Theorem 20.5.
 35. Use Theorem 20.5.
 37. Let K be the intersection of all subfields of 

E that contain F and the set {a1, a2, . . ., an}. 
It follows from the subfield test given in 
 Exercise 29 Chapter 13 that K is a subfield 
of E and, by the definition, that K contains F 
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and the set {a1, a2, . . ., an}. Since F (a1, a2, . 
. ., an) is the smallest such field we have 
F(a1, a2, . . ., an) # K. Moreover, since the 
field F(a1, a2, . . ., an) is one member of the 
intersection we have K # F(a1, a2, . . ., an}. 
This proves that K 5 F(a1, a2, . . ., an}.

 39. Since |(Z2[x]/kf(x)l)*| 5 31, every noniden-
tity is a generator.

 41. Use the Fundamental Theorem of Field The-
ory (Theorem 20.1) and the Factor Theorem 
(Corollary 2 of Theorem 16.2).

 43. Mimic the argument given in Example 9 of 
this chapter.

Chapter 21

A good proof is one which makes us wiser.
yu. manin

  1. It follows from Theorem 21.1 that if p(x) and 
q(x) are both monic irreducible polynomials 
in F[x] with p(a) 5 q(a) 5 0, then deg 
p(x) 5 deg q(x). If p(x) 2 q(x), then ( p 2 q)
(a) 5 p(a) 2 q(a) 5 0 and deg (p(x) 2 q(x)) 
, deg p(x), contradicting  Theorem 21.1. To 
prove Theorem 21.3, use the Division Algo-
rithm for F[x] (Theorem 16.2).

  3. Note that 3Q12n 22:Q4 5 n and use Theorem 
21.5.

  5. Use Exercise 4.
  7. Suppose Q(2a) 5 Q(2b). If 2b [ Q, then 

2a [ Q and we may take c 5 2a/2b. If 
2b o Q, then 2a o Q. Write 2a 5 r 1 s
2b. It follows that r 5 0 and a 5 bs2. The 
other direction  follows from Exercise 20 in 
Chapter 20.

  9. Observe that [F(a):F] must divide [E:F].
 11. Pick a in K but not in F. Now use Theorem 

21.5.
 13. Mimic Example 5.
 15. Mimic Example 6.
 17. Suppose E1 > E2 2 F. Then [E1:E1 > E2]

[E1 > E2:F] 5 [E1:F] implies [E1:E1 > E2] 
5 1, so that E1 5 E1 > E2. Similarly, E2 5 
E1 > E2.

 19. Observe that F1a2 � F11 � a�12. 
 21. We need only show that if a[R, then a�1[R. 

But a�1[F1a2 8 R (see Theorem 20.3).
 23. Every element of F1a2 can be written in the 

form f1a2/g1a2, where f1x2,g1x2[F�x�. If 
f1a2/g1a2 is algebraic and not a member of F, 

then there is some h1x2[F�x� such that 
h1f1a2/g1a2 2 � 0. By clearing fractions and 
collecting like powers of a, we obtain a poly-
nomial in a with coefficients from F equal to 
0. But then a would be algebraic over F.

 25. Note that a is a zero of x3 � a3 over F1a32. 
For the second part, take F � Q, a � 1; 
F � Q, a � 1�1 � i232/2; F � Q, a � 322.

 27. E must be an algebraic extension of  R, so 
that E 8 C. But then �C:E��E:R� � �C:R� � 2.

 29. Let a be a zero of p1x2 in some extension of 
F. First note �E1a2:E� � �F1a2:F� � ˛deg ˛p1x2. 
Then observe that 
�E1a2:F1a2��F1a2:F� � �E1a2:F� � �E1a2:E��E:F�. 
This implies that deg p1x2 divides �E1a2:E�, 
so that deg p1x2 � �E1a2:E�. It now follows 
from Theorem 20.3 that p1x2 is irreducible 
over E.

 31. Hint: If a 1 b and ab are algebraic, then so 
is 21a � b22 � 4ab.

 33. 2b2 � 4ac
 35. Use the Factor Theorem.
 37. Say a is a generator of F*. If char F 5 0, then 

the prime subfield of F is isomorphic to Q. 
Since Q* is not cyclic, we have that  
F 5 Zp(a), and it suffices to show that a is 
 algebraic over Zp. If a [ Zp, we are done. 
Otherwise, 1 1 a 5 ak for some k 2 0.  
If k . 0, we are done. If k , 0, then a2k 1  
a12k 5 1 and we are done.

 39. If [K:F] 5 n, then there are elements v1, v2, 
. . . , vn in K that constitute a basis for K over 
F. The mapping a1v1 1 . . . 1 anvn → (a1, . . 
. , an) is a vector space isomorphism from K 
to F n. If K is isomorphic to Fn, then the n ele-
ments in K corresponding to (1, 0, . . . , 0),  
(0, 1, . . . , 0), . . . , (0, 0, . . . , 1) in F n consti-
tute a basis for K over F.

 41. Observe that [F(a, b):F(a)] 5 [F(a)(b):F(a)] 
# [F(b):F] # [F(a)(b):F(b)] [F(b):F] 5  
[F(a)(b):F] 5 [F(a, b):F].

 43. Observe that K 5 F(a1, a2, . . . , an), where 
a1, a2, . . . , an are the zeros of the polyno-
mial. Now use Theorem 21.5.

 45. Elements of Q(p) have the form (ampm 1 
am21p

m21 1 . . . 1 a0)/(bnp
n 1 bn21p

n21 1  
. . . 1 b0), where the a’s and b’s are rational 
 numbers. So, if 22 [ Q1p2, we have an 
 expression of the form 2(bnp

n 1 bn21p
n21 1  

. . . 1 b0)
2 5 (ampm 1 am21p

m21 1 . . . 1 a0)
2. 
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Equating the lead terms of both sides, we have 

2b2
np

2n � a2
mp

2m. But then we have m � n, 

and 22 is equal to the rational number am/bn.
 47. If f1am2 � 0 for some polynomial f1x2 in 

F�x�, then a is a zero of g1x2 � f1xm2 which 
is in F�x�.

 49. Use Exercise 47.

Chapter 22

Difficulties strengthen the mind, as labor does 
the body.

seneca 

  1. [GF(729):GF(9)] 5 3; [GF(64):GF(8)] 5 2
  3. The lattice of subfields of GF(64) looks like 

Figure 21.3 with GF(2) at the bottom, 
GF(64) at the top, and GF(4) and GF(8) on 
the sides.

 5. From a3 � a2 � 1 � 0 we obtain 
a3 � a2 � 1 and 
a4 � a3 � a � a2 � a � 1. From 
1a � 12x � a � a2 � 1 we have 
1a � 12x � a2 � a � 1. By Exercise 4 we 
know that the multiplicative inverse of 
a � 1 is a2. So, the we have reduced the 
problem to x � a4 � a3 � a2 � a2 � a.

 7. 2a 1 1
 9. Use Theorem 22.2.
 11. The only possibilities for f(x) are x3 1 x 1 1 

and x3 1 x2 1 1. See Exercise 8 in Chapter 20 
for the first case. See Example 2 in this chap-
ter for the second case.

 13. Use Exercise 44 in Chapter 15 and Corollary 
4 of Lagrange’s Theorem (Theorem 7.1).

 15. Use the fact that if g(x) is an irreducible fac-
tor of x8 2 x over Z2 and deg g(x) 5 m, then 
the field Z2[x]/kg(x)l has order 2m and is a 
subfield of GF(8). Now use Theorem 22.3.

 17. Since GF(2n)* is a cyclic group of order  
2n 2 1 we seek the smallest n such that  
2n  2 1 is divisible by 5. By observation,  
n 5 4.

 19. Direct calculations show that given x3 1 
2x 1 1 5 0, we have x2 2 1 and x13 2 1.

 21. Direct calculations show that x13 5 1, 
whereas (2x)2 2 1 and (2x)13 2 1. Thus, 
2x is a generator.

 23. First observe that for any field F, the set F*  
is a group under multiplication. Now use 
Theorem 22.2 and Theorem 4.3.

 25. Find a quadratic irreducible polynomial p(x) 
over Z3; then Z3[x]/kp(x)l is a field of order 9.

 27. Let a, b [ K. Then, by Exercise 49b in 
Chapter 13, (a 2 b)pm

 5 apm
 2 bpm

 5  
a 2 b. Also, (ab)pm

 5 apm
 bpm

 5 ab. So, K is 
a subfield.

 29. Consider xpn21 2 1 and use Corollary 4 of 
Lagrange’s Theorem (Theorem 7.1).

 31. Structurally identical
 33. Consider g(x) 5 x2 2 a. Note that |GF(p)

[x]/kg(x)l| 5 p2, so that g(x) has a zero in 
GF(p2). Now use Theorem 22.3.

 35. Use Exercise 13.
 37. Since F* is a cyclic group of order 124, it 

has a unique element of order 2.
 39. See the solution for Exercise 27.
 41. If bp�1 � a then for every c ? 0 in 

Zp then 1bc2p�1 � bp�1cc�1 � bp�1 � a. 
There cannot be any others because the 
polynomial xp�1 � a has at most p � 1 
 solutions in a field. (See Theorem 16.3.)

 43. Use Corollary 2 of Theorem 22.2.
 45. Consider the field of quotients of Zp[x]. The 

polynomial f(x) 5 x is not the image of 
any element.

 47. Observe that p 2 1 5 2 1 has multiplica-
tive order 2 and a(pn21)/2 is the unique ele-
ment in kal of order 2.

 49. Since p mod 4 5 1, we have pn mod 4 5 1, 
and GF(pn)* is a cyclic group of order pn 2 1.

Chapter 23

Why, sometimes I’ve believed as many as six im-
possible things before breakfast .

lewis carroll

 1. To construct a 1 b, first construct a. Then 
use a straightedge and compass to extend a 
to the right by marking off the length of b. 
To construct a 2 b, use the compass to mark 
off a length of b from the right endpoint of a 
line of length a.

 3. Let y denote the length of the hypotenuse of 
the right triangle with base 1, and let x de-
note the length of the hypotenuse of the right 
triangle with base |c|. Then y2 5 1 1 d2, y2 1 
x2 5 (1 1 |c|)2, and |c|2 1 d2 5 x2. So, 1 1 
2|c| 1 |c|2 5 1 1 d2 1 |c|2 1 d2, which 
simplifies to |c| 5 d2.

  5. Use sin2 u 1 cos2 u 5 1.
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  7. Use cos 2u 5 2 cos2 u 21.
  9. Use sin(a 2 b) 5 sin a cos b 2 cos a sin b 

and Exercise 8.
 11. Solving two linear equations with coefficients 

from F involves only the operations of F.
 13. Use Theorem 17.1 and Exercise 27 in 

 Chapter 17.
 15. If so, then an angle of 40° is constructible. 

Now use Exercise 10.
 17. This amounts to showing that 2p is not 

constructible. But if 2p is constructible, so 
is p.  However, [Q(p):Q] is infinite.

 19. No, since [Q(23 3  ):Q] 5 3.
 21. No, since [Q(23 p):Q] is infinite.

Chapter 24

Difficulty, my brethren, is the nurse of  greatness.
william cullen bryant

  1. a 5 eae21; cac21 5 b implies a 5 c21bc 5 
c21b(c21)21; a 5 xbx21 and b 5 ycy21 
 imply a 5 xycy21x21 5 xyc(xy)21.

  3. Note that |a2| � |a|/2 and appeal to Exer-
cise 2.

 5. Observe that T(xC(a)) 5 xax21 5 yay21 5 
T(yC(a)) if and only if y21xa 5 ay21x, 
which is true if and only if y21x [ C(a), 
which in turn is true if and only if yC(a) 5 
xC(a). This proves that T is well-defined and 
 one- to- one. T is onto by definition.

 7. Say cl(e) and cl(a) are the only two conjugacy 
classes of a group G of order n. Then cl(a) has 
n 2 1 elements all of the same order, say m. If 
m 5 2, then it follows from Exercise 47 in 
Chapter 2 that G is Abelian. But then cl(a) 5 
{a} and so n 5 2. If m . 2, then cl(a) has at 
most n 2 2  elements, since conjugation of a 
by e, a, and a2 each yields a.

  9. Consider the correspondence T from the left 
cosets of N(H) in G to the conjugates of H 
in G given by T(xN(H)) 5 xHx21.

 11. Say cl(x) 5 {x, g1xg1
21, g2xg2

21, …, 
gkxgk

21}. If x21 5 gixgi
21, then for each 

gjxgj
21 in cl(x), we have (gjxgj

21)21 5 
gjx

21gj
21 5 gj(gixgi

21)gj
21 [ cl(x). Because 

|G| has odd order, gjxgj
21 Z (gjxgj

21)21.  
It follows that |cl(x)| is even. But |cl(x)| 
 divides |G|.

 13. Part a is not possible by the corollary of 
Theorem 24.2. Part b is not possible because 

it implies that the center would have order 2, 
and 2 does not divide 21. Part c is the class 
equation for D5. Part d is not possible be-
cause of Corollary 1 of Theorem 24.1.

 15. Use Theorem 7.2.
 17. Use Example 5 of Chapter 9 and Theorem 

7.2.
 19. Use Theorem 24.5 and its corollary.
 21. 8
 23. 15
 25. The number of Sylow q-subgroups has the 

form 1 � qk and divides p. So, k � 0.
 27. 10; k(123)l, k(234)l, k(134)l, k(345)l, k(245)l
 29. A group of order 100 has 1, 5, or 25 sub-

groups of order 4; exactly one subgroup of 
order 25 (which is normal); at least one sub-
group of order 5; and at least one subgroup 
of order 2.

 31. Let H be a Sylow 5-subgroup. Since the 
number of Sylow 5-subgroups is 1 mod 5 and 
divides 7 ∙ 17, the only possibility is 1. So, 
H is normal in G. Then by the N/C  Theorem 
(Example 16 of Chapter 10), |G/C1H2| 
 divides both 4 and |G|. Thus C(H) � G.

 33. If p does not divide q � 1, and q does not 
divide p2 � 1, then a group of order p2q is 
Abelian.

 35. Sylow’s Third Theorem implies that the Sylow 
3- and Sylow 5-subgroups are unique. Pick any 
x not in the union of these. Then |x| 5 15.

 37. By Sylow’s Third Theorem, n17 5 1 or 35. 
Assume n17 5 35. Then the union of the Sy-
low 17-subgroups has 561 elements. By Sy-
low’s Third Theorem, n5 5 1. Thus, we may 
form a cyclic subgroup of order 85 (Exercise 
57 in Chapter 9 and Theorem 24.6). But then 
there are 64 elements of order 85. This gives 
too many  elements.

 39. Use the G/Z Theorem (Theorem 9.3) and 
Theorem 24.6.

 41 . Let H be the Sylow 3-subgroup and suppose 
that the Sylow 5-subgroups are not normal. 
By  Sylow, there must be six Sylow 
5- subgroups, call them K1, . . . , K6. These 
subgroups have 24 elements of order 5. 
Also, each of the cyclic subgroups HK1, . . . , 
HK6 has eight generators. Thus, there are 48 
elements of order 15, which results in more 
than 60 elements in the group.

 43. By Theorem 24.2 and Theorem 9.5, Z(G) 
has an element x of order p. By induction, 
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the group G/kxl has normal subgroups of or-
der pk for every k between 1 and n 2 1, in-
clusively. Now use Exercise 51 in Chapter 9 
and Exercise 51 of Chapter 10.

 45. Pick x [ Z(G) such that |x| 5 p. If x [ H, 
by induction, N(H/kxl) . H/kxl, say ykxl [ 
N(H/kxl) but not H/kxl. Now show y [ N(H) 
but not H. If x o H, then x [ N(H), so that 
N(H) . H.

 47. Since 3 divides |N1K2| we know that N1K2 
has a subgroup H1 of order 3. Then, by 
 Example 5 in Chapter 9, and Theorem 24.6, 
H1K is a cyclic group of order 15. Thus, 
K 8 N1H12 and therefore 5 divides |N1H12|. 
And since H and H1 are conjugates it fol-
lows from Exercise 46 that 5 divides |N1H2|.

 49. Sylow’s Third Theorem shows that all the 
Sylow subgroups are normal. Then Theorem 
7.2 and Example 5 of Chapter 9 ensure that G 
is the internal direct product of it Sylow sub-
groups. G is cyclic because of Theorem 9.6 
and Corollary 1 of Theorem 8.2. G is Abelian 
because of Theorem 9.6 and Exercise 4 in 
Chapter 8.

 51. Automorphisms preserve order.
 53. That |N (H)| 5 |N (K )| follows directly from 

the last part of Sylow's Third Theorem and 
Exercise 9.

 55. Normality of H implies cl(h) # H for h in 
H. Now observe that h [ cl(h). This is true 
only when H is normal.

 57. Suppose that G is a group of order 12 that 
has nine elements of order 2. By the Sylow 
theorems, G has three Sylow 2-subgroups 
whose union contains the identity and the 
nine elements of order 2. If H and K are 
both Sylow 2-subgroups, then by Theorem 
7.2, |H y K| 5 2. Thus, the union of the 
three Sylow 2-subgroups has at most seven 
elements of order 2, since there are three in 
H, two more in K that are not in H, and at 
most two more that are in the third but not 
in H or K.

 59. By Lagrange’s Theorem any nontrivial 
proper subgroup of G has order p or q. It fol-
lows from Theorem 24.5 and its corollary 
that there is exactly one subgroup of order q 
which is normal (for otherwise there would 
be 1q � 12 1q � 12 � q2 � 1 elements of or-
der q). On the other hand, there cannot be a 
normal subgroup of order p for then G 
would be an internal direct product of a cy-

clic group of q and a cyclic group of  order p, 
which is Abelian. So, by Theorem 24.5 there 
must be exactly q subgroups of order p.

 61. Note that any subgroup of order 4 in a group 
of order 4m where m is odd is a Sylow 2-sub-
group. By Sylow’s Third Theorem, the Sylow 
2-subgroups are conjugate and therefore iso-
morphic. S4 contains both the subgroups 
k(1234)l and {(1), (12), (34), (12) (34)}.

 63. By Sylow’s Third Theorem, the number of 
Sylow 13-subgroups is equal to 1 mod 13 
and divides 55. This means that there is 
only one Sylow 13-subgroup, so it is nor-
mal in G. Thus |N(H)/C(H)| 5 715/|C(H)| 
divides both 55 and 12. This forces 
715/|C(H)| 51 and therefore C(H) = G. 
This proves that H is contained in Z(G). 
Applying the same argument to K, we get 
that K is normal in G and |N(K)/C(K)| 5 
715/|C(K)| divides both 65 and 10. This 
forces 715/|C(K)| 5 1 or 5. In the latter 
case, K is not contained in Z(G).

Chapter 25

Sweet are the uses of adversity.
william shakespeare, As You Like It

  1. Use the 2 ? Odd Test.
  3. Use the Index Theorem.
  5. Suppose G is a simple group of order 525. 

Let L7 be a Sylow 7-subgroup of G. It 
 follows from Sylow’s theorems that |N(L 7)| 
5 35. Let L be a subgroup of N(L7) of or-
der 5. Since N(L7) is cyclic (Theorem 24.6), 
N(L) $ N(L 7), so that 35 divides |N(L)|. 
But L is contained in a Sylow 5-subgroup 
(Theorem 24.4), which is Abelian (see the 
corollary to Theorem 24.2). Thus, 25 
 divides |N(L)| as well. It follows that 175 
divides |N(L)|. The Index Theorem now 
yields a  contradiction.

  7. n11 5 12. Use the N/C Theorem (Example 
16 in Chapter 10) to show that there is an el-
ement of order 22; then use the Embedding 
Theorem and observe that A12 has no ele-
ment of order 22.

 9. Suppose that there is a simple group of or-
der 396 and L11 is a Sylow 11-subgroup. 
Use the N/C Theorem given in Example 16 
of Chapter 10 to show that C(L11) has an el-
ement of order 33, whereas A12 does not.
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 11. If we can find a pair of distinct Sylow 2-sub-
groups A and B such that |A > B| 5 8, then  
N(A > B) $ AB, so that N(A > B) 5 G. Now 
let H and K be any distinct pair of Sylow 
2-subgroups. Then 16 ? 16/|H > K| 5 |HK| 
# 112 (Theorem 7.2), so that |H > K| is at 
least 4. If |H > K| 5 8, we are done. So, as-
sume |H > K| 5 4. Then N(H > K) picks up 
at least 8 elements from H and at least 8 
from K (see Exercise 45 in Chapter 24). Thus, 
|N(H > K)| $ 16 and is divisible by 8. So, 
|N(H > K)| 5 16, 56, or 112. Since the latter 
two cases yield normal subgroups, we may 
assume |N(H > K)| 5 16. If N(H > K) 5 H, 
then |H > K| 5 8, since N(H > K) contains at 
least 8 elements from K. So, we may assume 
that N(H > K) 2 H. Then, we may take  
A 5 N(H > K) and B 5 H.

 15. Use the Index Theorem.
 17. By Sylow’s third theorem we know that num-

ber of Sylow 5-subgroups is 6. This means 
that 6 is the index of the normalizer of a Sy-
low 5-subgroup. But then, by embedding the-
orem, G is isomorphic to a subgroup of A6 of 
order 120. This contradicts Exercise 16.

 19. Let a be as in the proof of the Generalized 
Cayley Theorem. Then Ker a # H and |G/
Ker a|  divides |G:H|!. Now show |Ker a| 5 
|H|. A subgroup of index 2 is normal.

 21. Since A5 is simple, if H is a proper normal 
subgroup of S5, then H > A5 5 A5 or {e}. 
But H > A5 5 A5 implies H 5 A5, whereas 
H > A5 5 {e} implies H 5 {e} or |H| 5 2. 
(See Exercise 23 in Chapter 5.) Now use 
Exercise 70 in Chapter 9 and Exercise 58 in 
Chapter 5.

 23. By direct computation, show that PSL(2, Z7) 
has more than four Sylow 3-subgroups, more 
than one Sylow 7-subgroup, and more than 
one Sylow 2-subgroup. Hint: Observe that

  c 1 4

1 5
d  has order 3. Now use conjugation to

  find four other subgroups of order 3; observe 

that ` c 5 5

1 4
d ` � 7

 and use conjugation to 

  find another subgroup of order 7; observe 

that ` c 5 1

3 5
d ` � 4 and use conjugation to 

  
find six more elements of order 4 (which guar-
antees that more than one Sylow 2-subgroup 
exists). Now argue as we did to show that A5 
is  simple. In the cases that the supposed nor-

mal subgroup N has  order 2 or 4, show that in 
G/N, the Sylow  7-subgroup is normal. But 
then, G has a  normal subgroup of order 14 or 
28, which were already ruled out.

 25. Mimic Exercise 24.
 27. Suppose there is a simple group of order 60 

that is not isomorphic to A5. The Index The-
orem  implies n2 2 1 or 3, and the Embed-
ding Theorem implies n2 2 5. Thus, n2 5 
15. Counting shows that there must be two 
 Sylow 2-subgroups whose intersection has 
order 2. Now mimic the argument used in 
showing that there is no simple group of 
 order 144 to show that the normalizer of this 
intersection has index 5, 3, or 1, but the Em-
bedding Theorem and the Index Theorem 
rule these out.

 29. Suppose there is such a simple group G. 
Since the number of Sylow q-subgroups is 
1 modulo q and divides p2, it must be p2. 
Thus there are p21q � 12 elements of order q 
in G. These elements, together with the p2 
 elements in one Sylow p-subgroup, account 
for all p2q elements in G. Thus, there cannot 
be another Sylow p-subgroup. But then the 
Sylow p-subgroup is normal in G.

 31. Consider the right regular representation of 
G. Let g be a generator of the Sylow 
2- subgroup and suppose that �G� � 2kn where 
n is odd. Then every cycle of the permutation 
Tg in the right regular representation of G has 
length 2k. This means that there are exactly n 
such cycles. Since each cycle is odd and there 
is an odd number of them, Tg is odd. This 
means that the set of even permutations in the 
regular representations has index 2 and is 
therefore normal. (See Exercise 23 in Chapter 
5 and Exercise 9 in Chapter 9).

Chapter 26

If you make a mistake, make amends.
Lou holtz

 1. u is related to u because u is obtained from 
itself by no insertions; if v can be obtained 
from u by inserting or deleting words of the 
form xx21 or x21x, then u can be obtained 
from v by reversing the procedure; if u can 
be  obtained from v and v can be obtained 
from w, then u can be obtained from w by 
obtaining first v from w and then u from v.
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  3.  b(a2N) 5  b(aN)a 5 a3bNa 5 a3b(aN)  
       5 a3a3bN

                 5  a6bN 5 a6Nb 5 a2Nb 5 a2bN
    b(a3N) 5  b(a2N)a 5 a2bNa 5 a2b(aN)  

       5 a2a3bN
                 5  a5bN 5 a5Nb 5 aNb 5 abN
      b(bN) 5 b2N 5 N
    b(abN) 5  baNb 5 a3bNb 5 a3b2N 5 a3N
  b(a2bN) 5  ba2Nb 5 a2bNb 5 a2b2N 5 a2N
  b(a3bN) 5  ba3Nb 5 abNb 5 ab2N 5 aN
  5. Let F be the free group on {a1, a2, . . . , an}. 

Let N be the smallest normal group contain-
ing {w1, w2, . . . , wt} and let M be the small-
est normal subgroup containing {w1, w2, . . . , 
wt, wt11, . . . , wt1k}. Then F/N < G and F/M 
< G. The homomorphism from F/N to F/M 
given by aN → aM induces a  homomorphism 
from G onto G. To prove the corollary, ob-
serve that the theorem shows that K is a ho-
momorphic image of G, so |K| # |G|.

  7. Clearly, a and ab belong to ka, bl, so ka, abl 
# ka, bl. Now show that a and b  belong to 
ka, abl.

  9. Show that |G| # 2n and that Dn satisfies the 
relations that define G.

 11. Since x2 5 y2 5 e, we have (xy)21 5 y21x21 5 
yx. Also, xy 5 z21yz, so (xy)21 5 (z21yz)21 
5 z21y21z 5 z21yz 5 xy.

 13. a. b6  b. b7a
 15. First observe that since 

xy � 1xy231xy24 � 1xy27 � 1xy241xy23 � yx, 
4 x  and y commute. Also, since 

y � 1xy24 � 1xy23xy � x1xy2 � x2y we know 
that x2 � e. Then y � 1xy24 � x4y4 � y4 and 
therefore, y3 � e. This shows that |G| � 6. 
But Z6 satisfies the defining relations with 
x � 3 and y � 2. So, G � Z6.

 17. Note that yxyx3 5 e implies that yxy21 5 x5 
and therefore kxl is normal. So, G 5 kxl x 
ykxl and |G| # 16. Use y2 5 e and yxyx3 5 
e, to prove that x2 [ Z(G). Then prove G is 
not Abelian and use Theorem 9.3 to show 
that |Z(G)| 2 8. Thus, Z(G) 5 kx2l. Finally, 
prove that (xy)2 5 x22, so that |xy| 5 8.

 19. Use the fact that the mapping from G onto 
G/N given by x → xN is a homomorphism.

21. For H to be a normal subgroup we must 
have yxy21 [ H 5 {e, y3, y6, y9, x, xy3, xy6, 
xy9}. But yxy21 5 yxy11 5 (yxy)y10 5 xy10.

 23. 6; the given relations imply that a2 5 e. G is 
isomorphic to Z6.

 25. 1, 2, and `

 27. ab 5 c 1 abc21 5 e
  cd 5 a 1 (abc21)cd 5 ae 1 bd 5 e 1  

d 5 b21

  da 5 b 1 bda 5 b2 1 ea 5 b2 1 a 5 b2

  ab 5 c 1 b3 5 c
  So G 5 kbl.
  bc 5 d 1 bb3 5 b21 1 b5 5 e. So |G| 5  

1 or 5.
  But Z5 satisfies the defining relations with 

a 5 1, b 5 3, c 5 4, and d 5 2.
 29. Z6

Chapter 27

If at first you don’t succeed—that makes you 
about average.

bradenton, [Florida] Herald

  1. If T is a distance-preserving function and 
the distance between points a and b is 
 positive, then the distance between T(a) and 
T(b) is positive.

  3. See Figure 1.5.
  5. 12
  7. 4n
  9. a. Z2  b. Z2 % Z2  c. G % Z2, where G 

is the plane symmetry group of a circle (see 
Exercise 55 of Chapter 3).

 11. 6
 13. An inversion in R3 leaves only a single point 

fixed, whereas a rotation leaves a line fixed.
 15. In R4, a plane is fixed. In Rn, a hyperplane 

of dimension n 2 2 is fixed.
 17. Create a coordinate system for the plane. Let 

T be an isometry; p, q, and r the three noncol-
linear points; and s any other point in the 
plane. Then the quadrilateral determined by 
T( p), T(q), T(r), and T(s) is congruent to the 
one formed by p, q, r, and s. Thus, T(s) is 
uniquely determined by T ( p), T(q), and T (r).

 19. a rotation

Chapter 28

The thing that counts is not what we know but 
the ability to use what we know.

leo l. spears

  1. Try xnym → (n, m).
  3. xy
  5. Use Figure 28.9.
  7. x2yzxz 5 x2yx21 5 x2x21y 5 xy; x23zxyz 5 

x23x21y 5 x24y
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  9. A subgroup of index 2 is normal.
 11. a. V  b. I  c. II  d. VI  e. VII  f. III
 13. cmm
 15. a. p4m  b. p3  c. p31m  d. p6m
17. The principal purpose of tire tread design is 

to carry water away from the tire. Patterns I 
and III do not have horizontal reflective 
 symmetry. Thus, these designs would not 
carry water away equally on both halves of 
the tire.

19. a. VI  b. V  c. I  d. III  e. IV  f. VII   
g. IV

Chapter 29

Failure is the key to success; each mistake 
teaches us something.

morihei ueshiba

  1. 6
  3. 30
  5. 13
  7. 45
  9. 126

 11. 
1

6
1n6 � 2 ? n � 2 ? n2 � n32

 13. For the first part, see Exercise 13 in Chapter 
6. For the second part, try D4.

 15. R0, R180, H, V act as the identity and R90, 
R270, D, D9 interchange L1 and L2.

Chapter 30

I am not bound to please thee with my answers.  
shakespeare, The Merchant of Venice

  1. 4 * (b, a)
  3. (m/2) * {3 * [(a, 0), (b, 0)], (a, 0), (e, 1), 3 * 

(a, 0), (b, 0), 3 * (a, 0), (e, 1)}
  5. a3b
  7. Both yield paths from e to a3b.
 11. Say we start at x. Then we know the vertices 

x, xs1, xs1s2, . . . , xs1s2 
. . . sn21 are distinct 

and x 5 xs1s2 
. . . sn. So if we apply the 

same sequence beginning at y, then cancel-
lation shows that y, ys1, ys1s2, . . . , ys1s2 

. . . 
sn21 are distinct and y 5 ys1s2 

. . . sn.
 13. If there were a Hamiltonian path from (0, 0) 

to (2, 0), there would be a Hamiltonian circuit 
in the  digraph, since (2, 0) 1 (1, 0) 5 (0, 0). 
This contradicts Theorem 30.1.

 15. a. If s1, s2, . . . , sn21 traces a Hamiltonian 
path and sisi11 

. . . sj 5 e, then the vertex s1s2 
. . . si21 appears twice. Conversely, if sisi11 

. . 
. sj 2 e, then the sequence e, s1, s1s2,  . . . , 
s1s2 

. . . sn21 yields the n  vertices  (otherwise, 
cancellation gives a  contradiction).

  b. This follows directly from part a.
 17. The sequence traces the digraph in a 

 clockwise fashion.
 19. Abbreviate (a, 0), (b, 0), and (e, 1) by a, b, 

and 1, respectively. A circuit is 4 * (4 * 1, a), 
3 * a, b, 7 * a, 1, b, 3 * a, b, 6 * a, 1, a, b, 3 * 
a, b, 5 * a, 1, a, a, b, 3 * a, b, 4 * a, 1, 3 * a, 
b, 3 * a, b, 3 * a, b.

 21. Abbreviate (R90, 0), (H, 0), and (R0, 1) by  
R, H, and 1, respectively. A circuit is 3 * (R, 
1, 1), H, 2 * (1, R, R), R, 1, R, R, 1, H, 1, 1.

 23. Abbreviate (a, 0), (b, 0), and (e, 1) by a, b, 
and 1, respectively. A circuit is 2 * (1, 1, a), 
a, b, 3 * a, 1, b, b, a, b, b, 1, 3 * a, b, a, a.

 25. Abbreviate (r, 0), ( f, 0), and (e, 1) by r, f, 
and 1, respectively. Then the sequence is r, 
r, f, r, r, 1, f, r, r, f, r, 1, r, f, r, r, f, 1, r, r, f, 
r, r, 1, f, r, r, f, r, 1, r, f, r, r, f, 1.

 27. m * [(n 2 1) * (0, 1), (1, 1)]
 29. Abbreviate (r, 0), ( f, 0), and (e, 1) by r, f, and 

1, respectively. A circuit is 1, r, 1, 1, f, r, 1, r, 
1, r, f, 1.

31. 5 * [3  * (1, 0), (0, 1)], (1, 0)
33. 12 * [(1, 0), (0, 1)]
 35. Letting V denote a vertical move and H  

a horizontal move and starting at (1,0) a 
 circuit is V,V, H,6 * 1V,V,V, H2.

 37. In the proof of Theorem 30.3, we used the 
hypothesis that G is Abelian in two places: 
We needed H to satisfy the induction hy-
pothesis, and we needed to form the factor 
group G/H. Now, if we assume only that G 
is Hamiltonian, then H also is Hamiltonian 
and G/H exists.

Chapter 31

We must view with profound respect the  infinite 
capacity of the human mind to resist the 
 introduction of useful knowledge.

thomas r. lounsbury

  1. wt(0001011) 5 3; wt(0010111) 5 4; 
wt(0100101) 5 3; etc.

  3. 1000110; 1110100
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  5. 000000, 100011, 010101, 001110, 110110, 
101101, 011011, 111000

  7. By using t = 1/2 in the proof of Theorem 
31.2 we have that all single errors can be de-
tected.

  9. Observe that a vector has even weight if and 
only if it can be written as a sum of an even 
number of vectors of weight 1.

 11. No, by Theorem 31.3.
 13. 0000000, 1000111, 0100101, 0010110, 

0001011, 1100010, 1010001, 1001100, 
0110011, 0101110, 0011101, 1110100, 
1101001, 1011010, 0111000, 1111111;

;H 5

1 1 1

1 0 1

1 1 0

0 1 1

1 0 0

0 1 0

0 0 1

  yes.
 15. Suppose that u is decoded as v and that x is 

the coset leader of the row containing u. Coset 
decoding means v is at the head of the column 
containing u. So, x 1 v 5 u and x 5 u 2 v. 
Now suppose u 2 v is a coset leader and u is 
decoded as y. Then y is at the head of the col-
umn containing u. Since v is a code word, u 5 
u 2 v 1 v is in the row containing u 2 v. 
Thus, u 2 v 1 y 5 u and y 5 v.

 17. 000000, 100110, 010011, 001101, 110101, 
101011, 011110, 111000;

H � G

1 1 0

0 1 1

1 0 1

1 0 0

0 1 0

0 0 1

W .

  001001 is decoded as 001101 by all four 
methods.

  011000 is decoded as 111000 by all four 
methods.

  000110 is decoded as 100110 by all four 
methods.

  Since there are no code words whose dis-
tance from 100001 is 1 and three whose dis-
tance is 2, the nearest-neighbor method will 
not decode or will arbitrarily choose a code 
word; parity-check matrix decoding does 
not decode 100001; the standard-array and 
syndrome methods decode 100001 as 
000000, 110101, or 101011, depending on 
which of 100001, 010100, or 001010 is a 
coset leader.

 19. For any received word w, there are only 
eight possibilities for wH. But each of these 
eight possibilities satisfies condition 2 or the 
first portion of condition 39 of the decoding 
procedure, so  decoding assumes that no 
 error was made or one error was made.

 21. There are 34 code words and 36 possible re-
ceived words.

 23. No; row 3 is twice row 1.
 25. No. For if so, nonzero code words would be 

all words with weight at least 5. But this set 
is not closed under addition.

 27. Use Exercise 24, together with the fact that the 
set of code words is closed under addition.

 29. Abbreviate the coset a 1 kx2 1 x 1 1l with 
a. The following generating matrix will pro-
duce the desired code:

c1 0 1 1 x

0 1 x x � 1 x � 1
d .

 31. Use Exercise 14.
 33. Let c, c9 [ C. Then, c 1 (v 1 c9) 5 v 1 c 1 

c 9  [  v  1  C  a n d  ( v  1  c )  1  
(v 1 c9) 5 c 1 c9 [ C, so the set C < (v 1 
C) is closed under addition.

 35. If the ith component of both u and v is 0, 
then so is the ith component of u 2 v and au, 
where a is a scalar.

Chapter 32

Wisdom rises upon the ruins of folly.
thomas fuller, Gnomologia

  1. Note that f(1) 5 1. Thus f(n) 5 n. Also, 1 
5 f(1) 5 f(nn21) 5 f(n)f(n21) 5 
nf(n21), so that 1/n 5 f(1/n).

  3. If a and b are automorphisms of E fixing F, 
so are a21 and ab.
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  5. If a and b are fixed by elements of H, so are 
a 1 b, a 2 b, a ? b, and a/b.

  7. It suffices to show that each member of 
Gal(K/F) defines a permutation on the ai’s. 
Let a [ Gal(K/F) and write

f(x) 5 cnx
n 1 cn21x

n21 1 . . . 1 c0
 5 cn(x 2 a1)(x 2 a2) 

. . . (x 2 an).

  Then f(x) 5 a(f(x)) 5 cn(x 2 a(a1))(x 2 
a(a2)) ? ? ? (x 2 a(an)). Thus, f(ai) 5 0 im-
plies ai 5 a(aj) for some j, so that a per-
mutes the ai’s.

  9. Observe that f6(v) 5 v729 5 v whereas 
f3(v) 5 v27 5 v21 and f2(v) 5 v9 5 v2. 
f3(v 1 v21) 5 v27 1 v227 5 v21 1 v; 
f2(v3 1 v5 1 v6) 5 v27 1 v45 1 v54 5 v6 
1 v3 1 v5.

 11. a. Z20 % Z2 has three subgroups of order 10. 
b. 25 does not divide 40, so there are none.  
c. Z20 % Z2 has one subgroup of order 5.

 13. The splitting field over R is R (2�3). The 
Galois group is the identity and the mapping 
a 1 b 2�3 S a 2 b2�3.

 15. Use Theorem 23.3.
 17. Recall that A4 has no subgroup of order 6. 

(See Example 5 in Chapter 7.)
 19. Use Sylow’s First Theorem.
 21. Let v be a primitive cube root of 1. Then Q 

, Q(23 2) , Q(v,23 2 and Q(23 2) is not the 
splitting field of a polynomial in Q[x].

 23. Use the lattice of Z10.
 25. Z6 (Be sure you know why the group is  cyclic.)
 27. See Exercise 21 in Chapter 25.
 29. Use Exercise 43 in Chapter 24.
 31. Use Exercise 42 in Chapter 10.
 33. Since K/N v G/N, for any x [ G and k [ K, 

there is a k9 [ K such that k9N 5 (xN)(kN)
(xN)21 5 xNkNx21N 5 xkx21N. So, xkx21 5 
k9n for some n [ N. And since N # K, we 
have k9n [ K.

 35. Since G is solvable there is a series 
5e6 � K0 ( K1 ( p ( Km � G

  such that Ki�1/Ki is Abelian. Now there is a 
series

 Ki

Ki
�

L0

Ki
(

L1

Ki
( p (

Lt

Ki
�

Ki�1

Ki
,

  where |1Lj�1/Ki2/ 1Lj/Ki2| is prime. Then 
Ki � L0 ( L1 ( L2 ( . . . ( Lt � Ki�1 
and each |Lj�1/Lj| is prime (see Exercise 42 
of Chapter 10). We may repeat this process 
for each i.

Chapter 33

All wish to possess knowledge, but few,  
comparatively speaking, are willing to pay  
the price.

juvenal

  1. x2 2 x 1 1
  3. Over Z, x8 2 1 5 (x 2 1)(x 1 1)(x2 1 1)  

(x4 1 1). Over Z2, x
2 1 1 5 (x 1 1)2 and 

x4 1 1 5 (x 1 1)4. So, over Z2, x
8 2 1 5  

(x 1 1)8. Over Z3, x
2 1 1 is irreducible, but 

x4 1 1 factors into irreducibles as (x2 1 x 1 2)
(x2 2 x 2 1). So, x8 2 1 5 (x 2 1)(x 1 1) 
(x2 1 1)(x2 1 x 1 2)(x2 2 x 2 1). Over Z5, 
x2 1 1 5 (x 2 2)(x 1 2), x4 1 1 5 (x2 1 2)
(x2 2 2), and these last two factors are irre-
ducible. So, x8 2 1 5 (x 2 1)(x 1 1)(x 2 2)
(x 1 2)(x2 1 2)(x2 2 2).

  5. Let v be a primitive nth root of unity. We 
must prove vv2 . . . vn 5 (21)n11. Observe 
that vv2 . . . vn 5 vn(n11)/2. When n is odd, 
vn(n11)/2 5 (vn)(n11)/2 5 1(n11)/2 5 1. When n 
is even, (vn/2)n11 5 (21)n11 5 21.

  7. If [F:Q] 5 n and F has infinitely many roots 
of unity, then there is no finite bound on their 
 multiplicative orders. Let v be a primitive 
mth root of unity in F such that f(m) . n. 
Then [Q(v):Q] 5 f(m). But F $ Q(v) $ Q 
implies [Q(v):Q] # n.

  9. Let 2n 1 1 5 q. Then 2 [ U(q) and 2n 5 q 
2 1 5 21 in U(q) implies that |2| 5 2n. So, 
by  Lagrange’s Theorem, 2n divides |U(q)| 
5 q 2 1 5 2n.

 11. Let v be a primitive nth root of unity. Then 
2nth roots of unity are 61, 6v, . . . , 6vn21. 
These are distinct, since 21 5 (2vi)n, 
whereas 1 5 (v i)n.

 13. First observe that deg F2n(x) 5 f(2n) 5  
f(n) and deg Fn(2x) 5 deg Fn(x) 5 f(n). 
Thus, it suffices to show that every zero of 
Fn(2x) is a zero of F2n(x). But the fact that 
v is a zero of Fn(2x) means that |2v| 5 n, 
and because n is odd, this implies that  
|v| 5 2n.

15. Let G 5 Gal(Q(v)/Q) and H1 be the subgroup 
of G of order 2 that fixes cos(2p

n ). Then, by  
induction, G/H1 has a series of subgroups 
H1/H1 , H2/H1 , . . . , Ht/H1 5 G/H1, so 
that |Hi11/H1:Hi /H1| 5 2. Now observe that 
|Hi11/H1:Hi /H1| 5 |Hi11/Hi|.
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17. Instead, prove that Fn(x)Fpn(x) 5 Fn(x
p). 

Since both sides are monic and have degree 
pf(n), it suffices to show that every zero of 
Fn(x)Fpn(x) is a zero of Fn(x

p). If v is a zero 
of Fn(x), then |v| 5 n. By Theorem 4.2, |vp| 
5 n also. Thus, v is a zero of Fn(x

p). If v is 
a zero of Fpn(x), then |v| 5 pn and therefore 
|vp| 5 n.

 19. Use Theorem 33.4 and Theorem 32.1.

 21. Suppose that a prime p � 2m � 1 and m is not 
a power of 2. Then m � st where s is an odd 
integer greater than 1 (the case where m 5 1 is 
trivial). Let n � 2t � 1. Then 1 6 n 6 p and 
2t mod n � �1. Now looking at p mod n and 
replacing 2t with � 1, we have 12t2s � 1 �
1�12s � 1 � 0. This means that n divides the 
prime p, which is a contradiction.
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for a ring, 227
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code, 508
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property for groups, 50
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properties of, 139–140
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Crystallographic groups, 452–457
Crystallographic restriction, 458
Cube, rotation group of, 147–149
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m-, 96
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group, 75–80
rotation group, 36
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extension, 548
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parity-check matrix, 513–516

Degree
of a over F, 356–357
of an extension, 356
of a polynomial, 278
rule, 284

DeMoivre’s Theorem, 16
Derivative, 346–347
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Direct sum
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Discrete frieze group, 446
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for F[x], 279
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integral, 237–242
Noetherian, 314
unique factorization, 312–315
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conjugate, 387
degree of, 356
fixed by ø, 474
idempotent, 244
identity, 33, 43, 50, 228
inverse, 33, 43
nilpotent, 243
order of, 60–61
primitive, 360
square, 190
transcendental, 354

Embedding Theorem, 411–413
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Equivalence class, 18, 20
Equivalence relation, 18–19
Equivalent under group  

action, 473
Euclidean domain, 315–318
Euclid’s Lemma, 5

generalization of, 25
Euler phi function, 83
Even permutation, 104
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algebraic, 354
cyclotomic, 548
degree, 356
field, 338
finite, 356–360
infinite, 356
simple, 354
transcendental, 354

External direct product, 156–157
applications, 162–167
properties of, 158–160
U-groups as an, 160–162

Factor
group, 176–180
ring, 228, 250–253
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Fermat prime, 554
Fermat’s Last Theorem, 309–311
Fermat’s Little Theorem, 143–144
Field

algebraic closure of, 361
algebraically closed, 361
definition of, 239
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fixed, 531
Galois, 368
of quotients, 268–269
perfect, 348
splitting, 340–346

Fields Medal, 407, 414–415,  
421, 481, 557

Finite dimensional vector space, 333
Finite extension, 356–360
Finite field

classification of, 367–368
structure of, 368–372
subfields of, 372–373

First Isomorphism Theorem
for groups, 201–203
for rings, 266

Fixed field, 531
Free group, 424–425
Frieze pattern, 446
Frobenius map, 272, 374
Function

composition, 21
definition of, 21
domain, 21
image under, 21
one-to-one, 22
onto, 22
properties of, 22–23
range, 21

Fundamental region, 458
Fundamental Theorem

of Algebra, 362
of Arithmetic, 6
of Cyclic Groups, 81–82
of Field Theory, 338–340
of Finite Abelian Groups, 212
of Galois Theory, 535–537
of Group Homomorphisms, 200
proof of, 217–220
of Ring Homomorphisms, 267

GAP, 108
G/Z Theorem, 181
Galois

field, 366
group, 531–535, 543

Gaussian integers, 231, 238, 316
Gauss’s Lemma, 291
Generating region of a pattern, 458
Generator(s)

of a cyclic group, 65, 75
in a presentation, 426

Geometric constructions, 378–379
Glide-axis, 439
Glide-reflection, 439

nontrivial, 449
trivial, 449

Greatest common divisor, 4
Group

Abelian, 34, 43
action, 478–479
alternating, 104–105
automorphism, 129–131, 493
automorphism of, 128
center of, 66–68
color graph of a, 483
commutative, 34
composition factors, 405
crystallographic, 452–457
cyclic, 36, 65, 75
definition, 43
dicyclic, 430, 435
dihedral, 33, 34
discrete frieze, 446
factor, 176–180
finite, 60
free, 424–425
frieze, 446–452
Galois, 531–535, 543
general linear, 45, 48
generator(s),  65, 75, 425–429
Hamiltonian, 498
Heisenberg, 58
homomorphism of, 194
icosahedral, 414, 442
infinite dihedral, 431
inner automorphism, 128–131
integers mod n, 44
isomorphic, 121–123
isomorphism, 121–123
non-Abelian, 34, 43
octahedral, 442
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order of, 60
p-, 389
permutation, 93
presentation, 426
quaternions,  191, 427–428
quotient, 176
representation, 205
simple, 404–409
solvable, 538
space, 460
special linear, 47
symmetric, 94–95
symmetry, 35, 36, 438–439
tetrahedral, 442
of units, 233
wallpaper, 452

Half-turn, 448
Hamiltonian

applications, 492–495
circuit, 486–492
group, 498
path, 486–492

Hamming
code, 505–508
distance, 509–510
weight of a code, 509
weight of a vector, 509

Homomorphism(s)
Fundamental Theorem of, 200, 267
kernel of, 194–195
of a group, 194
natural, 204, 264, 267
properties of, 196–200
properties of ring, 266–268
of a ring, 263–265

Ideal
annihilator, 258
definition of, 249
finitely generated, 320
generated by, 250
maximal, 253–256
nil radical of, 258
prime, 253–256
principal, 250
product of, 257
proper, 249
sum of, 256
test, 249
trivial, 250

Idempotent, 244

Identity element, 33, 43, 50, 228
Imaginary axis, 13
Index of a subgroup, 142
Index Theorem, 411
Induction

First Principle of, 15–16
Second Principle of, 16–18

Inner automorphism, 128–129
Integral domain, 237–242
Internal direct product, 183–187
International standard book  

number, 26
Inverse element, 33, 43
Inverse image, 198
Inversion, 134
Irreducibility tests, 290, 292–297
Irreducible element, 306–309
Irreducible polynomial, 289–290
ISBN, 26
Isometry, 438–440
Isomorphism(s)

class, 213–217
First Theorem for groups, 201–203
First Theorem for rings, 266
of groups, 121–123
properties of, 125–128
of rings, 263–265
Second Theorem for groups, 208
Third Theorem for groups, 208

Kernel
of a homomorphism, 194–195
of a linear transformation, 335

Key, 163–166
Kronecker’s Theorem, 338–340

Lagrange’s Theorem, 142–145
Latin square, 56
Lattice

diagram, 84
of points, 458
subgroup, 84–85
unit, 458

Leading coefficient, 278
Least common multiple, 6
Left regular representation, 124
Line in F, 379
Linear

code, 508–513
combination, 331
transformation, 335

57960_Index_ptg01_A33-A48.indd   40 10/29/15   11:35 PM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A41Index of Terms

Linearly dependent vectors, 331
Linearly independent vectors, 331–333
Logic gate, 13

Mapping, 21
Mathematical induction

First Principle, 15–16
Second Principle, 16–18

Matrix
addition, 44
determinant of, 45
multiplication, 45
standard generator, 512

Maximal
ideal, 253–256

Maximum-likelihood decoding, 504
Measure, 315
Minimal polynomial, 355
Mirror, 439
Mod p Irreducibility Test,  

292–293
Modular arithmetic, 6–7
Monic polynomial, 278
Monster, 408, 541
Multiple, 3
Multiple zeros, 347
Multiplication modulo n, 7
Multiplicity of a zero, 281
Natural homomorphism, 204,  

264, 267
Natural mapping, 202
N/C Theorem, 203
Nearest-neighbor decoding, 506
Nil radical, 258
Nilpotent element, 228243
Noetherian domain, 314
Norm, 307
Normal subgroup, 174–175
Normal Subgroup Test, 175–177

Odd permutation, 104
Odd test, 410
Operation

associative, 43
binary, 42
commutative, 34
preserving mapping, 122
table, 33

Opposite isometry, 439
Orbit of a point, 146
Orbit-Stabilizer Theorem, 147

Order
of an element, 60–61
of a group, 60

Orthogonality relation, 515

Parity-check matrix, 513–516
Partition

of an integer, 213
of a set, 19–20

Perfect field, 348
Permutation

definition of, 93
encryption using, 106–108
even, 104
group, 93
odd, 104
order of, 100–102
properties of, 98–109

p-group, 389
Phi function, Euler, 83
PID, 282
Plane of F, 379
Plane symmetry, 35
Polynomial(s)

alternating, 105
constant, 278
content of, 291
cyclotomic, 294, 548–552
degree of, 278
derivative of, 346–347
Galois group of, 543
irreducible, 289–290
leading coefficient of, 278
minimal, 355
monic, 278
primitive, 291
reducible, 289–290
relatively prime, 285
ring of, 276
splits, 340–341
symmetric, 105
zero of, 281

Presentation, 426
Prime

element of a domain, 306
ideal, 253–256
integer, 3
relatively, 4, 285
subfield, 268

Primitive
element, 360
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Element Theorem, 359–360
nth root of unity, 282, 548
polynomial, 291

Principal ideal domain, 258, 282–283
Principal ideal ring, 272
Projection, 206
Proper ideal, 249
Proper subgroup, 61
Pullback, 198
Public key cryptography, 163–166

Quaternions,  191, 427–428
Quotient, 4, 280
Quotient group, 176
Quotients, field of, 268–269

Range, 21
Rational Root Theorem, 302
Reducible polynomial, 289–290
Reflection, 36, 439
Relation

equivalence, 18–19
in a presentation, 425–429

Relatively prime, 4, 285
Remainder, 4, 280
Remainder Theorem, 281
Ring(s)

Boolean, 235
center of, 233
characteristic of, 240–242
commutative, 228
definition of, 227
direct sum of, 229
examples of, 228–229
factor, 250–253
homomorphism of, 263–265
isomorphism of, 263–265
of polynomials, 276
properties of, 229–230
with unity, 228

RSA public encryption, 165
Rubik’s Cube, 108–109, 150

Scalar, 329
Scalar multiplication, 329
Sicherman dice, 298
Simple extension, 354
Simple group, 404–409
Socks–Shoes Property, 52, 56
Solvable by radicals, 537–538
Solvable group, 538

Spanning set, 331
Special linear group, 47
Splitting field, 340–346
Squaring the circle, 378, 381
Stabilizer of a point, 114, 146
Standard array, 516
Standard decoding, 516
Standard encoding matrix, 512
Standard generator matrix, 512
Subcode, 522
Subfield Test, 244
Subgroup(s)

centralizer, 71
conjugate,  391
cyclic, 65
definition of, 61
diagonal, 169
Finite Test, 64
generated by a, 65–66
generated by S, 66
index of, 142
lattice, 84–85
nontrivial, 61
normal, 174–175
One-Step Test, 62–63
proper, 61
Sylow p-, 391
torsion, 72
trivial, 61
Two-Step Test, 63–64

Subring
definition of, 230
Test, 230–232
Trivial, 231

Subspace, 330–331
Subspace spanned by vectors, 331
Subspace Test, 333
Sylow p-subgroup, 391
Sylow test for nonsimplicity, 409
Sylow Theorems, 389–394

applications of, 395–398
Symmetric group, 94–95
Symmetries of a square, 31
Symmetry group, 36,  

438–439
Syndrome of a vector, 518–519
Systematic code, 512

Tetrahedron, rotations of, 105–106
Transcendental element, 354
Transcendental extension, 354
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Translation, 439
Transposition, 102
Trisecting an angle, 378, 379, 380

UFD, 312–315
Unique factorization domain, 312–315
Unique factorization theorem

for a PID, 313–314
for D[x], 317–318
for F[x], 314–315
for Z, 6
for Z[x], 297–298
in a Euclidean domain, 317

Uniqueness 
of identity, 50
of inverses, 51–52

Unity, 228
Universal Factor Group Property, 425
Universal Mapping Property, 424–425
Universal Product Code, 9

Vector, 329
Vector space

basis of, 331–332

definition of, 329
dimension of, 333
finite dimensional, 333
infinite dimensional, 333
spanned by a set, 331
trivial, 333

Vertex of a graph, 482

Wallpaper groups, 452
Weight of a vector, 509
Weighting vector, 9
Weird dice, 298–300
Well-defined function, 195
Well Ordering Principle, 3
Word

code, 505, 508
empty, 423
in a group, 423

Zero
of irreducible polynomial, 346–350
multiple, 347
multiplicity of, 281
of a polynomial, 281

Zero-divisor, 237
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Cayley Table for the Alternating Group A4 of Even Permutations of {1, 2, 3, 4}

(In this table, the permutations of A4 are designated as a1, a2, . . . , a12 and an entry k inside  
the table represents ak. For example, a3 a8 5 a6.)

  a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

 (1) 5 a1 1 2 3 4 5 6 7 8 9 10 11 12
 (12)(34) 5 a2 2 1 4 3 6 5 8 7 10 9 12 11
 (13)(24) 5 a3 3 4 1 2 7 8 5 6 11 12 9 10
 (14)(23) 5 a4 4 3 2 1 8 7 6 5 12 11 10 9
 (123) 5 a5 5 8 6 7 9 12 10 11 1 4 2 3
 (243) 5 a6 6 7 5 8 10 11 9 12 2 3 1 4
 (142) 5 a7 7 6 8 5 11 10 12 9 3 2 4 1
 (134) 5 a8 8 5 7 6 12 9 11 10 4 1 3 2
 (132) 5 a9 9 11 12 10 1 3 4 2 5 7 8 6
 (143) 5 a10 10 12 11 9 2 4 3 1 6 8 7 5
 (234) 5 a11 11 9 10 12 3 1 2 4 7 5 6 8
 (124) 5 a12 12 10 9 11 4 2 1 3 8 6 5 7

   e a a2 a3 b ba ba2 ba3

 e e a a2 a3 b ba ba2 ba3

 a a a2 a3 e ba3 b ba ba2

 a2 a2 a3 e a ba2 ba3 b ba
 a3 a3 e a a2 ba ba2 ba3 b
 b b ba ba2 ba3 a2 a3 e a
 ba ba ba2 ba3 b a a2 a3 e
 ba2 ba2 ba3 b ba e a a2 a3

  ba3 ba3 b ba ba2 a3 e a a2

Cayley Table for the Quaternion Group

Cayley Tables
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Cayley Tables

Cayley Table for the Dihedral Group of Order 6

 R0 R120 R240 F F' F''

R0 R0 R120 R240 F F' F''
R120 R120 R240 R0 F' F '' F
R240 R240 R0 R120 F '' F F'
F F F'' F' R0 R240 R120
F' F' F F'' R120 R0 R240
F'' F '' F' F R240 R120 R0

Cayley Table for the Dihedral Group of Order 8

 R0 R90 R180 R270 H V D D'

R0 R0 R90 R180 R270 H V D D'
R90 R90 R180 R270 R0 D' D H V
R180 R180 R270 R0 R90 V H D' D
R270 R270 R0 R90 R180 D D' V H
H H D V D' R0 R180 R90 R270
V V D' H D R180 R0 R270 R90
D D V D' H R270 R90 R0 R180
D' D' H D V R90 R270 R180 R0

F

F' F"

D D'

H

V

57960_endpaper_ptg01.indd   2 10/23/15   4:39 PM

Copyright 2017 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights,
some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially
affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.


	Contents
	Preface
	Part 1: Integers and Equivalence Relations
	Ch 0: Preliminaries��������������������������
	Properties of Integers�����������������������������
	Modular Arithmetic�������������������������
	Complex Numbers����������������������
	Mathematical Induction�����������������������������
	Equivalence Relations����������������������������
	Functions (Mappings)���������������������������
	Exercises����������������
	Computer Exercises
	Suggested Readings


	Part 2: Groups���������������������
	Ch 1: Introduction to Groups�����������������������������������
	Symmetries of a Square�����������������������������
	The Dihedral Groups��������������������������
	Exercises����������������
	Suggested Reading������������������������
	Suggested Website������������������������

	Ch 2: Groups�������������������
	Definition and Examples of Groups����������������������������������������
	Elementary Properties of Groups��������������������������������������
	Historical Note����������������������
	Exercises����������������
	Computer Exercises
	References
	Suggested Readings

	Ch 3: Finite Groups; Subgroups�������������������������������������
	Terminology and Notation�������������������������������
	Subgroup Tests���������������������
	Examples of Subgroups����������������������������
	Exercises����������������
	Computer Exercises
	Suggested Readings

	Ch 4: Cyclic Groups��������������������������
	Properties of Cyclic Groups����������������������������������
	Classification of Subgroups of Cyclic Groups���������������������������������������������������
	Exercises����������������
	Computer Exercises
	Suggested Reading������������������������

	Ch 5: Permutation Groups�������������������������������
	Definition and Notation������������������������������
	Cycle Notation���������������������
	Properties of Permutations���������������������������������
	A Check-Digit Scheme Based on D5���������������������������������������
	Exercises����������������
	Computer Exercises
	References
	Suggested Readings

	Ch 6: Isomorphisms�������������������������
	Motivation�����������������
	Definition and Examples������������������������������
	Cayley's Theorem�����������������������
	Properties of Isomorphisms���������������������������������
	Automorphisms��������������������
	Exercises����������������
	Reference
	Computer Exercises

	Ch 7: Cosets and Lagrange's Theorem������������������������������������������
	Properties of Cosets���������������������������
	Lagrange's Theorem and Consequences������������������������������������������
	An Application of Cosets to Permutation Groups�����������������������������������������������������
	The Rotation Group of a Cube and a Soccer Ball�����������������������������������������������������
	An Application of Cosets to the Rubik's Cube���������������������������������������������������
	Exercises����������������
	Computer Exercises

	Ch 8: External Direct Products�������������������������������������
	Definition and Examples������������������������������
	Properties of External Direct Products���������������������������������������������
	The Group of Units Modulo n as an External Direct Product����������������������������������������������������������������
	Applications�������������������
	Exercises����������������
	Computer Exercises
	References
	Suggested Readings

	Ch 9: Normal Subgroups and Factor Groups�����������������������������������������������
	Normal Subgroups�����������������������
	Factor Groups��������������������
	Applications of Factor Groups������������������������������������
	Internal Direct Products�������������������������������
	Exercises����������������
	Suggested Readings

	Ch 10: Group Homomorphisms���������������������������������
	Definition and Examples������������������������������
	Properties of Homomorphisms����������������������������������
	The First Isomorphism Theorem������������������������������������
	Exercises����������������
	Computer Exercise
	Suggested Readings

	Ch 11: Fundamental Theorem of Finite Abelian Groups����������������������������������������������������������
	The Fundamental Theorem������������������������������
	The Isomorphism Classes of Abelian Groups������������������������������������������������
	Proof of the Fundamental Theorem���������������������������������������
	Exercises����������������
	Computer Exercises
	Reference
	Suggested Readings
	Suggested Website������������������������


	Part 3: Rings��������������������
	Ch 12: Introduction to Rings�����������������������������������
	Motivation and Definition��������������������������������
	Examples of Rings������������������������
	Properties of Rings��������������������������
	Subrings���������������
	Exercises����������������
	Computer Exercises
	Suggested Reading������������������������

	Ch 13: Integral Domains������������������������������
	Definition and Examples������������������������������
	Fields�������������
	Characteristic of a Ring�������������������������������
	Exercises����������������
	Computer Exercises
	Suggested Readings

	Ch 14: Ideals and Factor Rings�������������������������������������
	Ideals�������������
	Factor Rings�������������������
	Prime Ideals and Maximal Ideals��������������������������������������
	Exercises����������������
	Computer Exercises
	Suggested Reading������������������������

	Ch 15: Ring Homomorphisms��������������������������������
	Definition and Examples������������������������������
	Properties of Ring Homomorphisms���������������������������������������
	The Field of Quotients�����������������������������
	Exercises����������������
	Suggested Readings

	Ch 16: Polynomial Rings������������������������������
	Notation and Terminology�������������������������������
	The Division Algorithm and Consequences����������������������������������������������
	Exercises����������������
	Suggested Reading������������������������

	Ch 17: Factorization of Polynomials������������������������������������������
	Reducibility Tests�������������������������
	Irreducibility Tests���������������������������
	Unique Factorization in Z[x]�����������������������������������
	Weird Dice: An Application of Unique Factorization���������������������������������������������������������
	Exercises����������������
	Computer Exercises
	Reference
	Suggested Readings

	Ch 18: Divisibility in Integral Domains����������������������������������������������
	Irreducibles, Primes���������������������������
	Historical Discussion of Fermat's Last Theorem�����������������������������������������������������
	Unique Factorization Domains�����������������������������������
	Euclidean Domains������������������������
	Exercises����������������
	Computer Exercise
	References
	Suggested Readings
	Suggested Video
	Suggested Websites


	Part 4: Fields���������������������
	Ch 19: Vector Spaces���������������������������
	Definition and Examples������������������������������
	Subspaces����������������
	Linear Independence��������������������������
	Exercises����������������

	Ch 20: Extension Fields������������������������������
	The Fundamental Theorem of Field Theory����������������������������������������������
	Splitting Fields�����������������������
	Zeros of an Irreducible Polynomial�����������������������������������������
	Exercises����������������

	Ch 21: Algebraic Extensions����������������������������������
	Characterization of Extensions�������������������������������������
	Finite Extensions������������������������
	Properties of Algebraic Extensions�����������������������������������������
	Exercises����������������
	Suggested Readings

	Ch 22: Finite Fields���������������������������
	Classification of Finite Fields��������������������������������������
	Structure of Finite Fields���������������������������������
	Subfields of a Finite Field����������������������������������
	Exercises����������������
	Computer Exercises
	Suggested Reading������������������������

	Ch 23: Geometric Constructions�������������������������������������
	Historical Discussion of Geometric Constructions�������������������������������������������������������
	Constructible Numbers����������������������������
	Angle-Trisectors and Circle-Squarers�������������������������������������������
	Exercises����������������
	References
	Suggested Website������������������������


	Part 5: Special Topics�����������������������������
	Ch 24: Sylow Theorems����������������������������
	Conjugacy Classes������������������������
	The Class Equation�������������������������
	The Sylow Theorems�������������������������
	Applications of Sylow Theorems�������������������������������������
	Exercises����������������
	Computer Exercises
	Suggested Reading������������������������

	Ch 25: Finite Simple Groups����������������������������������
	Historical Background����������������������������
	Nonsimplicity Tests��������������������������
	The Simplicity of A5���������������������������
	The Fields Medal�����������������������
	The Cole Prize���������������������
	Exercises����������������
	Computer Exercises
	References
	Suggested Readings

	Ch 26: Generators and Relations��������������������������������������
	Motivation�����������������
	Definitions and Notation�������������������������������
	Free Group�����������������
	Generators and Relations�������������������������������
	Classification of Groups of Order Up to 15
	Characterization of Dihedral Groups������������������������������������������
	Realizing the Dihedral Groups with Mirrors�������������������������������������������������
	Exercises����������������
	References
	Suggested Readings

	Ch 27: Symmetry Groups�����������������������������
	Isometries�����������������
	Classification of Finite Plane Symmetry Groups�����������������������������������������������������
	Classification of Finite Groups of Rotations in R3���������������������������������������������������������
	Exercises����������������
	References
	Suggested Readings
	Suggested Website������������������������

	Ch 28: Frieze Groups and Crystallographic Groups�������������������������������������������������������
	The Frieze Groups������������������������
	The Crystallographic Groups����������������������������������
	Identification of Plane Periodic Patterns������������������������������������������������
	Exercises����������������
	References
	Suggested Readings
	Suggested Websites

	Ch 29: Symmetry and Counting�����������������������������������
	Motivation�����������������
	Burnside's Theorem�������������������������
	Applications�������������������
	Group Action�������������������
	Exercises����������������
	Suggested Readings

	Ch 30: Cayley Digraphs of Groups���������������������������������������
	Motivation�����������������
	The Cayley Digraph of a Group������������������������������������
	Hamiltonian Circuits and Paths�������������������������������������
	Some Applications������������������������
	Exercises����������������
	References
	Suggested Readings
	Suggested Website������������������������
	Suggested DVD
	Suggested Software

	Ch 31: Introduction to Algebraic Coding Theory�����������������������������������������������������
	Motivation�����������������
	Linear Codes�������������������
	Parity-Check Matrix Decoding�����������������������������������
	Coset Decoding���������������������
	Exercises����������������
	Reference
	Suggested Readings

	Ch 32: An Introduction to Galois Theory����������������������������������������������
	Fundamental Theorem of Galois Theory�������������������������������������������
	Solvability of Polynomials by Radicals���������������������������������������������
	Insolvability of a Quintic���������������������������������
	Exercises����������������
	Reference
	Suggested Readings
	Suggested Website������������������������

	Ch 33: Cyclotomic Extensions�����������������������������������
	Motivation�����������������
	Cyclotomic Polynomials�����������������������������
	The Constructible Regular n-gons���������������������������������������
	Exercises����������������
	Computer Exercises


	Selected Answers
	Index of Mathematicians
	Index of Terms

